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Geometric associative memories applied to pattern restoration

B. Cruz, R. Barŕon, and H. Sossa
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Two main research areas in Pattern Recognition are pattern classification and pattern restoration. In the literature, many models have been
developed to solve many of the problems related to these areas. Among these models, Associative Memories (AMs) can be highlighted. An
AM can be seen as a one-layer Neural Network. Recently, a Geometric Algebra based AM model was developed for pattern classification,
the so-called Geometric Associative Memories (GAMs). In general, AMs are very efficient for restoring patterns affected BY either additive
or subtractive noise, but in the case of mixed noise their efficiency is very poor. In this work, modified GAMs are used to solve the problem of
pattern restoration. This new modification makes use of Conformal Geometric Algebra principles and optimization techniques to completely
and directly restore patterns affected by (mixed) noise. Numerical and real examples are presented to test whether the modification can be
efficiently used for pattern restoration. The proposal is compared with other reported approaches in the literature. Formal conditions are also
given to ensure the correct functioning of the proposal.

Keywords: Associative memories; pattern restoration; mixed noise; conformal geometric algebra.

Dosáreas de investigación muy importantes en reconocimiento de patrones son la clasificación y la restauración de patrones. En la literatura,
se han propuesto muchos modelos para resolver varios de los problemas relacionados con estas dosáreas. Entre estos modelos, hay que
resaltar a las memorias asociativas (MA). Una MA puede ser vista como red neuronal de una sola capa. Recientemente, un nuevo modelo
de MA basado en la llamadáalgebra geoḿetrica fue desarrollado para la clasificación de patrones: las llamadas memorias asociativas
geoḿetricas (MAG). En general, las MA son muy eficientes en la restauración de patrones afectados por ruido ya sea aditivo o substractivo,
pero en el caso de ruido mezclado su eficiencia es muy pobre. En este trabajo se utilizan MAGS modificadas para resolver el problema de
la restauracíon de patrones. Esta nueva modificación hace uso de principios delálgebra geoḿetrica conforme y de técnicas de optimización
para restaurar patrones afectados con ruido mezclado en forma directa y completa. Se presentan, además, ejemplos nuḿericos y con datos
reales para probar la propuesta. Finalmente, se presenta una comparación con otras reportadas en la literatura. También se proporcionan
algunas condiciones que garantizan el funcionamiento de la propuesta.

Descriptores: Memorias asociativas; restauración de patrones; ruido mixto;álgebra geoḿetrica conforme.

PACS: 89.20.Ff; 87.57.Nk; 87.80.Xa

1. Introduction

Two important problems in image processing are pattern clas-
sification and pattern restoration. Pattern restoration is an
essential part of many signal and image processing applica-
tions. There is a strong need for the development of practical
algorithms able to ensure restoration of patterns corrupted by
noise.

In this paper we are going to focus our efforts on pro-
viding a solution to the problem of pattern restoration in the
presence of noise.

Many approaches have been proposed during the last cen-
tury in an attempt to solve the restoration problem. In par-
ticular the well-known Neural Networks have been used for
this purpose (see for example Chinarov and Metzinger 2003,
Fukishima 2005, and Cruz, Sossa and Barrón 2007).

One approach that has attracted the attention of the sci-
entific community during the last few years as providing a
solution to the problem of restoring patterns from noisy ver-
sions of them is the application of the so-called Associative
Memories (AMs). It is worth mentioning that in the case of
using AMs to restore patterns, in general, the restored pat-

tern turns out to be the original pattern. This is because the
original patterns are encoded somehow into the memory.

This does not happen with filters; they take the patterns as
inputs and try to reduce or to completely eliminate the added
distortion. To work properly, on the other hand, AMs need
to have somehow a codification of the pattern or patterns that
need to be restored.

Initial AMs models were based on vector algebra for their
operations. Later models of AMs based their functioning on
so-called Mathematical Morphology operations. These asso-
ciative memories were called in the literature Morphological
Associative Memories (MAMs) (Ritter, Sussner and Diaz de
Leon 1998).

The associative memory models developed so far can be
categorized in two groups, those based on traditional alge-
braic operations and those based on mathematical morphol-
ogy operations. Recently a new type of Associative Mem-
ory has been developed based on the Geometric Algebra
(GA) paradigm, the so-called Geometric Associative Mem-
ory (GAM) (Cruz, Barŕon and Sossa 2008).

Originally, GAMs were developed for pattern classifica-
tion. The basic idea is to create class spheres as decision
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surfaces, to decide to which class a given pattern belongs. In
this case it is necessary to know where the pattern should be
located: inside or outside of the sphere. To do so, an inner
product between the pattern and the trained GAM is applied
to obtain a vector. A minimum function is then applied to that
vector to get the corresponding index class. An important
feature of GAMs is that they can deal with patterns affected
by mixed noise.

In this work, a change to the original algorithm for build-
ing GAMs is performed. With this change, as we will see,
GAMs can be used to restore patterns and not only to clas-
sify patterns. The result will be a restored pattern. In the
experimentation section we shall show that the new proposal
can be used to restore patterns affected by subtractive, addi-
tive, mixed noise and misfocusing (in the case of images).
We shall also compare the performance of the new proposal
with other reported approaches.

2. Associative memories

An AM is a device whose main function consists in associat-
ing input patterns with output patterns, as depicted in Eq. (1).
When an input pattern (vector)ais presented to the memory,
it returns an output pattern (vector)bpreviously associated
with a. AMs can be seen as a one-layer neural network.

a → M → b. (1)

The notation for an association between two patternsa
andb can be seen as an ordered pair (a, b). The whole set
of all associations that form the AM is calledfundamental
pattern setor simply fundamental set(FS).

Associations are completely stored in a weighted matrix.
This matrix (the AM) can be used to generate output pat-
terns using the corresponding input patterns. The process by
which an AM is built is called thelearning or building phase,
while the process by which an output pattern is classified or
restored using an input pattern is calledthe classification or
the restoration phase.

Fundamental patterns could be presented to the input of
the memory but corrupted with noise or other distortions. A
corrupted or distorted version of a patternx will be denoted
asx̃, wherex̃ = x+r; in this case, vectorr is the noise. If all
the components in vectorr are positive theñx presents addi-
tive noise, if all the components are negative thenx̃ presents
subtractive noise. If instead the components are positive or
negative, theñx presents mixed noise.

The robustness of an AM depends on the kind of distor-
tion against which it can function. And largely, it depends of
the level of distortion that a pattern can permit to obtain the
original pattern by using the AM.

Examples of AM models in the literature can be men-
tioned: the well-knownlearning matrixof Steinbuch (Stein-
buch 1961), the so-calledcorrelograph(Willshaw, Buneman
and Longuet-Higgins 1969), theLinear Associatormodel for
AM (Anderson 1972 and Kohonen 1972) and the so-called
Hopfield Memory(Hopfield 1982).

In the 90’s a new set of lattice algebra based associative
memories appeared, the so-called Morphological Associative
Memories (MAMs) (Ritter, Sussner and Diaz de Leon 1998).
Minima or maxima of sums were used for the operation of
these memories, in contrast to the sums of products used in
earlier models.

There are two types of MAMs, theminmemories that can
cope with patterns altered with subtractive noise, and themax
memoires that can cope with patterns altered with additive
noise. However, contrary to what one might think, against
patterns altered with mixed noise (most common in real situ-
ations), their performance is highly deficient.

Three alternatives have been developed to solve the prob-
lem of mixed noise. The first one makes used of the so-
calledkernels(Sussner 2000), by means of the so-calledme-
dian memories(Sossa and Barrón 2003), and by decompos-
ing a pattern into parts by means of the so-called sub-patterns
(Cruz, Sossa and Barrón 2007).

In this work a modification of the Geometric Algebra
Memory recently described in Cruz, Barrón and Sossa 2008
is presented. It will be shown how this adaptation can be
used to provide an efficient solution to the important problem
of restoring distorted patterns.

3. Basics on conformal geometric algebra

The Geometric Algebra (GA) is a priori coordinate-free ge-
ometric schema (Hestenes and Sobczyk 1984) developed by
William Clifford in 1878 (Clifford 1878). In GA, the geomet-
ric objects and the operators over these objects are treated in
a single algebra (Hitzer 2004).

The Conformal Geometric Algebra (CGA) is an a (3,2)-
dimensional coordinate free theory; this model provides a
way to encode naturally points, lines, planes, etc. off the ori-
gin (Hitzer 2004). Also, these objects are easily represented
asmulti-vectors(Hestenes 2001). A multi-vector is the prod-
uct of various vectors (Hestenes, Li and Rockwood 2001).

In addition, CGA provides a great variety of basic geo-
metric entities to compute with (Hildenbrand 2005). Inter-
sections between lines, circles, planes and spheres are di-
rectly generated. The creation of such elementary geometric
objects simply occurs by algebraically joining a number of
points (Hitzer 2004).

Geometric Algebra provides three main products: the
inner product (commonly used to compute angles and dis-
tances); the outer product (usually used for the creation of
high-order geometric objects using others low-order objects);
and the geometric (or Clifford) product that encodes the two
previous products in a single product. In this work, the con-
formal domain is used for the algebraic operations while the
Euclidean domain is used for the geometric semantics.

Let p be a Euclidean point inRn; then, it is extended to
a conformal representation such as (Hestenes, Li, and Rock-
wood 2001):
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P = p +
1
2

(p)2 e∞ + e0, (2)

wherep is a linear combination of thenEuclidean base vec-
tors. In this casee0 represents the Euclidean origin ande∞
is the point at infinity, such that(e0)

2 = (e∞)2 = 0 and
e0 · e∞ = −1 (Hitzer 2004) and(p)2 is the quadratic norm
of the Euclidean point.

Also, spheres take a representation (Hitzer 2004):

S = C − 1
2

(γ)2 e∞ = c− 1
2

(
(c)2 − (γ)2

)
e∞ + e0, (3)

whereC is the center of the sphere in conformal notation as
defined in (2),γ is the corresponding radius, andc is the Eu-
clidean point ofC. Also, a sphere can be easily obtained by
four points that lie on it (Hitzer 2004):

S = P 1 ∧ P 2 ∧ P 3 ∧ P 4. (4)

In this case, (3) and (4) are bothdual representations of
each other. Likewise, a plane can be defined by three points
that lie on it and the point at infinity (Hitzer 2004):

T = P 1 ∧ P 2 ∧ P 3 ∧ e∞. (5)

From (4) and (5) we can note that a plane is a sphere with
infinite radius (Hestenes 2001).

The inner product can be used to measure distances be-
tween objects (Hildenbrand 2005). For example, when the in-
ner product between two conformal pointsPandQ is found,
it turns out to be the square of the Euclidean distance:

P ·Q = p · q − 1
2

(p)2 − 1
2

(q)2

= −1
2

(p− q)2 ⇔ (p− q)2

= −2 (P ·Q) . (6)

Also, when the inner product between one conformal
pointPand a sphereS is computed, we get:

P · S = p · c− 1
2

(
(c)2 − (γ)2

)
− 1

2
(p)2

=
1
2

(
(γ)2 − (c− p)2

)
. (7)

Note that expression (7) can be simplified as:

2 (P · S) = (γ)2 − (c− p)2 . (8)

Based on (8), ifP ·S > 0 thenp is inside of the sphere, if
P ·S < 0 thenp is outside of the sphere, and ifP ·S = 0 then
p is on the sphere (Hildenbrand 2005). Therefore, for pat-
tern restoration a CGA spherical neighborhood can be used.
In this case the quantity of noise that a pattern can admit is
given by the radius of the sphere. With the help of the inner
product, it is possible to know if a given noise pattern is in-
side of a specific sphere; the restored pattern is the center of
the sphere that contains it.

4. Geometric associative memories

A Geometric Associative Memory (GAM) is a pattern clas-
sification tool that uses CGA operators for its functioning
(Cruz, Barron and Sossa 2009). A GAM is precisely a ma-
trix whose components are spheres. This can be appreciated
in (9), wherem is the total number of classes. It uses spheri-
cal neighborhoods as decision regions:

M =




S1

S2

...
Sm


 . (9)

When two sets of points inRn can be completely sepa-
rated by a hyper-plane, they are said to be linearly separable.
Linear separation is important for pattern classification. That
hyper-plane works as a decision surface; it can be used for de-
ciding to which class an unclassified pattern will be assigned
by finding on which side of the hyper-plane the pattern is lo-
cated. Many classification models (i.e. neural networks) have
better results when the patterns are linearly separable.

In the same way, when two sets of points inRn can
be completely separated by a hyper-sphere, they are said to
be spherically separable. In this case the decision is made
by finding if the pattern is located inside or outside of the
sphere. Any two sets of linearly-separable points inRn are
spherically-separable also (Cruz, Barron and Sossa 2009). It
is worth mentioning that two sets of spherically-separable
points could not be linearly-separable.

GAMs can perfectly operate when the classes are spheri-
cally separable (Cruz, Barron and Sossa 2009).

5. Geometric associative memories for pattern
restoration

Based on the ideas from the previous section (Cruz, Barron
and Sossa 2009) a new operating mode of GAMs will be in-
troduced in this section, in this case for pattern restoration.

The basic idea will be to assign a spherical neighborhood
to each pattern of the FS. As we shall later see, the main ad-
vantages to the new proposal are that it can cope with mixed
noise directly and that the quantity of noise is given by the ra-
dius of the sphere. In the case of images, we shall also show
that the proposal can be used to restore images distorted by
misfocusing.

5.1. Learning phase of GAM’s

The learning phase consists in building a spherical neighbor-
hood for each pattern; this can be done by taking the pattern
itself as the center of the sphere so that the radius is then
computed as the distance measured between it and each of
the other patterns. In the following paragraphs a change to
this will be described that will allow us to restore a pattern
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given a distorted version of it, either corrupted by noise or by
misfocusing in the case of images.

Let
{
p1, p2, . . . , pm

}
be a FS of patterns inRn. The

problem is to find an optimal (in quadratic terms) sphere
with the least square error, such thatpi is inside S and
pj |j = 1, . . . , m j 6= i are outside of it. This can be done by
solving expression (10),

min
S

m∑

i=1

(
P i · S)2

, (10)

subject to (11) for the point inside of the sphere and (12) for
points outside of it.

P i · S ≥ 0 (11)

P j · S < 0 for j = l + 1, . . . ,m, j 6= i. (12)

In order to find an optimal solution a quadratic program-
ming algorithm was adopted; expression (10) is changed to
expression (13), wherex =

[
S1 S2 . . . Sn+1

]
is the

vector to be optimized, andSk|k = 1, . . . , n+1 are the com-

ponents of the sphere,H = mandy =
m∑

i=1

(
pi

)2
:

min
x

= xtHx + ytx. (13)

The constraint for the point inside of the sphere will be:

Sn+1 ≤ 1
2

(
pi

)2
. (14)

The constraint for the points outside of the sphere will be:

−Sn+1 <
1
2

(
pj

)2 − pj · pi. (15)

Note that, as the center of the sphere is known (is the pat-
tern itself), then the optimization function must operate only
over Sn+1. This procedure must be done for all patterns in
FS. Leta be a vector whereai = 2 andaj = −2, and letb be
a vector such thatbi =

(
pi

)2
andbj =

(
pj

)2−2
(
pj · pi

)−ε.
ε is a smallest positive quantity used to change the “<”
of (14) to a “≤”. Finally, let x = Sn+1; then both constraints
can be joined as follows:

ax ≤ b. (16)

The resulting spheres represent spherical separation sur-
faces and they can be used as support regions. The quantity
of noise that they can admit is given by the radius of the cor-
responding sphere.

Note that it can be seen that expression (13) was trans-
formed into a quadratic equation; the problem can be solved
by finding the minimum of this function, but taking into ac-
count the corresponding constraints.

The GAM M is thus a matrix whosei-th component is
the i-th sphere fori = 1, . . . , m; this can be seen in expres-
sion (17), whereCi andγi are the center and the radius of

thei-th sphere respectively:

M =




S1

S2

...
Sm


 =




C1 + 1
2

(
γ1

)2
e∞

C2 + 1
2

(
γ2

)2
e∞

...
Cm + 1

2 (γm)2 e∞




(17)

5.2. Restoration Phase of GAM’s

Restoration of a pattern is performed as follows: First, an in-
ner product between an unclassified patternq andM must be
applied thus obtaining a vectorv by applying expression (18),
whereQ is the conformal representation ofqandγi is the ra-
dius of thei-th sphere:

vi =
{ −∞ if Si ·Q < 0

Si ·Q− (
γi

)2
otherwise

(18)

Finally, restored pattern is given by the returning of the
center of the position of the maximum value of the vectorv.

In other words, the restored pattern will be the center of
the sphere. This operation mode can be seen as an attractor
for the input distorted pattern.

5.3. Conditions for perfect restoration and robust
restoration

In associative memories, when an AMM restores the funda-
mental set correctly, it is said thatM presents perfect restora-
tion. And, when an AMM restores noise pattern, it is said
that M presents robust restoration. LetM a GAM built as
explained in section 5.1.

Theorem 1. Let m be patterns inRn, and letM be a
GAM for those patterns, built as in as in Sec. 4.2.1, then
Mpresents perfect restoration.

Proof. Let
{
pi

}m

i=1
be a FS of patterns inRn andM be

the corresponding GAM built as in Sec. 4.2 whereSi is the
sphere of thei-th pattern (pi). Si was obtained by means of
expression (10). Then according to conditions (11) and (12),
P i · Si ≥ 0 andP i · Sk ≥ 0 for k = 1, . . . ,m andk 6= i.

When expression (18) is applied, vectorv has a positive
number in positioni and−∞ in the other positions. Thus,
if a maximum function is applied to vectorv, it will return i,
and finally the restored pattern is thereforepi.

Theorem 2. Let M be a GAM built as in Sec. 4.2.1
whereSi is the sphere of the i-th pattern (pi). Let p̃i be a
fundamental pattern affected by some type of noise such that:
p̃i = pi + r. If expression(19) is true, then patterñpi can be
restored byM .

(r)2 ≤ (
γi

)2
(19)

Proof. Let
{
pi

}m

i=1
be a FS of patterns inRn and let

S = C − 1/2 (γ)2 e∞ be the sphere of the patternp; S was
found using the method described in Sec. 4.2. Letp̃ be the
same pattern but affected by some type of noise such that:
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p̃ = p + r. The center of the sphere is the pattern itself, this
is c = p. The noise of the pattern can be expressed as:

p̃ = p + r

r = p̃− p

−r = p− p̃

(r)2 = (p− p̃)2 . (20)

When the inner product betweenS and the conformal
representation of̃p is calculated, by expression (8), the fol-
lowing expression is obtained:

2
(
P̃ · S

)
= (γ)2 − (c− p̃)2

= (γ)2 − (p− p̃)2

= (γ)2 − (r)2 . (21)

Then:
If (r)2 > (γ)2 then

(
P̃ · S

)
< 0.

If (r)2 ≤ (γ)2 then
(
P̃ · S

)
≥ 0.

Therefore, by a), the patterñp will be restored if and only
if (r)2 ≤ (γ)2.¥

Note that Theorem 2 does not depend on the type of noise
used.

6. Numerical Example

In this section some illustrative examples are given. Numeri-
cal results, are presented for the problem of restoring sets of
patterns. For simplicity, and in order to clarify the results, a
2D Euclidean space for the geometric problem will be used.

Example 1.Let the following be a linearly-separable fun-
damental set of patterns inR2:

x1 =
[

1 1
]
,

x2 =
[ −1 1

]
,

x3 =
[

1 −1
]
,

x4 =
[ −1 −1

]
, (22)

Figure 1 shows a graphical representation of these pat-
terns.

Using the method given in section 4.2, and the value of
ε = 0.0001, the corresponding spheres are obtained. Their
centers and radius are respectively:

c1 =
[

1 1
]
, γ1 = 1.99

c2 =
[

1 −1
]
, γ2 = 1.99

c3 =
[ −1 1

]
, γ3 = 1.99

c4 =
[ −1 −1

]
, γ4 = 1.99 (23)

Note that the centers of the spheres are their own patterns.
Another way to find these values is by finding the minimum
of function (13) but taking into account the corresponding
constraints. A graphical solution can be seen in Fig. 2.

The GAMM is:

M =




S1 = C1 − (
γ1

)2
e∞

S2 = C2 − (
γ2

)2
e∞

S3 = C3 − (
γ3

)2
e∞

S4 = C4 − (
γ4

)2
e∞




=




S1 = e1 + e2 − 0.98e∞ + e0

S2 = e1 − e2 − 0.98e∞ + e0

S3 = −e1 + e2 − 0.98e∞ + e0

S4 = −e1 − e2 − 0.98e∞ + e0


 (24)

FIGURE 1. Graphical representation for the sets of patterns of Ex-
ample 1.

FIGURE 2. Graphical solution to the minimization problem, the
circle and the square are constraints for the points inside and out-
side of the sphere respectively. The triangle is the minimum point.

Rev. Mex. F́ıs. 56 (2) (2010) 155–165



160 B. CRUZ, R. BARŔON, AND H. SOSSA

FIGURE 3. Spheres for the example 1, they were obtained using
the method from Sec. 4.2.

FIGURE 4. Samples of the images for the first test set.

In Fig. 3 the corresponding spheres (in this case circles)
of each pattern are presented.

Let the following be a set of patterns to be restored (these
are patterns that belong to FS but they were affected with ad-
ditive, subtractive, and mixed noise):

x̃1 = x1 +
[

0 1.5
]

=
[

1 2.5
]
,

x̃2 = x2 +
[

0 −1.9
]

=
[

1 −2.9
]
,

x̃3 = x3 +
[

0.5 −0.5
]

=
[ −0.5 0.5

]
,

x̃4 = x4 +
[ −1 −0.5

]
=

[ −2 −1.5
]
, (25)

Note that, for all of these examples, condition (19) is true.
If Eq. (18) is applied, the result is:

M · X̃1=




−1.13
−∞
−∞
−∞


 , M · X̃2=




−∞
−1.81
−∞
−∞


 ,

M · X̃3=




−1.25
−∞
−0.25
−1.25


 , M · X̃4=




−∞
−∞
−∞
−0.63


 , (26)

Final step consists in applying a maximization function,
then forx̃1, x̃2, x̃3, andx̃4, j = 1, 2, 3, 4 respectively. There-
fore, returned centers for each patterns arex1, x2, x3, andx4,
respectively, which is correct.

7. Real Examples

In this section the performance of the proposal is tested. For
this, experiments were conducted with two sets of images.
The first set is composed of 25 photos of animals (Fig. 4);
these images were obtained from the internet. The second set
is composed of 21 images (Fig. 5); these images were taken
with a standard camera at the laboratory. The camera has the
capability of manually focusing and misfocusing, the targets.

The 25 images of animals are gray scale pictures
300×300 pixels in size. The 21 images of the second set
are also gray scale pictures 314× 235 pixels in size.

The first set was used to test the proposal when images
were distorted by adding some kind of noise to them. A
comparison with other reported methods is also given. The
second set was used to test the proposal when images were
distorted by misfocusing.

FIGURE 5. Samples of the images for the second test set.
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TABLE I. Number of images correctly restored in restoration phase.

Set 0% 5% 10% 25% 30% 40% 50%

Animals 25 25 25 25 24 15 6

FIGURE 6. From left to right: original image, image with 5, 10, 25,
30, 40, and 50% of noise, respectively.

FIGURE 7. Samples of noisy images for the first test set.

FIGURE 8. Restored images of the Fig. 7 for the first test.

7.1. Performance of the proposal in the presence of noise

In this case, image pre-processing was omitted. Patterns were
built as image-vectors by taking the first row of a given im-
age, then joining at the end of this row the second row of the
image, and so on until ending with the last row of the image.

This way, image-patterns were made up of 90000 ele-
ments. These image-patterns formed the fundamental set.

Two test sets were formed by taking the 25 images of set
number one, by adding 5, 10, 25, 30, 40, and 50% of ran-
domly mixed noise at them. Figure 6 shows six noisy ver-
sions of one of the images of that set.

The corresponding restoration results for all images are
shown in Table I. The first column presents the name of the
set. The next columns show the number of restored images
for the complete set of images with 0 (fundamental set), 5,
10, 25, 30, 40, and 50% of noise, respectively.

As can be observed from this table, image restoration was
correct until the case of 25% of noise. For the case of 30% of
noise only one image was not restored. As can be appreciated
from this same table, as the level of noise is increased, fewer
images were correctly restored.

This experiment was repeated 100 times with different
noise distribution over the images (see Fig. 7). The results
were the same as shown in Table I from 0 to 30% of noise.
This happened because Theorem 2 is true for the images with
that quantity of noise. For 40 and 50% of noise the average
of the number of images restored is given again in 6.2. Ex-
amples of restored images are given in Fig. 8.

7.2. Comparison with other methods and discussion

In this section, restoration results for the same two sets used
to test the proposal when the patterns are distorted with noise
are presented. In this case the same noisy test set of images
were used to test the functioning of the average filter, the
median filter, the morphological filter (open-close) (Gonza-
lez and Woods 2008), dust and points removal tool for Paint
Shop Pro X2, sub-patterns and AM’s described in (Cruz,
Sossa and Barrón 2007).

Figure 9 shows a comparison for one image with 5, 10,
25, 30, 40 and 50% of noise and the corresponding restored
image by using the proposed, and the mentioned techniques.
Table II and Table III show the mean square error for two
different images. The columns show the mean square error
obtained between the corresponding restored images of each
method used. Each row of these tables correspond to a test
image with 5, 10, 25, 30, 40, and 50% of randomly mixed
noise respectively.

As can be observed, the means square error for GAMs
and sub-patterns is zero in all cases; this is because all the
images are encoded into the memory. This is the main fea-
ture of an associative memory. The other models show good
results, but when the image has completely lost information,
these methods do not work correctly. For example in the case
of the the images in Fig 10, they cannot be restored by means
of those methods, but the GAM is capable of do it.

7.3. Performance of the proposal in the presence of
missing information

Another experiment was implemented to test the potential of
the GAMs; in this case the images in Fig. 4 were affected by
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TABLE II. Mean square error for a restored image

Noise Average Filter Dust Removal Point Removal Median Filter Morph. Filter Sub-Patterns GAM

5% 1165529 632256 328043 461169 3352608 0 0

10% 1833253 894465 503496 509266 4980297 0 0

25% 2858467 1312237 1312237 717805 6712505 0 0

30% 6306509 3498588 2893229 1730484 12392659 0 0

40% 8877902 6272391 4837072 3252628 15759837 NA 0

50% 12031332 10442603 8683319 6375399 19111305 NA 0

TABLE III. Mean square error for another restored image

Noise Average Filter Dust Removal Point Removal Median Filter Morph. Filter Sub-Patterns GAM

5% 738906 673584 331396 516934 754959 0 0

10% 926361 686920 435422 562626 1058108 0 0

25% 1187129 703110 512046 572439 1397366 0 0

30% 2109969 963170 1058996 801835 2692502 NA 0

40% 2988743 1410100 1534965 1079258 3620676 NA 0

50% 3911128 2018000 2263242 1578445 4812627 NA 0

FIGURE 9. Comparison among the proposed memory and other image restoration techniques.
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FIGURE 10. Samples of images with some of its information
missed.

FIGURE 11. Restored images of 7.3. for the second test.

FIGURE 12. Samples of images with misfocusing.

FIGURE 13. Three kind of images affected with misfocusing.

noise for to covering a part or parts of the images; samples
of those distorted images can be seen in Fig 10. The same
trained GAM of the previous experiments was also used.

In all cases the corresponding images were restored cor-
rectly with the GAM (see Fig. 11). Other tests were done
with similar images and with images of the scientist set with
similar kinds of distortions.

We saw that while the condition for robust restoration was
met, the GAM was capable of restoring the corresponding
image from the noisy version. A simple application of this
experiment could be the recovering of images by using part
of them.

Note that the images in Fig. 10 cannot be restored using
the traditional methods.

7.4. Performance of the proposal in the presence of mis-
focusing

In this section the functioning of the proposal was tested
when the patterns were distorted by misfocusing. For this
a set of 21 images was used. Some of them are shown in
Fig. 5.

These images were taken with a standard photographic
camera. Distorted versions of these images were obtained by
manually changing the focus of the lens. Examples of these
distorted images by misfocusing are shown in Fig. 12.

The idea was to adjust the camera’s focusing device to get
some misfocussing versions of the target, see Fig. 13. The
original image set was used to build the GAM.
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FIGURE 14. Results of the restored images affected with misfo-
cusing.

FIGURE 15. Samples of restored images for the third test.

All the set of misfocusing images were used to test the
functioning of the already trained GAMs; the results are
shown in the graph of Fig. 14. As can be observed, all 21
images with the four levels of misfocusing were correctly re-
stored.

Note that all the images restored were completely equal
to the original images; the least square error obtained was
zero in all cases (see Fig. 15).

8. Conclusions and future work

Geometric Associative Memories (GAMs) were, firstly, de-
veloped for pattern classification. In the learning phase, op-
timization techniques were used. In that operation mode, for
the classification phase an inner product between the unclas-
sified pattern and the GAM itself must be applied. In that
case the result is a class index.

In this work a new operation mode for the GAMs was de-
scribed, in this case for pattern restoration. The optimization
problem of the learning phase was reformulated for the oper-
ation in restoration mode. The restoration phase is similar to
the classification mode, but in this case a restored pattern is
returned.

Numerical and real examples were presented to demon-
strate the potential of the proposal. Graphical solutions for
the optimization problem were shown also. The proposed
model can efficiently cope with patterns affected by additive,
subtractive, mixed noise and distortions caused by misfocus-
ing and missed information. A comparison with different
pattern restoration methods such as linear and morphologi-
cal filters, and the so-called sub-pattern method, was carried
out.

Our proposal performed considerably better than the
other methods, because whole patterns were encoded into the
memory itself; then restored patterns were precisely the orig-
inal ones. Also, GAM’s were capable of restoring images
with missing information.

In comparison with other pattern recognition methods
like neural networks is that the training phase of the GAM’s
presented in this work converge in one step. This happened
because the way of they are built (see Sec. 5.1.)

Formal conditions under which the proposed model can
work were also given and proven. In Particular for the cases
of perfect and robust restoration were presented.
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