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A new coordinate system is defined to study the physical Four-Body dynamical problem with general masses, with the origin the of coor-
dinates at the center of mass. The transformation from the frame of inertial coordinates involves a combination of a rotation to the system
of principal axis of inertia, followed by three changes of scale modifying the principal moments of inertia yield to a body with three equal
moments of inertia, and finally a second rotation that leaves unaltered the equal moments of inertia. These three transformation steps yield
a mass-dependent, rigid, orthocentric tetrahedron of constant volume in the baricentric inertial coordinates. Each of those three linear trans-
formations is a function of three coordinates that produce the nine degrees of freedom of the Physical Four-Body problem, in a coordinate
system with the center of mass as origin. The relation between the well-known equilateral tetrahedron solution to the gravitational Four-
Body problem and the new coordinates is exhibited, and the planar case of central configurations with four different masses is computed
numerically in these coordinates.
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Se define un sistema de coordenadas nuevo para el problema dinámico de cuatro cuerpos con masas diferentes, con origen de coordenadas
en el centro de masa. La transformación desde el sistema de coordenadas inercial incluye una combinación de una rotación al sistema de
ejes principales de inercia, seguida por tres cambios de escala que modifican los tres momentos principales de inercia para producir un
cuerpo con los tres momentos principales de inercia iguales, y finalmente otra rotación que deja inalterados los momentos de inercia iguales.
Estas tres transformaciones llevan un tetraedro rı́gido, ortoćentrico, funcíon de las masas, con tres momentos principales de inercia iguales,
de volumen constante al tetraedro que forman las coordenadas inerciales. Cada una de estas tres transformaciones lineales es una función
de tres coordenadas que producen los nueve grados de libertad del Problema de Cuatro Cuerpos en este sistema de coordenadas, con el
centro de masa en el origen. Se exhibe la relación entre la solución muy conocida de tetrahedro equilátero del problema gravitacional de
Cuatro Cuerpos y las coordenadas nuevas, y después el caso plano de configuraciones centrales, con cuatro masas diferentes, se calculó
numéricamente en estas coordenadas.

Descriptores:Problema de cuatro cuerpos; coordenadas nuevas.

PACS: 45.50.Pk; 95.10.Ce

1. Introduction

The coordinate system introduced in this paper is a gener-
alization of the symmetric coordinate system of Piña and
Jiménez [1,2,3], that was defined for the Three-Body prob-
lem. Relative symmetric coordinates in the Three-Body
problem were defined by Lagrange [4], Murnaghan [5], and
Lemâıtre [6]. More recently, Hsiang and coworkers have, at
least since 1995 studied, the triangle geometry of this prob-
lem [7], with an important impact on the modern Three-Body
problem reviewed by Chenciner [8], who posted an important
panorama on the subject on theweb, including the geometry
of the so-called shape sphere, that is almost the same coordi-
nate system as ours for the case of three particles. Important
contributions have also been made by Littlejohn and Rein-
sch [9] for the analysis of coordinate systems of three and
four particles.

The proposal of new coordinates, presented in this paper,
have important points of contact with those works, although
it sets itself apart from them, and simplifies their ideas in the
case of four particles.

As a very similar coordinate system for three particles
has shown to be an useful tool, I believe this system of co-

ordinates will be of interest for some applications to the dy-
namics of the Four-Body problem. My optimism is based
on the success that we found for two particular cases in this
paper. Also the possible importance of these coordinates in
Quantum Mechanics [10] can be foreseen.

2. The new coordinates

The masses of the four bodiesm1, m2, m3 andm4 are gener-
ally different, and we consider them ordered by the inequali-
tiesm1 > m2 > m3 > m4.

We transform from the inertial referential, to the frame
of principal axes of inertia by means of a three-dimensional
rotationG parameterized by three coordinates, such as the
Euler angles.

In addition to this rotation three more coordinates are in-
troduced, as scale factorsR1, R2, R3, which are three dis-
tances closely related to the three principal inertia moments
through

I1 = µ(R2
2 + R2

3), I2 = µ(R2
3 + R2

1), and

I3 = µ(R2
1 + R2

2) , (1)

whereµ is the mass
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µ = 3

√
m1 m2 m3 m4

m1 + m2 + m3 + m4
. (2)

The size of the scale factors is given in terms of the prin-
cipal moments of inertia by the equations

R2
1 =

I2 + I3 − I1

2µ
, R2

2 =
I3 + I1 − I2

2µ
,

R2
3 =

I1 + I2 − I3

2µ
. (3)

With the first rotation and the change of scale, the result-
ing four-body configuration has a moment of inertia tensor
with the three principal moments of inertia equal. A second
rotationG′ does not change this property.

The cartesian coordinates of the four particles, with the
center of gravity at the origin, written in terms of the new
coordinates are




x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4


 = G




R1 0 0
0 R2 0
0 0 R3




×G′T



a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4


 , (4)

where G and G′ are two rotation matrices, each one a
function of three independent coordinates such as the Eu-
ler angles, and where theaj , bj and cj are twelve con-
stants forming three linearly independent 4-vectorsa, b
and c, in the mass space, orthogonal to the mass 4-vector
m = (m1,m2,m3,m4):

a1m1 + a2m2 + a3m3 + a4m4 = 0,

b1m1 + b2m2 + b3m3 + b4m4 = 0,

c1m1 + c2m2 + c3m3 + c4m4 = 0. (5)

We introduce the following notation for the matrix:

M =




m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4


 . (6)

In order to complete the definition of vectorsa, b andc
we assume

aMbT = 0 , bMcT = 0 , cMaT = 0 , (7)

aM2 bT = 0 , bM2 cT = 0 , cM2 aT = 0, (8)

which determine the directions ofa, b andc in the 3-plane
orthogonal tom, and we assume the normalizations

aMaT = bMbT = cMcT = µ , (9)

that make vectorsa, b andc without physical dimensions.

These three vectors are easily computed from the previ-
ous orthogonality conditions. One has

a=µya

(
1

m1−xa
,

1
m2−xa

,
1

m3−xa
,

1
m4−xa

)
, (10)

b=µyb

(
1

m1−xb
,

1
m2−xb

,
1

m3−xb
,

1
m4−xb

)
, (11)

and

c=µyc

(
1

m1−xc
,

1
m2−xc

,
1

m3−xc
,

1
m4−xc

)
, (12)

whereya, yb andyc are normalization factors, andxa, xb and
xc are the roots of the cubic equation

− x3(m1 + m2 + m3 + m4) + 2x2(m1m2

+ m2m3 + m3m1 + m4m1 + m4m2 + m4m3)

− 3x(m2m3m4 + m3m4m1 + m4m1m2

+ m1m2m3) + 4m1m2m3m4 = 0. (13)

The symmetric nature of this equation is the consequence that
this cubic polynomial is related to the derivative of the poly-
nomial

(y − 1
m1

)(y − 1
m2

)(y − 1
m3

)(y − 1
m4

).

The roots of this derivative are:1/xa, 1/xb, 1/xc, and are
located between the inverses of the masses.

These quantities are defined in this form only for different
masses. In that case we have the inequalities

m1 > xa > m2 > xb > m3 > xc > m4 , (14)

which imply

a1 > 0, a2 < 0, a3 < 0, a4 < 0;

b1 > 0, b2 > 0, b3 < 0, b4 < 0;

c1 > 0, c2 > 0, c3 > 0, c4 < 0. (15)

The column elements of the constant matrix

E =




a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4


 , (16)

are the coordinates of the four vertices of a rigid orthocentric
tetrahedron.

An orthocentric tetrahedron has the property that the per-
pendicular lines to the faces through the four vertices inter-
sect at the same point. Orthocentric tetrahedra were consid-
ered by Lagrange in 1773 [11]. Other old references on ortho-
centric tetrahedra are found in a paper by Court [12] where,
he calls them orthocentric and orthogonal to these tetrahedra.
These tetrahedra are also called orthogonal by Manden [13].
Placing the four masses at the corresponding vertices, that
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intersection point is actually the center of mass of the four
masses, and the moment of inertia tensor of the four particles
has the same principal value in any direction. Equations (7)
and (9) imply that the inertia tensor of the rigid tetrahedron is
proportional by a factor of2µ to the unit matrix.

To show these properties, we consider a four-vector that
is linearly independent with respect to the three 4-vectorsa,
b andc

d =
√

µ

m
(1, 1, 1, 1) , (17)

where we use the notationm = m1 +m2 +m3 +m4 for the
total mass of the system. Then using definitions (5), (7), (9),
and (17) we write them in terms ofr =

√
µ/m in the form

1
µ




a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

r r r r


 M




a1 b1 c1 r
a2 b2 c2 r
a3 b3 c3 r
a4 b4 c4 r




=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (18)

Since the inverse matrix from the left is equal to the inverse
from the right, this equation transforms into




a1 b1 c1 r
a2 b2 c2 r
a3 b3 c3 r
a4 b4 c4 r







a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

r r r r




=




µ
m1

0 0 0
0 µ

m2
0 0

0 0 µ
m3

0
0 0 0 µ

m4


 . (19)

Because this matrix equation is equal to its transpose, it has
just ten independent equations. Four of them are

a2
j + b2

j + c2
j = µ

(
1

mj
− 1

m

)
, (j = 1, 2, 3, 4). (20)

The other six are

aiaj + bibj + cicj = − µ

m
(i 6= j). (21)

From these basic equations it is easy to show that the posi-
tion vector of one vertex is orthogonal to the three vectors
between two vertices of the corresponding face (to the first
vertex).

ai(aj − ak) + bi(bj − bk) + ci(cj − ck) = 0

(i, j, k different). (22)

In addition, the distance between two vertices is given by

(ai−aj)2+(bi−bj)2+(ci−cj)2 = µ

(
1

mi
+

1
mj

)
. (23)

This is the condition to have a moment of inertia tensor with
the same three principal moments of inertia. The six edges of
the tetrahedron should be equal (proportional) to the square
root of the right-hand side of this equation. The volume of
this tetrahedron is equal to 1/6.

There are other remarkable geometrical properties of an
orthocentric tetrahedron. The center of mass of each face is at
the orthocenter where the three altitudes of the face intersect.
This point is on the same straight line between the opposite
vertex and the center of mass. In addition to the orthogonality
of the three sets of two opposite edges of the tetrahedron, the
two orthogonal edges are also orthogonal to the line joining
the center of mass to the two edges.

In this paragraph, let me make a technical digression that
is especially relevant for engineering and physical minds. In
formulating the explicit expressions of the coordinates of the
constant rigid tetrahedraE, the origin for computing theG′

rotation was arbitrarily chosen to be the one associated with
the equilateral tetrahedra with four different masses, which
implies a constantG′ that was selected here equal to the unit
matrix. This convention is introduced through Eqs. (8) that
are actually not necessary for the rest of the statements and
proofs in this paper.

Although there are of course other important coordinate
systems to fix the origin for measuring theG′ rotation, from
these I prefer to choose one particle along one coordinate
axis, and the other three in a parallel plane to the parallel
coordinate plane which does not include the first particle;
a second particle on an orthogonal coordinate plane that in-
cludes the first particle, and the other two particles on a line
that is parallel to a coordinate axis and perpendicular to the
coordinate plane of the first two particles. Another equally
important referential for the origin of the rigid tetrahedron is
associated with the grouping of the four particles in two sets
of two particles. The center of mass of the two pairs and the
center of mass for the whole system are on a coordinate axis,
and each of the two selected pairs of particles are placed on a
line parallel to a coordinate axis.

The previous definitions do not work in the important
cases when two or more masses have exactly the same value.
In those cases the tetrahedron is identified more easily from
condition (23) in terms of the masses. The selection of the
origin for measuring the rotationG′ is now forced by the
symmetry of the tetrahedron introduced by the mass equality.

This rigid tetrahedron is the generalization of the rigid tri-
angle of the Three-Body problem with the center of mass at
the orthocenter discussed previously in Ref. 14.

I assume for simplicity that the potential energy is given
by the Newton potential (the gravitational constant is equal
to 1):

V = −
3∑

i<j

mimj

rij
, (24)

Rev. Mex. F́ıs. 56 (3) (2010) 195–203



198 E. PIÑA

although our results may be generalized for any potential
with a given power law of the relative distances between par-
ticlesrij . It follows the relation between the interparticle dis-
tance and the new coordinates. The relative position between
particlesi andj is




xj − xi

yj − yi

zj − zi


 = G




R1 0 0
0 R2 0
0 0 R3




×G′T



aj − ai

bj − bi

cj − ci


 . (25)

The square of this vector is not a function of the first rotation
G, but just of the scale matrix and the second rotation matrix:

r2
ij = (aj − ai bj − bi cj − ci)A




aj − ai

bj − bi

cj − ci


 , (26)

whereA is the symmetric matrix

A =




A11 A12 A13

A12 A22 A23

A13 A23 A33




= G′




R2
1 0 0

0 R2
2 0

0 0 R2
3


G′T . (27)

The six distances are thus functions of six components of ma-
trix A or equivalently, are functions of the six independent
coordinates in the scalesRi, and the rotationG′.

We also compute the kinetic energy as a function of the
new coordinates, which is given by

K =
µ

2

[
3∑

i=1

Ṙi
2 − 4(R2R3ω1Ω1

+R3R1ω2Ω2 + R1R2ω3Ω3)

+ωT




R2
2 + R2

3 0 0
0 R2

3 + R2
1 0

0 0 R2
1 + R2

2


ω

+ ΩT




R2
2 + R2

3 0 0
0 R2

3 + R2
1 0

0 0 R2
1 + R2

2


 Ω


 , (28)

whereω = (ω1, ω2, ω3) is the angular velocity vector of the
first rotationG, andΩ = (Ω1, Ω2,Ω3) is the corresponding
angular velocity vector of the second rotationG′.

3. Equations of motion

The equations of motion follow from the Lagrange equations
derived from the LagrangianK−V as presented in any stan-
dard text on Mechanics [15,16].

However, the three coordinates related to the first rotation
produce Lagrange equations that imply, when the potential

energy is a function only of the distances, conservation of the
angular momentum vector in the inertial system

G L , (29)

whereL is the angular momentum in the principal moments
of inertia frame

L =
∂K

∂ω

= µ




(R2
2 + R2

3)ω1

(R2
3 + R2

1)ω2

(R2
1 + R2

2)ω3


− 2µ




R2R3Ω1

R3R1Ω2

R1R2Ω3


 . (30)

This conservation leads to three first-order equations
forming, for this four-body problem, a generalization of the
Euler equations valid for the rotation of a rigid body, namely

d

dt




µ(R2
2 + R2

3)ω1 − 2µR2R3Ω1

µ(R2
3 + R2

1)ω2 − 2µR3R1Ω2

µ(R2
1 + R2

2)ω3 − 2µR1R2Ω3


 =




µ(R2
3 −R2

1)ω2ω3 + 2µR1(R2ω2Ω3 −R3ω3Ω2)
µ(R2

1 −R2
2)ω3ω1 + 2µR2(R3ω3Ω1 −R1ω1Ω3)

µ(R2
2 −R2

3)ω1ω2 + 2µR3(R1ω1Ω2 −R2ω2Ω1)


 . (31)

The so calledelimination of the nodesin the Three-Body
problem [17] has a similar representation in these coordinates
for the Four-Body problem by means of the equation that
equals the angular momentum vector in the principal mo-
ments of inertia frame to the rotation of a constant vector,
which may be written in terms of two Euler angles

µ




(R2
2 + R2

3)ω1

(R2
3 + R2

1)ω2

(R2
1 + R2

2)ω3


− 2µ




R2R3Ω1

R3R1Ω2

R1R2Ω3




= `GT




0
0
1


 , (32)

where` is the magnitude of the conserved angular momen-
tum.

The Lagrangian equations of motion for the three scale
coordinates are

µ
d2

dt2
R1 + 2µ[R2ω3Ω3 + R3ω2Ω2]

+ µR1(ω2
2 + ω2

3 + Ω2
2 + Ω2

3) = − ∂V

∂R1
, (33)

µ
d2

dt2
R2 + 2µ[R3ω1Ω1 + R1ω3Ω3]

+ µR2(ω2
3 + ω2

1 + Ω2
3 + Ω2

1) = − ∂V

∂R2
, (34)
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and

µ
d2

dt2
R3 + 2µ[R1ω2Ω2 + R2ω1Ω1]

+ µR3(ω2
1 + ω2

2 + Ω2
1 + Ω2

2) = − ∂V

∂R3
. (35)

The three equations of motion for the three coordinates
associated with the second rotationG′ are written as an Eu-
ler equation similar to the one found for the first rotation,
although the internal angular momentum is not conserved be-
cause of the presence of an internal torque

d

dt




µ(R2
2 + R2

3)Ω1 − 2µR2R3ω1

µ(R2
3 + R2

1)Ω2 − 2µR3R1ω2

µ(R2
1 + R2

2)Ω3 − 2µR1R2ω3


 =




K1

K2

K3




+




µ(R2
3−R2

1)Ω2Ω3−2µR1(R2ω2Ω3−R3ω3Ω2)
µ(R2

1−R2
2)Ω3Ω1−2µR2(R3ω3Ω1−R1ω1Ω3)

µ(R2
2−R2

3)Ω1Ω2−2µR3(R1ω1Ω2−R2ω2Ω1)


 , (36)

whereK1,K2,K3 are the components of the internal torque
K which is expressed in terms of the derivatives of the poten-
tial energy with respect to the three independent coordinates
qj in the rotationG′ and the three vectorscj that appear in
the expression of the angular velocity in terms of the same
coordinates

Ω =
3∑

j=1

cj q̇j , (37)

where the vectorscj are generally functions of the coordi-
natesqj .

The internal torque is determined by the equations

K · cj =
∂V

∂qj
. (38)

There is one more constant of motion, namely the total energy

E = V + K = V +
µ

2

[
3∑

i=1

Ṙi
2 − 4(R2R3ω1Ω1 + R3R1ω2Ω2 + R1R2ω3Ω3)

+ωT




R2
2 + R2

3 0 0
0 R2

3 + R2
1 0

0 0 R2
1 + R2

2


ω + ΩT




R2
2 + R2

3 0 0
0 R2

3 + R2
1 0

0 0 R2
1 + R2

2


Ω


 . (39)

4. The plane problem

The case with the four particles in a constant plane is an important and old subject [18]. Our coordinates are now adapted to
that case. The third components of the cartesian coordinates of the four particles are zero. The modification of our coordinates
(4) for this case is given by two changes: the first rotation by just one angle in the plane of motion, and the scale associated
with the third coordinate is zero, namely


x1 x2 x3 x4

y1 y2 y3 y4

0 0 0 0


 =




cosψ − sin ψ 0
sin ψ cosψ 0

0 0 1







R1 0 0
0 R2 0
0 0 0


G′T




a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4


 . (40)

This equation simplifies to

(
x1 x2 x3 x4

y1 y2 y3 y4

)
=

(
cosψ − sin ψ
sin ψ cosψ

)(
R1 0 0
0 R2 0

)
G′T




a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4


 , (41)

in terms of six degrees of freedom.
We need three independent coordinates (for example three Euler angles) inG′ for the two independent vectors in four

dimensions expressed in the basis of the three constant vectorsa, b, andc, orthogonal to the mass vector.
In this paragraph, let me insert a technical digression that is specially interesting for engineering or physical minds. We

must formulate the conditions for a plane solution in mathematical language. The most usual way to do this is to set equal
to zero the Cayley-Menger determinant, which has entries equal to 1, 0, and the squares of the distances between particles.
Although Dziobek [18] considered this approach of paramount importance, he introduced equivalent conditions that have been
promoted by many years by A. Albouy and coworkers (see Ref. 19 and references therein,) which consist in using the four
directed areas of the triangles formed by the particles.

The four (twice) directed areas are written in terms of the cartesian coordinates as

S1 =

∣∣∣∣∣∣

1 1 1
x2 x3 x4

y2 y3 y4

∣∣∣∣∣∣
, S2 =

∣∣∣∣∣∣

1 1 1
x1 x4 x3

y1 y4 y3

∣∣∣∣∣∣
, S3 =

∣∣∣∣∣∣

1 1 1
x1 x2 x4

y1 y2 y4

∣∣∣∣∣∣
, S4 =

∣∣∣∣∣∣

1 1 1
x1 x3 x2

y1 y3 y2

∣∣∣∣∣∣
, (42)
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which are the four signed 3× 3 minors formed from the ma-
trix 


1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4


 . (43)

Addition to the previous matrix of a row equal to any
of its three rows produces a square matrix with determinant
zero, wich implies that the necessary and sufficient condi-
tions for having a constant plane tetrahedron are

4∑

i=1

Si = 0 , (44)

and
4∑

i=1

Sixi = 0 ,

4∑

i=1

Siyi = 0 . (45)

The two last equations are summarized by the zero vector
condition

4∑

i=1

Siri = 0 . (46)

An expression for the three directed areas in terms of the
previous coordinates is the following:



S1

S2

S3

S4


 = CMETG′




0
0
1


 , (47)

whereC is a constant with units of area over mass. With
the substitution of Eqs. (41) and (47) into Eqs. (44) or (46),
one obtains an identity, independent of coordinatesR1, R2,
ψ and one of the rotation angles ofG′, the one around the
unit vector:

G′




0
0
1


 . (48)

Given the four masses, the four directed areas of the four par-
ticles are functions of this unit vector direction only, up to a
multiplicative constantC depending on the choice of physi-
cal units. These explicit expressions should make clear Al-
bouy’s [19] affine formulation of the plane condition. An-
other form of this constant plane condition is also published
in Ref. 24.

In the plane case, the angular momentum has a constant
direction orthogonal to the plane and of magnitude

Pψ =
∂K

∂ψ̇
= µ[ψ̇(R2

1 + R2
2)− 2R1R2Ω3] . (49)

The kinetic energy becomes

K =
µ

2

[
2∑

i=1

Ṙi
2 − 4(R1R2ψ̇Ω3) + ψ̇2(R2

1 + R2
2)

+ ΩT




R2
2 0 0

0 R2
1 0

0 0 R2
1 + R2

2


 Ω


 . (50)

I substitute polar coordinates for theR1 andR2 coordi-
nates

R1 = R cos θ , R2 = R sin θ . (51)

Writing the kinetic energy in terms of the angular momentum
constant of motion instead of thėψ velocity leads us to

K =
µ

2

[
Ṙ2 + R2(θ̇2 + Ω2

3 cos2(2θ)

+Ω2
1 sin2 θ + Ω2

2 cos2 θ)
]
+

P 2
ψ

2µR2
. (52)

Energy conservation is thus expressed as

E =
µ

2

[
Ṙ2 + R2

(
θ̇2 + Ω2

3 cos2(2θ)

+Ω2
1 sin2 θ + Ω2

2 cos2 θ
)]

+
P 2

ψ

2µR2
+ V , (53)

whereV represents the potential energy.

5. Central configurations

In this section we begin with the approach by Dziobek [18].
See reference [20] for a contemporary approach. The Four-
Body central configurations are determined as critical points
of the potential energy with a fixed total moment of inertia
that in three-dimensional space leads to

mimj

r3
ij

= σmimj . (54)

The left-hand side of this equation is the derivative of the po-
tential energy with respect tor2

ij . The right-hand side is the
derivative of the moment of inertia with respect tor2

ij mul-
tiplied by an unknown constantσ that includes the constant
total mass, contained in the expression for the total moment
of inertia, and the gravity constant in the potential function.
Of course, this equation simplifies to

1
r3
ij

= σ . (55)

According to Eq. (55), the only Four-Body three-
dimensional central configuration results only if the six dis-
tances are the same, giving an equilateral tetrahedron. For
an equilateral tetrahedron, one particular coordinate system
is given placing its vertices on alternating corners of a cube
having the six faces normal to the coordinate axis. Then
the center of mass is computed and the origin of coordinates
translated to this position. After that the tensor of inertia is

Rev. Mex. F́ıs. 56 (3) (2010) 195–203



NEW COORDINATES FOR THE FOUR-BODY PROBLEM 201

determined and the scale factors associated with the principal
moments of inertia are in the ratios

R2
1

xa
=

R2
2

xb
=

R2
3

xc
. (56)

This fact is deduced because theR2
j obey the same charac-

teristic Eq. (13). Now I show that the equilateral tetrahedron
has been selected as the origin for measuring theG′ rotation.
In fact a tetrahedron with positions



√
xa/µ 0 0
0

√
xb/µ 0

0 0
√

xc/µ







a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4


 , (57)

is an equilateral tetrahedron (namely theG′ rotation is the
unit matrix for the equilateral case). The proof is obtained
from this equation by direct computation of the length of the
edges and use of Eqs. (20) and (21). The result is that the six
edges of that tetrahedron are equal to

√
2.

The equilateral tetrahedron gives a well-known solution
in which the masses move on straight lines collinear with the
center of mass and the angular momentum is zero. According
to A. Wintner [21], Lehmann-Filh́es is credited for discover-
ing the equilateral tetrahedron configuration in 1891 [22].

The non-collinear planar central configurations are char-
acterized in our coordinates by constant values of theG′ ma-
trix and of the coordinateθ associated with the constant value
of the ratioR1/R2. For these cases the angular velocity vec-
tor Ω is the null vector, the angular velocitẏθ is also zero
and the equations for conservation of momentum and energy,
(49) and (53) respectively, become

Pψ = µψ̇R2 . (58)

and

E =
µ

2
Ṙ2 +

P 2
ψ

2µR2
+ V . (59)

These equations are identical to similar equations ob-
tained for the Euler and Lagrange central configurations of
the Three-Body problem [25]. They are formally the same
as the equations for the conics in the Two-Body problem in
terms of the radiusR and the true anomalyψ.

The constant values of theG′ matrix and angleθ referred
to above are not arbitrary but are determined by three inde-
pendent quantities as discussed in the following.

The planar solutions with zero volume but finite area are
obtained taking into account that the variational equation (54)
is modified by adding the restriction of planar motion. This
condition is obtained by Dziobek [18] from the derivative of
the Cayley-Menger determinant with respect tor2

ij , which he
found to be proportional to the product of the directed areas
SiSj .

It follows that the solution is given in terms of parameters
λ andσ:

r−3
jk = σ + λAjAk , (60)

whereAj = Sj/mj are weighted areas, quotient of the di-
rected area divided by the corresponding mass. This equa-
tion was presented by Dziobek [18]. A proof was published
by Moeckel [23], and using a different approach to the same
problem, deduced by Albouy [19]. A new proof of the equa-
tion was obtained through a different approach by Piña and
Lonngi [24].

It follows from (47) that in a planar solution the weighted
directed areas are expressed as




A1

A2

A3

A4


 = CETG′




0
0
1


 . (61)

The weighted directed areas are equal, up to a normalization
factor, to the third rotated coordinate of the rigid tetrahedra.

The weighted directed areas obey the condition

∑

j

Ajmj = 0 , (62)

expressing the fact that the sum of the directed areas is zero,
Eq. (44).

Since the lengths and masses are defined up to arbitrary
units, we assume [24], with no loss of generality, that the pa-
rameterσ equals unity:

r−3
jk = 1 + λAjAk (j 6= k). (63)

This equation has been considered, giving particular values
of the four masses, and computing the six distancesrjk by
solving it under restrictions (44). The weighted directed ar-
easAj are functions of the distances and the masses only.
Some examples of this approach are [19,26,27]. According
to D. Saari [20], the problem with this perspective is diffi-
cult to manipulate, but we found it to be perfectly feasible as
follows below.

In the paper by Piña and Lonngi [24], a different point of
view was adopted, namely that the directed weighted areas
(that are defined with a simple functional dependence with
respect to the masses), are known as four given constants.
The previous equation then gives the distances as functions
of the unknown parameterλ. Through them, the areas of the
four triangles become functions ofλ that should obey the nec-
essary restrictions (44), (46), to verify that one has a planar
solution. This restriction makes it possible in many cases to
determine the value ofλ and hence the values of the six dis-
tances and the four masses. This is an implicit way to deduce
planar central configurations with four masses.
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FIGURE 1. Two different sets of simultaneous positions of four
particles with different masses following elliptic trajectories in a
central convex plane configuration. The isolated point is the center
of mass at the common focus of the four ellipses. The eccentricity
of the four ellipses ise = 0.72.

From the distances and masses one determines the po-
sitions of the four particles in the plane frame of principal
moments of inertia, and the principal moments of inertia are
also computed. This enables to know eight components of
the rotated rigid tetrahedronEG′, and the remaining coordi-
nates are known from the four given weighted area constants
Aj according to Eq. (61)

Following this method we computed the necessary data to
plot the trajectories of the four particles with different masses
represented in Fig. 1. We started from the four constants

A1 = −3 , A2 = 4 , A3 = 6 , A4 = −15

The constant planar conditions give us the value

λ = −0.01268487093192263...

from which the distances are

r23=1.12863753386515... r31=0.933745641175193...

r12=0.953868245971217... r41=1.32572435746881...

r42=0.828080639336103... r43=0.775802698722361...

and the corresponding masses

m1=0.428260218865972... m2=0.355184464717379...

m3=0.261905866491155... m4=0.113826160081235...

This information is sufficient to compute an initial central
configuration and from it the four constant coordinates deter-
miningG′ andθ. The four elliptic orbits are obtained simply
by writing coordinateR as a function of the real anomalyψ,
as follow from Eqs. (58) and (59). Thelatus rectum, the
eccentricity and the initial value ofψ may all be selected ar-
bitrarily.
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