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We study the diffraction of Hermite-Gaussian beams by aperiodic rulings by means of the Rayleigh-Sommerfeld theory in the scalar diffrac-
tion regime. We extend to Hermite-Gaussian beams the results of a previous paper where Gaussian beams were doGgite®ed.[ Am.

A 25(2008) 2743]. The transmitted power and the normally diffracted energy are analyzed as a function of the beam radius. Two methods
to determine the Hermite-Gaussian beam radius by means of aperiodic rulings are proposed. These two methods are based on the maximu
and minimum transmitted power, and in the normally diffracted energy.

Keywords: Diffraction; gratings.

En la regbn escalar estudiamos la difragoide haces Hermite-Gauss con redes de difbacaperddicas mediante la Telarde Rayleigh-
Sommerfeld. Extendemos a haces Hermite-Gauss los resultados previamente publicados para haces Ghuspian®sd. Am. &5
(2008) 2743]. La eneig total transmitida y la enéiig normalmente difractada son analizadas como &mndel radio de los haces. Se
proponen dos &todos para determinar el radio de haces Hermite-Gauss mediante redes dédifipeddicas. Estos dos @odos estn
basados en el aximo y el ninimo de la enefig total transmitida y en la enéegnormalmente difractada.

Descriptores:Difraccion; redes de difracén.

PACS: 42.25.Fx; 42.10.H.C

1. Introduction Two methods to determine the Gaussian beams radius by
means of periodic and aperiodic rulings were proposed in
Ref. 15. One is based on the maximum and minimum trans-
The diffraction of Gaussian beams has been extensivelpitted power, and the other one on the normally diffracted
treated in the past [1-6]. In this paper we are interested irnergy. For periodic rulings the field amplitude radiygD
the transmission and diffraction of Hermite-Gaussian beamggn be determined as long@®2 < ro/D < 1.2, whereD
by aperiodic rulings. These kinds of beams are describeg the period of the rulings. And for aperiodic rulings/ D
by the product of Hermite polynomials and Gaussian funccan be determined as long@$ < r,/D < 80, in fact, this
tions. At present, the two-dimensional Hermite-Gaussianypper limit can be improved. Then, with these two methods
beams can easily be excited, for instance, with end-pumpegmall and large Gaussian beams radius can be treated.
solid-state laser [7] or by inserting a cross wire into the laser  |n this paper we extend to Hermite-Gaussian beams the
cavity with the wires aligned with the nodes of the desiredresults given in Ref. 15, where Gaussian beams were con-
mode [8]. In Ref. 7 it was demonstrated that it is possiblesidered. For periodic rulings was shown in Ref. 16 that the
to generate two-dimensional Hermite-Gaussian modes up tvo methods proposed in Ref. 15 cannot be applied any more
the TEM, s0 mode. In passing, we mention that these beamso Hermite-Gaussian beams. On the other hand, for aperiodic
have been considered in relation to some other problems. Th@lings, the two methods proposed in Ref. 15 can be extended
reader is referred to Ref. 9 for a more complete list of referto Hermite-Gaussian beams. It is important to notice that, to
ences about the applications of Hermite-Gaussian beams (2fr knowledge, this is the first time that methods to determine
references are given). the field amplitude radius, /D of Hermite-Gaussian beams

Some methods for determining the size of the GaussiaRy means of ape_zriodic r“”f‘gs are prpposed. Finally, we men-
beams have been proposed which are based on the propertﬁ] the_at in the Ilter_ature, I|tt|§ attention has be_en paid to the
of the transmitted power by rulings [10-15]. Also, aperiodic 9 action of Hermite-Gaussian beams by gratings; some ex-
rulings [14-16] (which are Ronchi rulings but with a large ceptions are given in Ref. 16 to 20.
or small opaque section) have been considered. In all the
mentioned papers [10-14] the beam diameters have been d2- Formulation
termined by means of the maximum and the minimum trans-
mitted power. However, some exceptions are given in Refs. 3\Ve have an aperiodic ruling made of alternate transparent
15 and 16 where the normally diffracted energy to the grat{width /) and opaque zones (width with periodD = [ + d.
ings was considered. This last method can be useful in that ithis aperiodic ruling has a large or small opaque zone of
uses only the diffracted energy close to the normal directiowidth d’, which could be equal to or different from i.e.,
instead of the total transmitted power. we have an opaque discontinuity in the ruling. In the case
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wheresin § = xq/ Ry andcos § = —yo/ Ry (see Fig. 1). This
is the expression of a cylindrical wave with the oblique factor

&'z e f(0) given by:
£(0) = VEkexp(—in/4) cos 0 E(ksin6), 4)
d D .
...... _ = R with E(«) being the Fourier transform df (z):
‘l . .
- 1
Ela) = — / E(z)exp(—iax)dx
P(Xn,)’a) \/%700

FIGURE 1. Our system. An aperiodic ruling made of alternate

opaque and transparent zones of widfhend(, respectively, with /
an opaque zone of widtt. The ruling is parallel to th€2 axis. \/ﬂ
The observation point is given by (zo, yo).

z) exp(—iaz)dr (5)

The intensity/ (0) diffracted at an anglé (see Fig. 1) is

, . o
whered'=d the conventional periodic ruling is recovered. Wegiven byC'| £(6)[2, whereC is a constant, and we have

fixed a Cartesian coordinate system at the midpoint of th
opaque discontinuity of widtlhl’ with the Oz axis parallel )
to the ruling as shown in Fig. 1. The ruling is illuminated 10)=C gk

at normal incidence by a beam independent of thepor- 5
. . . . . —+oo
dinate (cylindrical incident wave). The complex representa- ) o
tion of field quantities is used, and the complex time term x cos” 0 / t(x)Ey(x) exp(—iksinfx)dz| ; (6)
exp(—iwt) is omitted from now on. 0

Since this paper can be considered to be the continuation
of a previously published article, the theory of diffraction is then, the diffraction patterns can be determined from Eq. (6)

only outlined here and the reader is referred to Ref. 15 foff the input field £;(x) and the transmittance functidiiz)

most details. are given.

Let E(z), E;(z), andt(z) be the transmitted field, the In what follows, our attention is focused on the transmit-
input field or incident field, and the transmittance function,ted powerPr and on the normally diffracted energy to the
respectively, related as follows: screen/ (0Y). The transmitted powePr is obtained as fol-

lows:
E(z) = t(x)E;(x) ) /
/2
where the functiort(z) is null in the opaque zones and has P 1(0)d0 7
the unity value in the transparent zones. From Eq. (1) the = (0) )
field E(x) just below the ruling can be obtained. From —7/2

the knowledge of the fieldZ(z) and the two-dimensional
Rayleigh-Sommerfeld integral equation [21] the total field

E(x0,y0) at any point below the ruling can be obtained: 3. Definition of hermite-gaussian beam width

Itis very important to remember that the definition of the size
E(zo,y0) / E(z HO (kr)dx of a beam is somewhat arbitrary. We denoterpyhe Gaus-
sian beam radius at which the field amplitude is 1/e times its
peak value and by. the locall/e-intensity Gaussian beam
i 0 Jo diameter (the L-spot diameter). The valuesioére related
D) / t(x)Ei(x)aT/O Hy(kr)dz—(2) 4 the field amplitude radius, by means of the relationship
—o0 L = /2 ry. There are other definitions for the Gaussian spot
wherek = 27/, with \ being the wavelength of the incident size; for instance, the beam width can be calculated using the
radiation; and-> = (x — x0)? + 2 with P(x0,0) being the diameter that covers 86.5% of the energy, and in this case the
observation point as illustrated in Fig. H] is the Hankel ~beam width will be denoted by,,. As was pointed out in
function of the first kind and order zero. From Eq. (2) the Ref. 20, the relationship between the Gaussian beam widths
far field can be obtained by looking at the asymptotic behavL andLy is given byL, = 1.057L, so that the values df,
ior of the field £ whenkr > 1. In this approximation the ~are very close to the values &f in fact, in practice we can

expression for the far field is given by consider thaty =
. As an incident wave, the two-dimensional version of the
E(wo,y0) = f(0) exp(ikRo)// Ro. (3)  Hermite-Gaussian beam will be considered. On the screen
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and at normal incidence the field of the Hermite-Gaussiarirst case they were able to determine a large beam radius

beam of order is given by (1 < ro/D < 10) and in the second one a small beam radius
, (0.05 < r9/D < 0.5).
Ei(x,y =0) = H, @(m —b)| exp [_ ( _Qb) } . (8) The aperiodic ruling was also studied by Mata-Mendez in
To To Ref. 15 for an incident Gaussian beam. Only the case D

(great opaque discontinuity) was treated in Ref. 15, since two
methods to determine a small beam radiu8Z<r,/D<1.2)
by means of the ruling were proposed in the same paper.

Hj(t) = 8t3 — 12t, and so forth. The position of the incident : ; L
Hermite-Gaussian beam with respect to g axis is fixed Also, it was shown for a great opaque discontinuity that the
P radiusrg can be determined from the ratiésand K as long

by the parametdr. This parameter enables us to displace theaso.5 < ro/D < 80; in fact, this last result improve that
beam along the screen. obtained by Uppaét al. in Ref. 14

If the beam diameteE,, for the Hermite-Gaussian beam ) T
of ordern is defined by the 86.5% energy content, tienis In Fig. 2 the transmitted power is plotted as a function
related tor, by means of a linear relationship [20]. We have Of the beam positionb( D) for a normally incident Hermite-
found thatL, = 2.3574r¢, Ly = 3.0000r0, Lz = 3.5397r0, Gaussian beam of order=1, with the following parameters:
L, = 4.0107r, and so forth, so that the Hermite-Gaussian”/! =0.0666,d/l =0.3333 and?’/l =2.0, and the field am-
beam diamete,, increases whem also increasesr( is plitude radiusry/D=0.5 and 2.0. From the results of Fig. 2
fixed). In fact, we can considey as a common parameter for and other results not shown, we have observed two small de-
all the Hermite-Gaussian beams; however, it is necessary neressions close to the centre of the opaque discontinuity and
to forget that the interesting and practical parametér,isin @ constant value far from this discontinuity wheyy D >2.0
what followsr, will be considered as the basic parameter. Inandn =1. These last two properties are very important in
addition, we call attention to the fact that the present theory i§he determination of the field amplitude radius as we shall

valid not only for Hermite-Gaussian beams but also for othe£€€ below. In the case of an incident Gaussian beam only one
incident beams. depression was observed by Uppakl. in Ref. 14 located

at the center of the opaque discontinuity. We have also an-
. ) alyzed incident Hermite-Gaussian beams of onder2, 3,
4. Aperiodic ruling and 4 with the same conclusions, where several depressions

In this section, we are mainly interested in studying the in-Vere observed.

where H,, is the Hermite polynomial of order, some of
which are Hy(t) = 1, Hy(t) = 2t, Ha(t) = 4t> — 2,

tensity ratiok” defined as follows: Figure 3 is similar to Fig. 2 but for the normally diffracted
energy. From the results of this figure and other results not
K = FEnin/Fmax (9) shown, we have found that the value of the rafiois null

o whenn is an odd integer. Howevef is not null (K # 0)
and the power ratid given by

P= Pmin/Pmaxa (10) 1.0

whereE,,;, and £, are the minimum and maximum val- ‘
ues of the normally diffracted energy0°) and P,,;, and osdii i
Prax are the minimum and maximum transmitted power, s ‘s
both of them obtained when the spot beam is scanned by the§
ruling. Normally incident beams are considered in what fol- g 61 _ ; j
lows. = | - %
In this section, the case of an aperiodic ruling made of al- g '
ternate transparent and opaque zones will be considered (with=
the periodD = [ + d), but with a large or small opaque zone
of width d’ which could be equal or different t, i.e., we 02
have an opaque discontinuity in the ruling. The case where n=1
d = 1 will be treated,i.e., the width of the opaque zones is ]
equal to the width of the transparent zones. Also, the case of 00 ; . . — . . <
a great opaque discontinui§/ > D is analyzed in what fol- R % = 2 F 5 & 2
lows. TheO, axis will be placed halfway through the opaque el i

discontinuity of widthd'. _ _ FIGURE 2. Transmitted power is plotted as a function of the spot

This aperiodic ruling has been studied by Upgial.in  yosition ¢/ D) for a normally incident Hermite-Gaussian beam of
Ref. 14 for an incident Gaussian beam. They have divideGrdern =1, with \/I =0.0666,d/] =0.3333 and!’/l =2.0. Sev-
their study into two casesd’ > D (great opaque discon- eral values of the field amplitude radius are considergd=0.5
tinuity) andd’ < D (small opaque discontinuity). In the and 2.0.

04 r,/D=2.0
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FIGURE 3. Same as Fig. 2 but for the normally diffracted energy.
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FIGURE 4. RatiosP and K are plotted as a function of the field
amplitude radiusi(/ D) for a normally incident Hermite-Gaussian
beam of order, =1 and several values of the opaque discontinuity
(d'/D=2.5, 5.0, 7.5), whef=0.5 andd=0.5.

whenn is an even integer.
mum (Ehin) and maximum £,.x) values of the normally

diffracted energy for incident Hermite-Gaussian beams and

the following behavior was obtained:

1
and FEax < —

> (1)

1
Emin N
N

these results are in agreement with Eq. (14) of Ref. 15. Then,

the intensity ratidk is independent of the wavelength.

In Fig. 4 the ratiosP and K are plotted as a function
of the field amplitude radius-¢/ D) for a normally incident
Hermite-Gaussian beam of order=1. We have the fol-
lowing parametersi=0.5, d=0.5, and several values of the
opaque discontinuityl’/D=2.5, 5.0, 7.5. The parameters

used in Fig. 4 are the same as Figs. 8 and 9 of Ref. 15. In all

We have analyzed the mini-
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as afunction ofy/ D is changed considerably with the values
of the opaque discontinuityl{/ D). A growing behavior of?
is obtained in all cases in Fig. 4, while the ratidis always
null. Then, from this growing behavior we can conclude that
if the ratio P is experimentally determined, the correspond-
ing field amplitude radius,/D can be obtained as long as
0.66 < ro/D < 10.0 whend'/D=2.5,1.25 < ro/D < 10.0
whend’/D=5.0, andl.86 < ro/D < 10.0 whend’/D=7.5.
The upper limit can be extended to great values-gfD
as we shall see below. We have analyzed incident Hermite-
Gaussian beams of order=3, with the same conclusions.
Figures 5 and 6 are similar to Fig. 4 but for the or-
dern =2. In Fig. 5 the ratioP is considered, while in
Fig. 6 the ratioK is dealt with. In Fig. 5 a growing behav-
ior of P is obtained for all the values af /D, so that the
field amplitude radius/D can be determined as long as
0.53 < r9/D < 10.0 whend'/D=2.5,1.1 < ro/D < 10.0

n=2
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Ratio P

0.4 H

0.2 4

0.0 - T T T T T 1
2 4 6 8

Field amplitude radius / Period (r /D)
FIGURE 5. Same as Fig. 4 but for the rati® andn =2.
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cases we have an aperiodic ruling with a great opaque discon-

tinuity (d’ > D). We observe that the behavior of the rakio

FIGURE 6. Same as Fig. 4 but for the rati§ andn =2.
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FIGURE 7. Ratios P (solid curves) andX (dashed curves) are
plotted as a function of the diametér, /D (diameter that covers
86.5% of energy) for normally incident Hermite-Gaussian beams
of ordern =1, 2, 3, with the opaque continuitif / D=7.5.

whend’'/D=5.0, andl.61 < ro/D < 10.0 whend’/D=7.5.
From Fig. 6 we see that the growing behaviotbegins at

145

We observe from Figs. 4, 5, and 6 that the two proposed
methods could determine very long values@fD when the
opaque discontinuity’ /D is also large. This is done in Fig. 7
where the ratios”? and K are plotted as a function of the
beam diametel.,, (diameter that covers 86.5% of energy),
whenn =1, 2, and 3, and the opaque discontinuity is given
by d'/D =7.5. In fact, the upper limiL,,/D = 80 of Fig. 7
could be improved with a greater discontinuity. It is inter-
esting to compare Fig. 7 with Fig. 10 of Ref. 15 where an
incident Gaussian beam was considered. We consider that
the results given in Figs. 4-7 are the main contributions of
this paper.

In passing we mention that we have also dealt with (re-
sults not shown) the case of a small opaque discontinuity
(d" < D), but instead of the growing behavior &f and
K given in Figs. 4-6, an oscillating behavior was obtained.
Finally, we mention that in a future paper the diffraction of
Hermite-Gaussian beams by an aperiodic ruling is to be ana-
lyzed in detail.

5. Conclusions

The diffraction of Hermite-Gaussian beams by aperiodic rul-

ro/D=1.165, 2.875, and 4.585 (pointed out by arrows) wherings was sFudied by means of the transmitted power'and the
d'/D=2.5, 5.0, and 7.5, respectively. From these last obseflormally diffracted energy. Two methods to determine the
vations we conclude that if the ratid is determined, the field Hermite-Gaussian beam radii are proposed. Large and very

amplitude radiusz/D can be obtained as long &d65 <
ro/D < 10.0 whend'/D=2.5,2.875 < ro/D < 10.0 when
d'/D=5.0, and4.585 < ro/D < 10.0 whend'/D=7.5. We
have also considered Hermite-Gaussian beams of erdet

large Hermite-Gaussian beam radius could be treated with
these two methods.
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