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The performance of an endoreversible Carnot heat engine cycle is analyzed and optimized using the theory of finite time thermodynamics
based on Agrawal and Menon’si model of finite speed of the piston on the four branches and Curzon and Ahlborn’sii model of finite rate of
heat transfer. The finite speeds of the piston on the four branches are further assumed to be different, which is unlike the model of constant-
speed of the piston on the four branches. The analytical formula between power and efficiency of the cycle is derived for a fixed cycle period.
There exist optimal ratios of the finite piston speeds on the four branches. The effects of the temperature ratio of the heat reservoirs on the
dimensionless power versus efficiency of the cycle and isothermal expansion ratio are obtained by numerical examples.

Keywords: Finite time thermodynamics; endoreversible Carnot heat engine; finite speed of the piston; finite rate of heat transfer; power;
efficiency.

Se analiza y optimiza el funcionamiento cı́clico de un motor endoreversible de Carnot, utilizando la teorı́a termodińamica de tiempo finito
basada en el modelo de Agrawal y Menoni de velocidad finita del pistón en los cuatro cilindros, y en el modelo de rapidez finita de transporte
de calor de Curzon y Ahlbornii. Tambíen se supone que las velocidades del pistón en los cuatro cilindros son diferentes. Se deduce la
fórmula anaĺıtica de la potencia y la eficiencia para un perı́odo del ciclo. Resultan cocientesóptimos para las velocidades finitas del pistón
en los cuatro cilindros. Se obtienen, mediante ejemplos numéricos, los efectos del cociente de temperatura de los focos térmicos sobre la
potencia versus la eficiencia del ciclo y el coeficiente de dilatación isot́ermica.

Descriptores:Termodińamica de tiempo finito; motor endoreversible de Carnot; velocidad finita del pistón; potencia; eficiencia.
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1. Introduction

Since the new efficiency limit, characterized by finite rate, fi-
nite duration and finite size, was first derived by Novikov [1]
and Chambdal [2] simultaneously and rediscovered by Cur-
zon and Ahlborn [3], the analysis and optimization of
all kinds of thermodynamic cycles has made tremendous
progress by using finite time thermodynamics [4-12]. In
the research field of reciprocating heat engine cycles, adi-
abatic processes are always considered to be instantaneous
compared with the isothermal processes. This may be ap-
plicable for some problems, but sometimes it will degrade
the overall cycle performance in other problems. Petrescuet
al. analyzed the problem, and two fundamental and power-
ful tools, named the First Law of Thermodynamics for Pro-
cesses with Finite Speed and the Direct Method, were intro-
duced in their work. Meanwhile, a series of work had been
performed in Refs. 13 to 18, and the well-established funda-
mentals of Thermodynamics with Finite Speed (TFS) were
shown in their analyses. The idea of TFS is going ahead,
and Agrawal and Menon [19] calculated the cycle time of
each branch of a finite speed Carnot engine on the assump-
tion that the finite speeds of the piston on the four branches
are equal. Based on this cycle model, they investigated the re-
lation between power and efficiency of a finite speed Carnot
engine, and reached the conclusion that the temperature ra-
tio and the isothermal expansion ratio at maximum dimen-
sionless power were not affected by the finite speed of the
piston. Furthermore, Agrawal [20] combined the two mod-
els of achieving finite power output in a Carnot engine,i.e.,

the model of finite rate of heat transfer established by Curzon
and Ahlborn [3] and the model of finite speed of piston es-
tablished by Agrawal and Menon [19], to study the behavior
of power output in terms of isothermal expansion ratio and
the temperature differences presented at the hot- and cold-
reservoir branches.

Obviously, Agrawal and Menon’s [19] and
Agrawal’s [20] work greatly enriched the theory of finite
time thermodynamics. Their cycle models can be extended
further. The finite speeds of the piston on adiabatic branches
are much larger than those in heating and cooling branches
in practical heat engines. Therefore, Agrawal and Menon’s
assumption that the finite speeds of the piston on the four
branches are equal can be improved. On the basis of Refs. 3,
19, and 20, this paper will fix the cycle period and assume
that the finite speeds of the piston on the four branches are
unequal. Then, the analytical formula relating power and
efficiency of the cycle is derived. The focus of this paper is
to search the optimal ratios of the finite piston speeds on the
four branches for a fixed cycle period. Moreover, the effects
of the temperature ratio of the heat reservoirs on the dimen-
sionless power versus efficiency of the cycle and isothermal
expansion ratio are obtained by numerical examples.

2. Cycle model

A finite speed endoreversible Carnot heat engine cycle model
between an infinite heat source at temperatureTH and an in-
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FIGURE 1. Cycle model.

finite heat sink at temperatureTL is shown in Fig. 1 [3,20].
In this T-s diagram, the processes between 1 and 2, as well as
between 3 and 4, are two adiabatic branches; the process be-
tween 2 and 3 is one isothermal heating branch, and the pro-
cess between 4 and 1 is one isothermal cooling branch. The
volumeV and temperatureT of the gas at the four corners of
the cycle are labelled by the corresponding suffixes. The tem-
perature ratio of the heat reservoirs is defined asτ = TH/TL.
The following relations are well-known:
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where T ∗3 is the isothermal temperature ratio,V ∗
3 is the

isothermal expansion ratio, andk is the ratio of the specific
heats.

Unlike the cycle model in Refs. 19 and 20, one can as-
sume that the finite speeds of the piston on the four branches
are constants but unequal. The change rates of the volume on
the four branches1 → 2, 2 → 3, 3 → 4 and4 → 1, that
is, the product of the finite speed of the piston and the cross-
sectional area of the piston, are defined asu1, u2, u3 andu4,
respectively. Furthermore, the change rates of the volume on
the two adiabatic branches are assumed to be equal, that is,
u1 = u3. Also, two ratiosx = u1/u2 andy = u1/u4are de-
fined. x andy are the distributions of the finite speeds of the
piston on the four branches. The times taken by the piston to
move on the four branches1 → 2,2 → 3, 3 → 4 and4 → 1
are defined ast1, t2, t3 andt4, respectively. They are
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3. Performance analysis

According to the heat transfer between the working fluid and
heat reservoirs and the properties of working fluid, the rate of
heat transfer (QH ) supplied by the heat source, and the rate of
heat transfer (QL) released to the heat sink are, respectively,
given by

QH = αF1 (TH − T2) t2 = mRT2 ln V ∗
3 (8)

QL = βF2 (T1 − TL) t4 = mRT1 ln V ∗
3 (9)

whereα andβ (kW/m2 ·K) are the heat transfer coefficients
between the working fluid and heat reservoirs,F1 and F2

(m2) are the heat transfer surface areas of the heat reservoirs,
m (kg) is the mass of the working fluid, andR [kJ/(kg ·K)]
is the gas constant.

Combining Eqs. (1) with (8) and (9) gives

W = QH −QL = mR (T2 − T1) ln V ∗
3

=
T ∗3 − 1

T ∗3
mRT2 ln V ∗

3 (10)

Consider the endoreversible cycle1− 2− 3− 4− 1. Ap-
plying the second law of thermodynamics gives

∆S = QH/T2 −QL/T1 = 0 (11)

From Eqs. (1), (10) and (11), one has

T ∗3 = T2/T1 = 1/ (1−W/QH) = 1/ (1− η) (12)

whereη is the thermal efficiency of the cycle. Combining
Eqs. (5), (8) with (12) gives
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From Eqs. (7), (9), (12) and (13), one has
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Setting the cycle periodt as a constant, from Eqs. (4)-(7), one has
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Combining Eqs. (10), (12), (14) with (17) gives the power output
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From Eq. (20), one has the dimensionless power output
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From Eq. (22), one can see that the dimensionless power
(p) is related to the efficiency (η) of the cycle, the isothermal
expansion ratio (V ∗

3 ), the starting value (V2/u1), the cycle
period (t), the temperature ratio (τ) of the heat reservoirs,
and the products (αF1 andβF2) of heat transfer coefficient
and heat transfer surface area. Whent1 > 0, t2 > 0, t3 > 0,
t4 > 0, x > 0, y > 0,V ∗

3 > 1,andH ≥ 0, one may find that
for a fixedV2/u1, t, τ , αF1 andβF2, there exist an efficiency
(ηp) and an isothermal expansion ratio (V ∗

3p) corresponding
to the maximum power output. Substitutingηp andV ∗

3p into
Eqs. (17) and (18) yields the correspondingxp andyp at max-
imum power output point, which are also the optimal distri-
butions of the finite piston speeds on the four branches.

4. Numerical example

To illustrate the preceding analysis, a numerical example is
provided. In the calculations, it is set thatTL=320K,τ=2.5,
m=4.553 × 10−4kg[21], t=100ms, V2/u1=15ms, k=1.4,
R=0.287kJ/(kg·K), and αF1=βF2=1.2 × 10−3kW / K.
Moreover, when one discusses the effects ofτ andV2/u1 on
the dimensionless power output versus efficiency of the cycle
and isothermal expansion ratio,τ is set as2.4, 2.5, and2.6,
respectively;V2/u1 is set as 14 ms,15ms, and 16 ms, respec-
tively.

Figure 2 shows the effect of the temperature ratio of the
heat reservoirs on the dimensionless power output versus the
isothermal expansion ratio with the efficiencyη = 0.24 of the
cycle and the starting valueV2/u1 = 15ms. One can see that
there exists an optimal isothermal expansion ratioV ∗

3p cor-
responding to the maximum power output point. Moreover,
for a fixedV ∗

3 , the dimensionless power outputp increases
monotonically whenτ increases.
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FIGURE 2. Effect of τ on the dimensionless power output versus
the isothermal expansion ratio.

FIGURE 3. Effect of τ on the dimensionless power output versus
efficiency of the cycle.

Figure 3 shows the effect of the temperature ratio of the
heat reservoirs on the dimensionless power output versus the
efficiency of the cycle with the isothermal expansion ratio
V ∗

3 = 1.1 and the starting valueV2/u1 = 15ms. One can
see that there exists an optimal efficiencyηp corresponding to
the maximum power output. For a fixedη, the dimensionless
power outputp increases monotonically whenτ increases.
Furthermore, numerical calculations show that, with the tem-
perature ratio of the heat reservoirsτ = 2.5 and the starting
valueV2/u1 = 15ms, the maximum dimensionless power
output ispmax = 0.0195, and the corresponding optimal
isothermal heating and cooling temperatures of working fluid
areT2 = 609.18K andT1 = 459.93K, the corresponding
optimal efficiency of the cycle isη = 0.245, the correspond-
ing optimal isothermal expansion ratio isV ∗

3 = 1.101. Sub-
stituting the corresponding optimal efficiency and optimal
isothermal expansion ratio into Eqs. (17) and (18), the corre-

sponding optimal ratios of the finite piston speeds on the four
branches becomex = 22.07 andy = 11.26, respectively.
The proportions of the change rates of the volume on the four
branches are:u1 : u2 : u3 : u4 = 22.07 : 1 : 22.07 : 1.96.
This is the major result different from that of Ref. 20.

Figure 4 shows the effect ofV2/u1 on the dimension-
less power output versus the isothermal expansion ratio with
τ = 2.5 andη = 0.24. One can see that, for a fixedV ∗

3 ,
the dimensionless power outputp decreases monotonically
whenV2/u1 increases. Figure 5 shows the effect ofV2/u1

on the dimensionless power output versus efficiency of the
cycle with τ = 2.5 andV ∗

3 = 1.1. One can see that, for
a fixed efficiencyη, the dimensionless power outputp de-
creases monotonically whenV2/u1 increases.

FIGURE 4. Effect of V2/u1 on the dimensionless power output
versus the isothermal expansion ratio.

FIGURE 5. Effect of V2/u1 on the dimensionless power output
versus efficiency of the cycle.

Rev. Mex. F́ıs. 56 (2) (2010) 135–140



OPTIMAL RATIOS OF THE PISTON SPEEDS FOR A FINITE SPEED ENDOREVERSIBLE CARNOT HEAT ENGINE CYCLE 139

Nomenclature
F heat transfer surface area (m2)
k ratio of the specific heats
m mass of the working fluid (kg)
W work output of the cycle (kJ)
PW power output of the cycle (kW)
P dimensionless power output
Q rate of heat transfer (kJ)
∆S entropy generation of the cycle (kJK−1)
t cycle period (s)

ti(i = 1, 2, 3, 4) time taken by the piston to move on each branche (s)
T temperature (K)
T ∗3 isothermal temperature ratio
u product of the finite speed of the piston and the cross-sectional area of the piston (m3/s)
V volume (m3)
V ∗

3 isothermal expansion ratio
x, y distributions of the finite speeds of the piston

Greek symbols
α heat-transfer coefficient (kW/(K· m2))
η efficiency
τ temperature ratio of the heat reservoirs

Subscripts
H hot side/heat source
L cold side/heat sink
P power

1, 2, 3, 4 state points of the model cycle

5. Conclusion

On the basis of the model of finite piston speed on the four
branches of Carnot engine in Refs. 19 and 20 and the model
of finite rate heat transfer of endoreversible Carnot heat en-
gine in Refs. 3 and 20, this paper extends cycle model
by assuming that the finite speeds of the piston on the four
branches are unequal and combining two approaches of cal-
culating heat absorbed and heat rejected together. The analyt-
ical formula between power output and efficiency of the cycle
model are derived for a fixed cycle period. The analysis and
optimization of the cycle model are carried out in order to in-
vestigate the optimal ratios of the finite piston speeds on the
four branches. The effects of the temperature ratio of the heat
reservoirs and the starting valueV2/u1 on the dimensionless

power output versus efficiency of the cycle and isothermal ex-
pansion ratio are obtained by numerical examples. One can
see that the work of optimizing the ratios of the finite piston
speeds of the cycle model is necessary, and can provide some
theoretical guidelines for the design of practical heat engines.
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