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Two methods to determine the Hermite-Gaussian beam radius
by means of aperiodic rulings
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We study the diffraction of Hermite-Gaussian beams by aperiodic rulings by means of the Rayleigh-Sommerfeld theory in the scalar diffrac-
tion regime. We extend to Hermite-Gaussian beams the results of a previous paper where Gaussian beams were considered [J. Opt. Soc. Am.
A 25 (2008) 2743]. The transmitted power and the normally diffracted energy are analyzed as a function of the beam radius. Two methods
to determine the Hermite-Gaussian beam radius by means of aperiodic rulings are proposed. These two methods are based on the maximum
and minimum transmitted power, and in the normally diffracted energy.

Keywords: Diffraction; gratings.

En la regíon escalar estudiamos la difracción de haces Hermite-Gauss con redes de difracción aperíodicas mediante la Teorı́a de Rayleigh-
Sommerfeld. Extendemos a haces Hermite-Gauss los resultados previamente publicados para haces Gaussianos [J. Opt. Soc. Am. A25
(2008) 2743]. La energı́a total transmitida y la energı́a normalmente difractada son analizadas como función del radio de los haces. Se
proponen dos ḿetodos para determinar el radio de haces Hermite-Gauss mediante redes de difracción aperíodicas. Estos dos ḿetodos est́an
basados en el ḿaximo y el ḿınimo de la enerǵıa total transmitida y en la energı́a normalmente difractada.

Descriptores:Difracción; redes de difracción.

PACS: 42.25.Fx; 42.10.H.C

1. Introduction

The diffraction of Gaussian beams has been extensively
treated in the past [1-6]. In this paper we are interested in
the transmission and diffraction of Hermite-Gaussian beams
by aperiodic rulings. These kinds of beams are described
by the product of Hermite polynomials and Gaussian func-
tions. At present, the two-dimensional Hermite-Gaussian
beams can easily be excited, for instance, with end-pumped
solid-state laser [7] or by inserting a cross wire into the laser
cavity with the wires aligned with the nodes of the desired
mode [8]. In Ref. 7 it was demonstrated that it is possible
to generate two-dimensional Hermite-Gaussian modes up to
the TEM0,80 mode. In passing, we mention that these beams
have been considered in relation to some other problems. The
reader is referred to Ref. 9 for a more complete list of refer-
ences about the applications of Hermite-Gaussian beams (28
references are given).

Some methods for determining the size of the Gaussian
beams have been proposed which are based on the properties
of the transmitted power by rulings [10-15]. Also, aperiodic
rulings [14-16] (which are Ronchi rulings but with a large
or small opaque section) have been considered. In all the
mentioned papers [10-14] the beam diameters have been de-
termined by means of the maximum and the minimum trans-
mitted power. However, some exceptions are given in Refs. 3,
15 and 16 where the normally diffracted energy to the grat-
ings was considered. This last method can be useful in that it
uses only the diffracted energy close to the normal direction
instead of the total transmitted power.

Two methods to determine the Gaussian beams radius by
means of periodic and aperiodic rulings were proposed in
Ref. 15. One is based on the maximum and minimum trans-
mitted power, and the other one on the normally diffracted
energy. For periodic rulings the field amplitude radiusr0/D
can be determined as long as0.02 < r0/D < 1.2, whereD
is the period of the rulings. And for aperiodic rulingsr0/D
can be determined as long as0.5 < r0/D < 80, in fact, this
upper limit can be improved. Then, with these two methods
small and large Gaussian beams radius can be treated.

In this paper we extend to Hermite-Gaussian beams the
results given in Ref. 15, where Gaussian beams were con-
sidered. For periodic rulings was shown in Ref. 16 that the
two methods proposed in Ref. 15 cannot be applied any more
to Hermite-Gaussian beams. On the other hand, for aperiodic
rulings, the two methods proposed in Ref. 15 can be extended
to Hermite-Gaussian beams. It is important to notice that, to
our knowledge, this is the first time that methods to determine
the field amplitude radiusr0/D of Hermite-Gaussian beams
by means of aperiodic rulings are proposed. Finally, we men-
tion that in the literature, little attention has been paid to the
diffraction of Hermite-Gaussian beams by gratings; some ex-
ceptions are given in Ref. 16 to 20.

2. Formulation

We have an aperiodic ruling made of alternate transparent
(width l) and opaque zones (widthd) with periodD = l + d.
This aperiodic ruling has a large or small opaque zone of
width d′, which could be equal to or different fromd, i.e.,
we have an opaque discontinuity in the ruling. In the case
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FIGURE 1. Our system. An aperiodic ruling made of alternate
opaque and transparent zones of widthsd andl, respectively, with
an opaque zone of widthd′. The ruling is parallel to theOz axis.
The observation point is given byP (x0, y0).

whered′=d the conventional periodic ruling is recovered. We
fixed a Cartesian coordinate system at the midpoint of the
opaque discontinuity of widthd′ with the Oz axis parallel
to the ruling as shown in Fig. 1. The ruling is illuminated
at normal incidence by a beam independent of thez coor-
dinate (cylindrical incident wave). The complex representa-
tion of field quantities is used, and the complex time term
exp(−i ω t) is omitted from now on.

Since this paper can be considered to be the continuation
of a previously published article, the theory of diffraction is
only outlined here and the reader is referred to Ref. 15 for
most details.

Let E(x), Ei(x), and t(x) be the transmitted field, the
input field or incident field, and the transmittance function,
respectively, related as follows:

E(x) = t(x)Ei(x) (1)

where the functiont(x) is null in the opaque zones and has
the unity value in the transparent zones. From Eq. (1) the
field E(x) just below the ruling can be obtained. From
the knowledge of the fieldE(x) and the two-dimensional
Rayleigh-Sommerfeld integral equation [21] the total field
E(x0, y0) at any point below the ruling can be obtained:

E(x0, y0) =
i

2

∞∫

−∞
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∂

∂ y0
H1

0 (kr)dx

=
i
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wherek = 2π/λ, with λ being the wavelength of the incident
radiation; andr2 = (x− x0)2 + y2

0 with P (x0, y0) being the
observation point as illustrated in Fig. 1.H1

0 is the Hankel
function of the first kind and order zero. From Eq. (2) the
far field can be obtained by looking at the asymptotic behav-
ior of the fieldE whenkr À 1. In this approximation the
expression for the far field is given by

E(x0, y0) = f(θ) exp(ikR0)/
√

R0, (3)

wheresin θ = x0/R0 andcos θ = −y0/R0 (see Fig. 1). This
is the expression of a cylindrical wave with the oblique factor
f(θ) given by:

f(θ) =
√

k exp(−iπ/4) cos θ Ê(k sin θ), (4)

with Ê(α) being the Fourier transform ofE(x):

Ê(α) =
1√
2π

+∞∫

−∞
E(x) exp(−iα x)dx

=
1√
2π

+∞∫

−∞
t(x)Ei(x) exp(−iα x)dx (5)

The intensityI(θ) diffracted at an angleθ (see Fig. 1) is
given byC |f(θ)|2, whereC is a constant, and we have

I(θ) = C2 1
2π

k

× cos2 θ

∣∣∣∣∣∣
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t(x)Ei(x) exp(−ik sin θx)dx

∣∣∣∣∣∣

2

; (6)

then, the diffraction patterns can be determined from Eq. (6)
if the input fieldEi(x) and the transmittance functiont(x)
are given.

In what follows, our attention is focused on the transmit-
ted powerPT and on the normally diffracted energy to the
screenI(00). The transmitted powerPT is obtained as fol-
lows:

PT =

π/2∫

−π/2

I(θ)dθ (7)

3. Definition of hermite-gaussian beam width

It is very important to remember that the definition of the size
of a beam is somewhat arbitrary. We denote byr0 the Gaus-
sian beam radius at which the field amplitude is 1/e times its
peak value and byL the local1/e-intensity Gaussian beam
diameter (the L-spot diameter). The values ofL are related
to the field amplitude radiusr0 by means of the relationship
L =

√
2 r0. There are other definitions for the Gaussian spot

size; for instance, the beam width can be calculated using the
diameter that covers 86.5% of the energy, and in this case the
beam width will be denoted byL0. As was pointed out in
Ref. 20, the relationship between the Gaussian beam widths
L andL0 is given byL0 = 1.057L, so that the values ofL0

are very close to the values ofL; in fact, in practice we can
consider thatL0 = L.

As an incident wave, the two-dimensional version of the
Hermite-Gaussian beam will be considered. On the screen
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and at normal incidence the field of the Hermite-Gaussian
beam of ordern is given by

Ei(x, y = 0) = Hn

[√
2

r0
(x− b)

]
exp

[
− (x− b)2

r2
0

]
, (8)

whereHn is the Hermite polynomial of ordern, some of
which areH0(t) = 1, H1(t) = 2t, H2(t) = 4t2 − 2,
H3(t) = 8t3− 12t, and so forth. The position of the incident
Hermite-Gaussian beam with respect to theOy axis is fixed
by the parameterb. This parameter enables us to displace the
beam along the screen.

If the beam diameterLn for the Hermite-Gaussian beam
of ordern is defined by the 86.5% energy content, thenLn is
related tor0 by means of a linear relationship [20]. We have
found thatL1 = 2.3574r0, L2 = 3.0000r0, L3 = 3.5397r0,
L4 = 4.0107r0, and so forth, so that the Hermite-Gaussian
beam diameterLn increases whenn also increases (r0 is
fixed). In fact, we can considerr0 as a common parameter for
all the Hermite-Gaussian beams; however, it is necessary not
to forget that the interesting and practical parameter isLn. In
what followsr0 will be considered as the basic parameter. In
addition, we call attention to the fact that the present theory is
valid not only for Hermite-Gaussian beams but also for other
incident beams.

4. Aperiodic ruling

In this section, we are mainly interested in studying the in-
tensity ratioK defined as follows:

K = Emin/Emax (9)

and the power ratioP given by

P = Pmin/Pmax, (10)

whereEmin andEmax are the minimum and maximum val-
ues of the normally diffracted energyI(00) and Pmin and
Pmax are the minimum and maximum transmitted power,
both of them obtained when the spot beam is scanned by the
ruling. Normally incident beams are considered in what fol-
lows.

In this section, the case of an aperiodic ruling made of al-
ternate transparent and opaque zones will be considered (with
the periodD = l + d), but with a large or small opaque zone
of width d′ which could be equal or different tod, i.e., we
have an opaque discontinuity in the ruling. The case where
d = l will be treated,i.e., the width of the opaque zones is
equal to the width of the transparent zones. Also, the case of
a great opaque discontinuityd′ > D is analyzed in what fol-
lows. TheOz axis will be placed halfway through the opaque
discontinuity of widthd′.

This aperiodic ruling has been studied by Uppalet al. in
Ref. 14 for an incident Gaussian beam. They have divided
their study into two cases:d′ > D (great opaque discon-
tinuity) and d′ < D (small opaque discontinuity). In the

first case they were able to determine a large beam radius
(1 < r0/D < 10) and in the second one a small beam radius
(0.05 < r0/D < 0.5).

The aperiodic ruling was also studied by Mata-Mendez in
Ref. 15 for an incident Gaussian beam. Only the cased′ > D
(great opaque discontinuity) was treated in Ref. 15, since two
methods to determine a small beam radius (0.02<r0/D<1.2)
by means of the ruling were proposed in the same paper.
Also, it was shown for a great opaque discontinuity that the
radiusr0 can be determined from the ratiosP andK as long
as0.5 < r0/D < 80; in fact, this last result improve that
obtained by Uppalet al. in Ref. 14.

In Fig. 2 the transmitted power is plotted as a function
of the beam position (b/D) for a normally incident Hermite-
Gaussian beam of ordern =1, with the following parameters:
λ/l =0.0666,d/l =0.3333 andd′/l =2.0, and the field am-
plitude radiusr0/D=0.5 and 2.0. From the results of Fig. 2
and other results not shown, we have observed two small de-
pressions close to the centre of the opaque discontinuity and
a constant value far from this discontinuity whenr0/D ≥2.0
andn =1. These last two properties are very important in
the determination of the field amplitude radius as we shall
see below. In the case of an incident Gaussian beam only one
depression was observed by Uppalet al. in Ref. 14 located
at the center of the opaque discontinuity. We have also an-
alyzed incident Hermite-Gaussian beams of ordern =2, 3,
and 4 with the same conclusions, where several depressions
were observed.

Figure 3 is similar to Fig. 2 but for the normally diffracted
energy. From the results of this figure and other results not
shown, we have found that the value of the ratioK is null
whenn is an odd integer. However,K is not null (K 6= 0)

FIGURE 2. Transmitted power is plotted as a function of the spot
position (b/D) for a normally incident Hermite-Gaussian beam of
ordern =1, with λ/l =0.0666,d/l =0.3333 andd′/l =2.0. Sev-
eral values of the field amplitude radius are considered:r0/D=0.5
and 2.0.
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FIGURE 3. Same as Fig. 2 but for the normally diffracted energy.

FIGURE 4. RatiosP andK are plotted as a function of the field
amplitude radius (r0/D) for a normally incident Hermite-Gaussian
beam of ordern =1 and several values of the opaque discontinuity
(d′/D=2.5, 5.0, 7.5), whenl=0.5 andd=0.5.

when n is an even integer. We have analyzed the mini-
mum (Emin) and maximum (Emax) values of the normally
diffracted energy for incident Hermite-Gaussian beams and
the following behavior was obtained:

Emin ∝ 1
λ

and Emax ∝ 1
λ

(11)

these results are in agreement with Eq. (14) of Ref. 15. Then,
the intensity ratioK is independent of the wavelength.

In Fig. 4 the ratiosP andK are plotted as a function
of the field amplitude radius (r0/D) for a normally incident
Hermite-Gaussian beam of ordern =1. We have the fol-
lowing parameters:l=0.5, d=0.5, and several values of the
opaque discontinuityd′/D=2.5, 5.0, 7.5. The parameters
used in Fig. 4 are the same as Figs. 8 and 9 of Ref. 15. In all
cases we have an aperiodic ruling with a great opaque discon-
tinuity (d′ > D). We observe that the behavior of the ratioP

as a function ofr0/D is changed considerably with the values
of the opaque discontinuity (d′/D). A growing behavior ofP
is obtained in all cases in Fig. 4, while the ratioK is always
null. Then, from this growing behavior we can conclude that
if the ratioP is experimentally determined, the correspond-
ing field amplitude radiusr0/D can be obtained as long as
0.66 < r0/D < 10.0 whend′/D=2.5,1.25 < r0/D < 10.0
whend′/D=5.0, and1.86 < r0/D < 10.0 whend′/D=7.5.
The upper limit can be extended to great values ofr0/D
as we shall see below. We have analyzed incident Hermite-
Gaussian beams of ordern =3, with the same conclusions.

Figures 5 and 6 are similar to Fig. 4 but for the or-
der n =2. In Fig. 5 the ratioP is considered, while in
Fig. 6 the ratioK is dealt with. In Fig. 5 a growing behav-
ior of P is obtained for all the values ofd′/D, so that the
field amplitude radiusr0/D can be determined as long as
0.53 < r0/D < 10.0 whend′/D=2.5,1.1 < r0/D < 10.0

FIGURE 5. Same as Fig. 4 but for the ratioP andn =2.

FIGURE 6. Same as Fig. 4 but for the ratioK andn =2.
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FIGURE 7. RatiosP (solid curves) andK (dashed curves) are
plotted as a function of the diameterLn/D (diameter that covers
86.5% of energy) for normally incident Hermite-Gaussian beams
of ordern =1, 2, 3, with the opaque continuityd′/D=7.5.

whend′/D=5.0, and1.61 < r0/D < 10.0 whend′/D=7.5.
From Fig. 6 we see that the growing behavior ofK begins at
r0/D=1.165, 2.875, and 4.585 (pointed out by arrows) when
d′/D=2.5, 5.0, and 7.5, respectively. From these last obser-
vations we conclude that if the ratioK is determined, the field
amplitude radiusr0/D can be obtained as long as1.165 <
r0/D < 10.0 whend′/D=2.5,2.875 < r0/D < 10.0 when
d′/D=5.0, and4.585 < r0/D < 10.0 whend′/D=7.5. We
have also considered Hermite-Gaussian beams of ordern =4
with the same conclusions. To our knowledge, this is the first
time that two methods to determine the field amplitude radius
of Hermite-Gaussian beams by means of an aperiodic ruling
are proposed.

We observe from Figs. 4, 5, and 6 that the two proposed
methods could determine very long values ofr0/D when the
opaque discontinuityd′/D is also large. This is done in Fig. 7
where the ratiosP and K are plotted as a function of the
beam diameterLn (diameter that covers 86.5% of energy),
whenn =1, 2, and 3, and the opaque discontinuity is given
by d′/D =7.5. In fact, the upper limitLn/D = 80 of Fig. 7
could be improved with a greater discontinuity. It is inter-
esting to compare Fig. 7 with Fig. 10 of Ref. 15 where an
incident Gaussian beam was considered. We consider that
the results given in Figs. 4-7 are the main contributions of
this paper.

In passing we mention that we have also dealt with (re-
sults not shown) the case of a small opaque discontinuity
(d′ < D), but instead of the growing behavior ofP and
K given in Figs. 4-6, an oscillating behavior was obtained.
Finally, we mention that in a future paper the diffraction of
Hermite-Gaussian beams by an aperiodic ruling is to be ana-
lyzed in detail.

5. Conclusions

The diffraction of Hermite-Gaussian beams by aperiodic rul-
ings was studied by means of the transmitted power and the
normally diffracted energy. Two methods to determine the
Hermite-Gaussian beam radii are proposed. Large and very
large Hermite-Gaussian beam radius could be treated with
these two methods.
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