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A new coordinate system is defined to study the physical Four-Body dynamical problem with general masses, with the origin the of cc
dinates at the center of mass. The transformation from the frame of inertial coordinates involves a combination of a rotation to the sys
of principal axis of inertia, followed by three changes of scale modifying the principal moments of inertia yield to a body with three equ
moments of inertia, and finally a second rotation that leaves unaltered the equal moments of inertia. These three transformation steps
a mass-dependent, rigid, orthocentric tetrahedron of constant volume in the baricentric inertial coordinates. Each of those three linear t
formations is a function of three coordinates that produce the nine degrees of freedom of the Physical Four-Body problem, in a coordi
system with the center of mass as origin. The relation between the well-known equilateral tetrahedron solution to the gravitational Fe
Body problem and the new coordinates is exhibited, and the planar case of central configurations with four different masses is comp
numerically in these coordinates.
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Se define un sistema de coordenadas nuevo para el probleamictinde cuatro cuerpos con masas diferentes, con origen de coordenada
en el centro de masa. La transforntacidesde el sistema de coordenadas inercial incluye una conthindeiuna rotadin al sistema de

ejes principales de inercia, seguida por tres cambios de escala que modifican los tres momentos principales de inercia para produ
cuerpo con los tres momentos principales de inercia iguales, y finalmente otrémajaeideja inalterados los momentos de inercia iguales.
Estas tres transformaciones llevan un tetraetdyido, orto@ntrico, funcon de las masas, con tres momentos principales de inercia iguales,
de volumen constante al tetraedro que forman las coordenadas inerciales. Cada una de estas tres transformaciones linealegres una
de tres coordenadas que producen los nueve grados de libertad del Problema de Cuatro Cuerpos en este sistema de coordenadas
centro de masa en el origen. Se exhibe la rélaeintre la soluéin muy conocida de tetrahedro e@iéro del problema gravitacional de
Cuatro Cuerpos y las coordenadas nuevas, y @ssplicaso plano de configuraciones centrales, con cuatro masas diferentes, 8e calct
numéricamente en estas coordenadas.

Descriptores:Problema de cuatro cuerpos; coordenadas nuevas.

PACS: 45.50.Pk; 95.10.Ce

1. Introduction ordinates will be of interest for some applications to the dy-
namics of the Four-Body problem. My optimism is based
The coordinate system introduced in this paper is a genern the success that we found for two particular cases in this
alization of the symmetric coordinate system ofi®iand paper. Also the possible importance of these coordinates in
Jiménez [1,2,3], that was defined for the Three-Body prob-Quantum Mechanics [10] can be foreseen.
lem. Relative symmetric coordinates in the Three-Body .
problem were defined by Lagrange [4], Murnaghan [5], and~" The new coordinates
Lemadtre [6]. More recently, Hsiang and coworkers have, atrhe masses of the four bodies,, ms,

. . . ) mg andmy are gener-
least since 1995 studied, the triangle geometry of this prObéllly different, and we consider them ordered by the inequali-
lem [7], with an important impact on the modern Three-Body

. ! . tiesmy > mg > ms > my.
problem reviewed by Chenciner [8], who posted an important We transform from the inertial referential, to the frame

panorama on the subject on theh including the geometry f principal axes of inertia by means of a three-dimensional

of the so-called shape sphere, that is almost the Same Co0lGkiation G parameterized by three coordinates, such as the
nate system as ours for the case of three particles. Importapt o, angles

contributions have als_o been ma_lde by Littlejohn and Rein- In addition to this rotation three more coordinates are in-
sch [9] f_or the analysis of coordinate systems of three a”(?roduced, as scale factof®,, Ry, Rs, which are three dis-
four particles. ] o tances closely related to the three principal inertia moments

The proposal of new coordinates, presented in this papefyrough
have important points of contact with those works, although
it sets itself apart from them, and simplifies their ideas in the I = p(R5+R3), I,=p(R3+R;), and
case of four particles. 2 2

o . . Is = (R + R3), 1

As a very similar coordinate system for three particles 3= ulf 2) @

has shown to be an useful tool, | believe this system of cowherey is the mass
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These three vectors are easily computed from the previ-
ous orthogonality conditions. One has

aZMyg( 1 1 1 1 ) (10)

M1—Tq Mo—Tgq M3—Lg M4—Lg

my1ma 13y

p=¢ 2)

mi +ma+ms+ma

The size of the scale factors is given in terms of the prin-

cipal moments of inertia by the equations 1 1 1 1
b=y, ; ) ) , (11)
s DL+I3—1 o L+ -1 mp—=xy M2—Tp M3—Tp Mg—Tp
RY= = R=2
2 2n and
L +1,— 1
o litia—13 1 1 1 1
R3 - 27#1 . (3) C=UY, < , , , ) , (12)
m1—Te Moa—Te M3—Te Myp—Te

With the first rotation and the change of scale, the result-
: . . S wherey,,
ing four-body configuration has a moment of inertia tensor
with the three principal moments of inertia equal. A second©
rotationG’ does not change this property.

The cartesian coordinates of the four particles, with the
center of gravity at the origin, written in terms of the new + mamg + mamy + mamy + mams + mams)
coordinates are

yp andy,. are normalization factors, ang, x;, and
are the roots of the cubic equation

- mg(ml +mo +ms3 +my) + 21’2(m1m2

— 3z(mamszmy + mgmamy + mamima

T1 T2 XT3 T4 R, 0 O
+ mimams) + dmimamsmy = 0. 13

vi v2 vys wa | =G| 0 Ry 0 1m2ms) MMy (13)
oo 0 0 IR The symmetric nature of this equation is the consequence that

a; az asz ag this cubic polynomial is related to the derivative of the poly-

xG T by by by by |, (4) nomial
Ci Cg C3 (4 1 1 1 1
(1/ - 7771)(1/ - ﬁg)(y - mig)(y - 7774)

where G and G’ are two rotation matrices, each one a
function of three independent coordinates such as the EUFhe roots of this derivative aret/z,, 1/x, 1/z., and are
ler angles, and where the;, b; and c; are twelve con- |ocated between the inverses of the masses.

stants forming three linearly independent 4-vectarsb These quantities are defined in this form only for different
andc, in the mass space, orthogonal to the mass 4-vectahasses. In that case we have the inequalities

m = (ml,mg,mg,m4)2

My > g > Mo > Ty > M3 > Te > My, (14)
aimy + agms + agms + agmyg = 0,
which imply
bymy + bama + bymg + bymy = 0,
c1my + camg + cams + camy = 0. (5) a1 > 0,a2 < 0,a3 <0,a4 <0;

. . . . by > 0,b2 > 0,b3 < 0,by < 0
We introduce the following notation for the matrix: ! 2 8 4

c1>0,c9 >0,c3 >0,c4 <O0. 15
m 0 0 0 ! : s * (15)
_ 0 mg 0 O The column elements of the constant matrix
M = ) (6)
0 0 mg O
0 0 0 my a1 az a3 Qa4
E=| by by b3 by , (16)
In order to complete the definition of vectaisb andc €1 Ccy €3 ¢4

we assume ) . . )
are the coordinates of the four vertices of a rigid orthocentric

aMb' =0, bMc'=0, cMa' =0, (7)  tetrahedron.

An orthocentric tetrahedron has the property that the per-
pendicular lines to the faces through the four vertices inter-
sect at the same point. Orthocentric tetrahedra were consid-
ered by Lagrange in 1773 [11]. Other old references on ortho-
centric tetrahedra are found in a paper by Court [12] where,

aMa®™ =bMbT =cMc" = 4, ) he calls them orthocentric and orthogonal to these tetrahedra.
These tetrahedra are also called orthogonal by Manden [13].
that make vectors, b andc without physical dimensions. Placing the four masses at the corresponding vertices, that

aM?bT =0, bM?c"=0, cM?a'=0, (8)

which determine the directions af b andc in the 3-plane
orthogonal tam, and we assume the normalizations
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intersection point is actually the center of mass of the fourThis is the condition to have a moment of inertia tensor with
masses, and the moment of inertia tensor of the four particlethe same three principal moments of inertia. The six edges of
has the same principal value in any direction. Equations (7)he tetrahedron should be equal (proportional) to the square
and (9) imply that the inertia tensor of the rigid tetrahedron isroot of the right-hand side of this equation. The volume of
proportional by a factor o2y to the unit matrix. this tetrahedron is equal to 1/6.

~ To show these properties, we consider a four-vector that  There are other remarkable geometrical properties of an
is linearly independent with respect to the three 4-vedors o hqcentric tetrahedron. The center of mass of each face is at
b andc the orthocenter where the three altitudes of the face intersect.
1 This point is on the same straight line between the opposite
d=,/—(1,1,1,1) e ;
ml T vertex and the center of mass. In addition to the orthogonality
where we use the notation = my + mo + ms + my4 for the
total mass of the system. Then using definitions (5), (7), (9)

of the three sets of two opposite edges of the tetrahedron, the
and (17) we write them in terms of= ,/u/m in the form

17

two orthogonal edges are also orthogonal to the line joining
the center of mass to the two edges.

In this paragraph, let me make a technical digression that

a1 Gz az ay a; by e 7 is especially relevant for engineering and physical minds. In
1 b1 b2 b3 by vl @ bos co T formulating the explicit expressions of the coordinates of the
1 €L Cy €3 ¢4 a3 by c3 T constant rigid tetrahed®, the origin for computing th&’

ror r o r ay by ey v rotation was arbitrarily chosen to be the one associated with

the equilateral tetrahedra with four different masses, which

1000 implies a constan®&’ that was selected here equal to the unit

= 8 (1) (1) 8 (18)  matrix. This convention is introduced through Egs. (8) that
00 0 1 are actually not necessary for the rest of the statements and

Since the inverse matrix from the left is equal to the inverse
from the right, this equation transforms into

proofs in this paper.

Although there are of course other important coordinate
systems to fix the origin for measuring tkg rotation, from
these | prefer to choose one particle along one coordinate

a1 b1 C1 T a1 ag as a4 . .

az by g T by by bs by axis, gnd the other three in a pargllel plane to. the par.allel
as by cs T G e s 4 coordinate pla}ne which does not mcIude_ the first pamclg;
ay by ci T o o a second pgrtlcle on an orthogonal coordmatg plane that. in-
cludes the first particle, and the other two particles on a line
m% 0 0 0 that is parallel to a coordinate axis and perpendicular to the

_ 0 m% 0 0 (19) coordinate plane of the first two particles. Another equally

- 0 0 ﬁ 0 important referential for the origin of the rigid tetrahedron is
0 0 0 & associated with the grouping of the four particles in two sets

maq

) _ o ) ~ of two particles. The center of mass of the two pairs and the
Because this matrix equation is equal to its transpose, it hagenter of mass for the whole system are on a coordinate axis,
just ten independent equations. Four of them are and each of the two selected pairs of particles are placed on a

1 1 line parallel to a coordinate axis.
aj+bi+c=p ( - ) , (G=1,2,3,4). (20)

m; m The previous definitions do not work in the important
cases when two or more masses have exactly the same value
In those cases the tetrahedron is identified more easily from
(i # 7). condition (23) in terms of the masses. The selection of the
origin for measuring the rotatio&’ is now forced by the

From these basic equations it is easy to show that the possymmetry of the tetrahedron introduced by the mass equality.
tion vector of one vertex is orthogonal to the three vectors  This rigid tetrahedron is the generalization of the rigid tri-
between two vertices of the corresponding face (to the firshngle of the Three-Body problem with the center of mass at

vertex). the orthocenter discussed previously in Ref. 14.

I assume for simplicity that the potential energy is given
by the Newton potential (the gravitational constant is equal
to 1):

The other six are

a;a; + bLbJ + cicj = —% (21)

ai(aj — ak) + bl(b] — bk) + Ci(Cj — Ck) =0
(i,74,k different). (22)

In addition, the distance between two vertices is given by

e e I @4

i Ty
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although our results may be generalized for any potentiagénergy is a function only of the distances, conservation of the
with a given power law of the relative distances between parangular momentum vector in the inertial system
ticlesr;;. It follows the relation between the interparticle dis-

tance and the new coordinates. The relative position between G L, (29)
particlesi andj is
2 — @ R 0 0 vvfh_ere? |? the angular momentum in the principal moments
yi—vi | =G 0 Ry, 0 of inertia frame
Z5 — 2 0 0 R3 0K
T a; — a; aw
x G bj —b; . (25) (R% + R%)wl RoR3804
Cj —C =K (R% + R%)WQ — 2,u R3R192 . (30)

5 P2 ,
The square of this vector is not a function of the first rotation (RY + Rz)ws Ra RS2

G, but just of the scale matrix and the second rotation matrix: . . ) .
This conservation leads to three first-order equations

aj — a; forming, for this four-body problem, a generalization of the
rfj =(a;—a;bj—bici—c))A| bj—b; , (26)  Euler equations valid for the rotation of a rigid body, namely
C; —C
2 2
. . . d ,LL(RQ + R3)W1 — 2,LLR2R391
whereA is the symmetric matrix = (R + R2)ws — 2uRs R | =
A Ap Agg ,U(R% + R%)WS — 2uRy RoQ3
A= Ay Ay A
A1’2 A22 A23 M(R% — R%)WQWB + Q/LRl (RQWQQB — R3W3Q2)
13 23 33 M(R% — R%)w3w1 + 2/tR2(R3W3Ql — R1W193) . (31)
R% 0 0 [L(R% — R%)wl(.UQ + 2/LR3(R1W192 — RQWQQl)
=c| 0o R 0o |G". 27)
0 0 R3 The so callealimination of the nodei the Three-Body

problem [17] has a similar representation in these coordinates

The six distances are thus functions of six components of mag o Four-Body problem by means of the equation that
trix A or equivalently, are functions of the six independentequals the angular momentum vector in the principal mo-

coordinates in the scalds;, z.';md.the rotation, ) ments of inertia frame to the rotation of a constant vector,
We also compute the kinetic energy as a function of th%hich may be written in terms of two Euler angles
new coordinates, which is given by

o LA (RS + R3)wn Ry R34
K =53 R’ — 4(RoRswn p| (B3 +RYwa | =20 | RsRiQ
i=1 (R% + R%)wg, R1R>03
+R3R1wods + Ry Rowsl3) 0
_ T
RI4R 0 0 =G| 0, (32)
+wT 0 R% + R? 0 w 1
0 0 R? + R? . .
(AL where/ is the magnitude of the conserved angular momen-
R3 + R3 0 0 tum.
+Qt 0 R} + R} 0 Ql, (28) The Lagrangian equations of motion for the three scale
0 0 R? + R3 coordinates are
wherew = (w1, ws,ws) is the angular velocity vector of the 2

first rotationG, and) = (9, Q, Q3) is the corresponding M@Rl + 24[Rows Q3 4 R3wo (o]
angular velocity vector of the second rotatiGn.

ov
+ uRy (w3 + w3 + Q3 +Q3) = o5 (33
. . 1
3. Equations of motion
The equations of motion follow from the Lagrange equations 22
derived from the LagrangiaR — V' as presented in any stan- /L@Rg + 2u[R3w1 1 + RiwsQs]
dard text on Mechanics [15,16].
However, the three coordinates related to the first rotation Ry (W + w2 + Q24+ Q2) = — ov (34)
produce Lagrange equations that imply, when the potential ORy’
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and whereK, K,, K5 are the components of the internal torque
d? K which is expressed in terms of the derivatives of the poten-
”ﬁRiﬁ + 2u[R1w2Qs + Rowi (] tial energy with respect to the three independent coordinates
oV g; in the rotationG’ and the three vectors; that appear in

+ uR3 (Wi +ws +QF +Q3) = — (35) the expression of the angular velocity in terms of the same

, , ORs _ coordinates
The three equations of motion for the three coordinates

associated with the second rotatiGti are written as an Eu- LA
ler equation similar to the one found for the first rotation, Q= chqj g (37)
although the internal angular momentum is not conserved be- J=1

cause of the presence of an internal torque where the vectors; are generally functions of the coordi-

,LL(R% + R%)Ql — 2[&R2R3w1 K nate5qj.
T w(R% + R3)Q2 — 2uR3Riws | = | Ko The internal torque is determined by the equations
M(R% + R%)Qg — 2#R1R2W3 Kg ov
Kci=—. 38
1(R3— R3)QQ3—2uR1 (Rows Q3 — Raws Q) € dq; (38)
+ M(R%—R%)Qg,ﬂl—Q[LRg(ngng—leng) R (36)
W(R3—R3)Q1 Qo —2uR5(Riwi Qo — Rows )
|
There is one more constant of motion, namely the total energy
K 2
E = V + K = V -+ 5 Z Rz — 4(R2R3W191 + RBRlU}QQQ —+ RlRQW3Qg)
=1
R3+ R3 0 0 R%+ R3 0 0
+wT 0 R2+ R? 0 w+ QT 0 R2+ R? 0 Ql . (39)
0 0 R} + R} 0 0 R? + R}

4. The plane problem

The case with the four particles in a constant plane is an important and old subject [18]. Our coordinates are how adapte
that case. The third components of the cartesian coordinates of the four particles are zero. The modification of our coordin
(4) for this case is given by two changes: the first rotation by just one angle in the plane of motion, and the scale associ
with the third coordinate is zero, namely

T1 Xo T3 T4 cosy —siny 0 R, 0 O ai Qs as au
Y1 Y2  Ys Ya = sin w COS '(ﬂ 0 0 RQ 0 G/T bl bQ bg b4 . (40)
0 0 0 O 0 0 1 0 0 O cpL Cy C3 ¢4
This equation simplifies to
) o ap a2 asz a4
x1 @y x3 w4 ) _ ( cos v sin R, 0 O a'’’ by by by by 7 (41)
Y1 Y2 Y3 Ya siny  cosy 0 Ry O

Ci C2 C3 C4

in terms of six degrees of freedom.

We need three independent coordinates (for example three Euler angf@$)an the two independent vectors in four
dimensions expressed in the basis of the three constant vacterandc, orthogonal to the mass vector.

In this paragraph, let me insert a technical digression that is specially interesting for engineering or physical minds.
must formulate the conditions for a plane solution in mathematical language. The most usual way to do this is to set ec
to zero the Cayley-Menger determinant, which has entries equal to 1, 0, and the squares of the distances between par
Although Dziobek [18] considered this approach of paramount importance, he introduced equivalent conditions that have &
promoted by many years by A. Albouy and coworkers (see Ref. 19 and references therein,) which consist in using the
directed areas of the triangles formed by the particles.

The four (twice) directed areas are written in terms of the cartesian coordinates as

1 1 1 1 1 1 1 1 1 1 1 1
Si=|x2 x3 T4 |, So=| 2 x4 23 |, Ss=|x1 T2 X4 |, Sa=|z1 x3 22 |, (42)
Y2 Ys Ya Y Y4+ Y3 Yr Y2 Ya Y Ys Y2
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which are the four signed 8 3 minors formed from the ma- | substitute polar coordinates for thi¢, and R, coordi-
trix nates

1 1 1 1

T1 T2 X3 T4 . (43) Ry = Rcosf, Ry= Rsiné. (51)

Yr Y2 Ys Y4

Addition to the previous matrix of a row equal to any Writing the kinetic energy in terms of the angular momentum
of its three rows produces a square matrix with determinangonstant of motion instead of thevelocity leads us to
zero, wich implies that the necessary and sufficient condi-

tions for having a constant plane tetrahedron are K— g B2 4 R2(6? + 02 cos(20)

4
> Si=0, (44) p2
i=1 +02sin? 0 + Q3 cos? 0)] + 25 . (52)
21R2
and
! ! Energy conservation is thus expressed as
=1 =1

i . M . .
The two last equations are summarized by the zero vector E =73 [RQ +R? (92 + 3 cos®(20)

2
condition e
+02sin? 0 + Q3 cos® 0)] + 2;)122 +V, (53)

4
> S =0. (46)
=1

An expression for the three directed areas in terms of th&vhereV’ represents the potential energy.
previous coordinates is the following:

S

O - -
? —-cMETG' [ o |, @47 S Central configurations
3 1
S

In this section we begin with the approach by Dziobek [18].
where(C' is a constant with units of area over mass. WithSee reference [20] for a contemporary approach. The Four-
the substitution of Egs. (41) and (47) into Egs. (44) or (46),Body central configurations are determined as critical points
one obtains an identity, independent of coordindtgs Rz,  of the potential energy with a fixed total moment of inertia
1 and one of the rotation angles 6f, the one around the that in three-dimensional space leads to
unit vector:
0 mim;
a(o]. (48) 3
1
Given the four masses, the four directed areas of the four par-he left-hand side of this equation is the derivative of the po-
ticles are functions of this unit vector direction only, up to atential energy with respect ;. The right-hand side is the
multiplicative constanC' depending on the choice of physi- derivative of the moment of inertia with respectit§ mul-
cal units. These explicit expressions should make clear Altiplied by an unknown constant that includes the constant
bouy’s [19] affine formulation of the plane condition. An- total mass, contained in the expression for the total moment
other form of this constant plane condition is also published?f inertia, and the gravity constant in the potential function.

=om;m;. (54)

in Ref. 24. Of course, this equation simplifies to
In the plane case, the angular momentum has a constant
direction orthogonal to the plane and of magnitude 1 o (55)
3 T T
0K . Tij
Py =5 =MW+ 15) — 2R Ro0s). - (49) ’
The kinetic energy becomes ~ According to Eq. (55), the only Four-Body three-
5 dimensional central configuration results only if the six dis-
.2 . . i H
K= % ZRi — A(Ry RotpQ3) + 02 (R2 + R2) tances are the same, giving an equ_|lateral tetrghedron. For
= an equilateral tetrahedron, one particular coordinate system
) is given placing its vertices on alternating corners of a cube
T 1 02 0 having the six faces normal to the coordinate axis. Then
+Q 0 Iy ) 0 ) Q). (50)  the center of mass is computed and the origin of coordinates
0 0 RY+R; translated to this position. After that the tensor of inertia is
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determined and the scale factors associated with the principathere A; = S;/m; are weighted areas, quotient of the di-

moments of inertia are in the ratios rected area divided by the corresponding mass. This equa-
R R R2 tion was presented by Dziobek [18]. A proof was published
A_2_3 (56) by Moeckel [23], and using a different approach to the same

problem, deduced by Albouy [19]. A new proof of the equa-

This fact is deduced because thg obey the same charac- tion was obtained through a different approach byaPand

teristic Eg. (13). Now | show that the equilateral tetrahedronLonngi [24].

has been selected as the origin for measuringzhsotation.

In fact a tetrahedron with positions

a1 0 0 a1 ay as a4

T, T, Te

It follows from (47) that in a planar solution the weighted
directed areas are expressed as

0 Vay/po 0 bi by bz ba |, (57) A, 0
0 0 ez /p €1 C2 C3 (4
/ ﬁQ =CE'G'| 0 |. (61)
is an equilateral tetrahedron (namely tG¢é rotation is the AS 1
4

unit matrix for the equilateral case). The proof is obtained
from this equation by direct computation of the length of the

edges and use of Egs. (20) and (21). The result is that the sighe weighted directed areas are equal, up to a normalization

edges of that tetrahedron are equal/f2. ~ factor, to the third rotated coordinate of the rigid tetrahedra.
The equilateral tetrahedron gives a well-known solution

in which the masses move on straight lines collinear with the ~ The weighted directed areas obey the condition
center of mass and the angular momentum is zero. According
to A. Wintner [21], Lehmann-Files is credited for discover-
ing the equilateral tetrahedron configuration in 1891 [22]. Z Ajm; =0,

The non-collinear planar central configurations are char- J
acterized in our coordinates by constant values ofGhena-
trix and of the coordinaté associated with the constant value expressing the fact that the sum of the directed areas is zero,
of the ratioR; / R». For these cases the angular velocity vec-Eq. (44).
tor  is the null vector, the angular velocityis also zero
and the equations for conservation of momentum and energ
(49) and (53) respectively, become

(62)

Since the lengths and masses are defined up to arbitrary
Yj’nits, we assume [24], with no loss of generality, that the pa-
rametero equals unity:

Py = R (58)
and PR =1 A A (£ R). (63)
. p?
E=Lpry Y v, (59) _ _ _ y .
2 21 R? This equation has been considered, giving particular values

These equations are identical to similar equations ob®f the four masses, and computing the six distanggsby

tained for the Euler and Lagrange central configurations of;OIV'ng it under restrictions (44). The weighted directed ar-

the Three-Body problem [25]. They are formally the SameeasAj are functions of the distances and the masses only.

as the equations for the conics in the Two-Body problem inSOme examples of this approach are [19,26,27]. According

terms of the radiug and the true anomaly to D. Saari [20], the problem with this perspective is diffi-
The constant values of th@’ matrix and.angle9 referred cult to manipulate, but we found it to be perfectly feasible as

to above are not arbitrary but are determined by three indef-0 llows below.
pendent quantities as discussed in the following. In the paper by Fia and Lonngi [24], a different point of
The planar solutions with zero volume but finite area areview was adopted, namely that the directed weighted areas
obtained taking into account that the variational equation (54fthat are defined with a simple functional dependence with
is modified by adding the restriction of planar motion. Thisrespect to the masses), are known as four given constants.
condition is obtained by Dziobek [18] from the derivative of The previous equation then gives the distances as functions
the Cayley-Menger determinant with respect}q which he  of the unknown parametex. Through them, the areas of the
found to be proportional to the product of the directed areagour triangles become functions dthat should obey the nec-

SiS;. essary restrictions (44), (46), to verify that one has a planar
It follows that the solution is given in terms of parameterssolution. This restriction makes it possible in many cases to
A ando: determine the value of and hence the values of the six dis-

tances and the four masses. This is an implicit way to deduce

T =0+ A AL, (60) planar central configurations with four masses.
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FIGURE 1. Two different sets of simultaneous positions of four

particles with different masses following elliptic trajectories in a
central convex plane configuration. The isolated point is the center

Following this method we computed the necessary data to

plot the trajectories of the four particles with different masses
represented in Fig. 1. We started from the four constants

Ay =-3, As=4, A3=6, A;=-15

The constant planar conditions give us the value

A = —0.01268487093192263...

from which the distances are

ro3=1.12863753386515...
r12=0.953868245971217...
742=0.828080639336103...

r31=0.933745641175193...
741=1.3257243574688]1...
r43=0.775802698722361...

and the corresponding masses

m;=0.428260218865972...

mo=0.355184464717379...

of mass at the common focus of the four ellipses. The eccentricity Ma=0.261905866491155 a—0.113826160081235
of the four ellipses is = 0.72. 3=V 4=Y.

From the distances and masses one determines the po- This information is sufficient to compute an initial central
sitions of the four particles in the plane frame of principal configuration and from it the four constant coordinates deter-
moments of inertia, and the principal moments of inertia arénining G" andd. The four elliptic orbits are obtained simply
also computed. This enables to know eight components d#y writing coordinater as a function of the real anomady,
the rotated rigid tetrahedrdBG’, and the remaining coordi- as follow from Eqgs. (58) and (59). Theatus rectumthe
nates are known from the four given weighted area constan@ccentricity and the initial value af may all be selected ar-
A; according to Eq. (61)

N =

10.

11.

. A. Chenciner,

bitrarily.

. E. Piha,Celest. Mech. & Dyn, Ast74(1999) 163.
. E. Piia and L. Jimenez-Lara,Celest. Mech. & Dyn. AstB82

(2002) 1.

. L.Jiménez-Lara and E. Ra,J. of Math. Phys44 (2003) 4078.

. J.L. LagrangeEssai sur le Prol#me des Trois Corp&E(uvres

completes VI 1772) p. 227.

. F.D. MurnaghanAm. J. Math58 (1936) 829.
. G. Lematre, Bull. Classe Sci. Acad. Roy. Belg (1942) 582

and 1218.

. Wu-Yi Hsiang and E. Straumé&pbachevskii J. Mati25(2008)

9.

Three body problem Scholarpedia,
http:/ /www.scholarpedia.orgrticle/ Three body. problem

. R.G. Littlejohn and M. ReinsctReviews of Modern Physics 69

(1997) 213.

R.G. Littlejohn, K.A. Mitchell, M. Rainsch, V. Aquilanti, and
S. Cavalli,Phys. Rev. A8(1998) 3718.

J.L. LagrangeNouv. Mem. Acad. Sci. Berlifl773) 149. (=
Euvres completes Il 659-692).

12.

13.
14.

15.

16.

17.

18.
19.

20.

21.

22.
23.

N.A. Court, The American Mathematical Month§/1 (1934)
499.

S.R. MandenMath. Mag.31(1958) 127.

E. Pila and A. Bengochedualitative Theor. of Dyn. SyS8
(2009) 399.

L. Landau & E. LifshitzMechanicgPergamon Press, Reading,
1960).

J.V. Jose & E.J. Saleta@)assical Mechanics, A Contemporary
Approach(Cambridge University Press, Cambridge, 1998).

E.T. Whittaker, Analitical Dynamics of Particles and Rigid
Bodies(Cambridge University Press, Cambridge, 1965).

O. Dziobek,Astron Nach152(1900) 33.

A. Albouy, Y. Fu and S. SunProc. Roy. Soc. A64 (2008)
1355.

D. SaariCollisions, Rings, and Other Newtonian N-Body Prob-
lems(American Mathematical Society, Providence, 2005).

A. Wintner, Analytical Foundations of Celestial Mechanics
(Princeton University Press, 1941).

R. Lehmann-Filks,Astr. Nachr.127(1891) 137.

R. Moeckel,Transactions of the American Mathematical Soci-
ety353(2001) 4673.

Rev. Mex. 5. 56 (3) (2010) 195-203



NEW COORDINATES FOR THE FOUR-BODY PROBLEM 203

24. E. Piia and P. LonngiCentral configurations for the planar 26. J. Bernat, J. Llibre and E.&ez Chavelaylathematical Analy-

Newtonian Four-Body Problerf2009) (arXiv 0905.4329) Ce- sis16(2009) 1.
lestial Mechanics and Dynamical Astronomy. Accepted.
25. A. Bengochea and E. &, Rev. Mex. Fis55 (2009) 97. 27. D.S. SchmidtComtemporary Mathemati@l (1988) 59.

Rev. Mex. 5. 56 (3) (2010) 195-203



