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The excess of nonequilibrium charge carriers due to heating by electric fields influences substantially the electron heat-diffusion and the
carrier current density in thin film semiconductors. With the assumption of hole and phonon thermal equilibrium, the current density for
electrons and holes and electron heat flux in the semiconductor thin films are calculated analytically taking into account the contribution of
the nonequilibrium of carriers and the electron temperature. By using the continuity equations for the carrier densities and energy balance
equation with appropriate boundary conditions at the surfaces of the sample, we find that the current density and electron heat flux depend
substantially on the size of the sample.
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Exceso de portadores fuera de equilibrio debido campos eléctricos afecta considerablemente el proceso de difusión de calor electŕonico
y la densidad de corriente en pelı́culas delgadas semiconductoras. En la aproximación de equilibrio t́ermico entre fonones y huecos la
densidad de corriente de electrones y huecos y el flujo de calor asociado al sistema electrónico en peĺıculas delgadas semiconductoras son
calculados analı́ticamente considerando la temperatura propia del sistema electrónico fuera de equilibrio. Las propiedades de transporte de
los portadores cargados fuera de equilibrio en semiconductores son calculados usando la ecuación de continuidad para electrones y huecos y
la ecuacíon de balance de energı́a con condiciones a la frontera en la superficie de la muestra. Dentro de estas aproximaciones se demuestra
que la densidad de corriente y el flujo de energı́a asociado al sistema electrónico dependen fuertemente de las dimensiones de la muestra.

Descriptores:Portadores cargados fuera de equilibrio; difusión de calor de electrones; temperatura de electrones.

PACS: 05.60.Cd; 72.20.Ht; 73.50.Fq

1. Introduction

Strong electric fields produce a great variety of effects in
semiconductors. They basically alter the quantum states of
carriers and their energy spectrum. This gives rise to the de-
pendence of the macroscopic properties of semiconductors
on the applied electric fieldE. Examples of such effects
are: the dependence of the complex dielectric function onE,
resulting from the possibility of fundamental absorption of
photons whose energy is less than the forbidden band gap
(Franz-Keldish effect) [1], the tunnel current in a degenerate
p-n junction (Esaki effect) [2], etc.

The application of strong electric fields can give rise to
states in semiconductors which are far from thermodynamic
equilibrium. Hot electrons in semiconductors are a typical
example of a non-equilibrium state of carriers in which their
average kinetic energy is increased by an external electric
field so that it can be described by an effective temperature
Tn(E) which exceeds the lattice temperatureT0. Such heat-
ing of carriers by an electric field considerably alters many
physical properties of semiconductors and gives rise to new
effects, in particular, to a dependence of the electrical con-
ductivity on the electric field (the deviation from Ohm’s law
of the current-voltage characteristics); in this situation the
carrier mobility begins to increase or decrease with the in-
crease of the electric field, hot electron diffusion and inval-
idation of the Einstein relation, and non-linear galvanomag-
netic effects.

The classical theory of hot carrier transport in semicon-
ductors has been discussed in a number of books [3-7] and
review articles [8-11]. Previous calculations have been ad-
dressed to nonlinearity caused by a change in mobility [3-5],
impact ionization [12,13], carrier lifetime change [10], in-
tervalley redistribution of carriers [14], or by nonparabolic
carrier energy dispersion law [15,16]. More recently, high
field transport of many-electron systems in the presence of
both dc electric and frequency-dependent electric fields has
been investigated using Monte Carlo simulations and the
coupled force balance and Fokker–Planck equations. Under
these conditions, the drift velocity of electrons is found to in-
crease with the amplitude of the ac field due to a suppressed
momentum-relaxation process under parallel polarization but
decreases with the amplitude due to an enhanced momentum
relaxation process under perpendicular polarization [17,18].

On the other hand, experimental optical studies of elec-
tric field-induced electron and hole transient transport on op-
tical phonon instability in semiconductor nanostructures have
been reviewed by Tsen [19].

In the single-valley semiconductor approximation, ne-
glecting the effects on the nonlinearity of the current density
mentioned above, all previous theories usually assume that
only the thermal equilibrium density of carriers is subject to
heating by electric fields,i.e. in the heating process the con-
centration of non-equilibrium ensemble of high-energy carri-
ers is the same as the thermal equilibrium concentration,i.e.
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the concentration of carriers remains constant. Therefore, the
non-linear current-voltage characteristics are only related to
the electron mobility through the electron temperature, which
is also electric field dependent.

However, in Refs. 20 and 21, it has been shown that
there is one more mechanism of nonlinearity associated with
the fact that the violation of the energy equilibrium between
electrons, holes and phonons (the difference between elec-
tron and hole temperatures) inevitably results in the violation
of the concentration equilibrium between electron in the con-
duction band and holes in the valence band and, therefore, the
carrier recombination in the semiconductor play an important
role by introducing an extra term in the nonlinear component
of the carrier current density.

Recently [22,23], it has been shown that the influence of
nonequilibrium charge carriers due to heating of the electric
field in the recombination process in semiconductors consid-
erably affects the nonlinearity of the charge current density;
in particular, the nonlinear behavior of the current density
persists even when electron mobility is electron temperature
independent. In the classical hot-electron theory, the current
density is linear in this approximation.

In this work, the theory of nonlinear charge carrier den-
sity and electron heat flux is developed for thin-film semi-
conductors in the presence of heating electric fields. The
nonequilibrium carriers are calculated by solving the con-
tinuity equation for electrons and hole simultaneously with
the energy balance equation; appropriate boundary condi-
tions are used for the current density and the electron heat
flux at the surface of the sample. The size effects on these
transport equations are discussed in the text.

2. Theoretical model

Let us consider a single-valley nondegenerate semiconduc-
tor layer with thickness2a in the z-direction and homoge-
neous in the planex − y.We shall assume that a dc electric
field E0 is applied in thex−direction and the sample is in a
reservoir with temperatureT0. In the presence of a heating
electric field, the excess of electrons and holes in an intrin-
sic semiconductors (no impurity atoms) is essentially due to
the electron-hole thermal generation process which depends
strongly on the carrier temperature. In addition we also con-
sider that the heating electric field is not so strong that the
electron temperature depends on the electric field asE2

0 and
the hole and phonon systems are in thermal equilibrium,i.e.
Tp = Tph = T0. The dimensions of the semiconductor in the
planex − y are greater than the diffusion length and energy
relaxation length so that the heating electric field, nonequi-
librium electron and hole concentrations, the electrostatic po-
tential and electron temperature are independent of the coor-
dinatesx − y, i.e. the effects of the boundaries in the plane
are neglected. Then, under these geometrical conditions, the
equations governing the transport of hot carriers in the semi-
conductor are described by the set of continuity equations for
both electrons and holesJn andJpone-dimensional current

densities [24]:

1
e

dJn

dz
−Rn = 0, (1)

1
e

dJp

dz
+ Rp = 0, (2)

the Poisson equation [25]

dδϕ

dz
=

4πe

ε0
(δn− δp) (3)

and the energy balance equation [7]

dQn

dz
− JnE0 = −n0νεθ + ξεgRn (4)

wheren = n0+δn andp = p0+δp are the electron and hole
concentrations,n0 andp0 are the equilibrium carrier densi-
ties,δn andδp the nonequilibrium electron and hole concen-
trations, respectively,δϕ is the contribution to the electrical
potential due toδn andδp , Rn andRp represent the recom-
bination rate for electron and holes,ethe hole charge,ε0 the
dielectric constant of the sample andQn is the electron heat
flux, Jn the electron carrier density and the termJnE0 is the
Joule effect. The first term on the right-hand size of Eq. (4)
describes the intensity of the electron-phonon (electron-hole)
energy exchange withνε the electron energy relaxation fre-
quency;Tn = T0+θ, θ is the nonequilibrium electron tem-
perature and the last term expresses the thermal power den-
sity generated in the electron system due to recombination
with efficiencyξ.

From the continuity equations for the total current
J = Jn + Jp, Volovichevet al [21] have shown that the elec-
tron and hole recombination are equal and they are given, for
an intrinsic semiconductor (n0 = p0) with ni = n0p0, as

Rn=Rp=R=α(Tn)(np−n2
i ) =

1
2τ

(δn+δp+βθ) (5)

with

τ−1 = 2α(T0)n0; β = 2τn2
i

dα

dTn

∣∣∣∣
θ=0

(6)

andα(Tn)being the electron-hole pair recombination factor
which depends on the electron temperature in the conduction
band and, as can be observed, an extra term is introduced in
Eq. (5) due to the heating of the electron gas by the electric
field.

As is well known [26], if the dimensions of the semicon-
ductor are much larger than, the cooling [7] and diffusion [24]
lengths for electrons and holes, the inhomogeneities in the
nonequilibrium carrier and electron temperature distributions
near the boundaries of the sample can be neglected in the
average nonlinear current densities across the semiconduc-
tor (δn, δp andθ are independent of the coordinatesx − y).
However, the effects of the boundaries of the thin semicon-
ductor in thez−direction play an important role in the trans-
port properties of the hot electron system. These thermal size

Rev. Mex. F́ıs. 56 (3) (2010) 211–216



CARRIER HEATING EFFECTS ON TRANSPORT PHENOMENA IN INTRINSIC SEMICONDUCTOR THIN FILMS 213

effects are due to the cooling of carriers at the boundaries
of the semiconductor because of their interaction with sur-
face energy absorption mechanisms [7], the dependence of
the thermal generation on the electron temperatureTn and
the redistribution of nonequilibrium carriers in the sample.
In order to take into account the effects of the dimensions
of the sample on the electron and hole current densities and
the electron heat flux in thez−axis , we evaluate them from
the constitutive relations calculated from Boltzman transport
equation [7,27]:

Jn(z) = e2In
10E

∗
n − eIn

11

1
Tn

∂Tn

∂z
(7)

Jp(z) = e2Ip
10E

∗
p (8)

Qn(z) = eIn
11E

∗
n − In

12

1
Tn

∂Tn

∂z
(9)

where

In
rs =

4n

3
√

πmnνε
T s

n

(
Tn

T0

)rq

Γ(rqn + s + 5
2 ) (10)

mn is the electron effective mass. The effective electric field
in terms of the chemical potentials (quasi-Fermi levels) for
both types of carriersµnp can be written as

E∗
np = −dϕ

dz
± Te,p

e

d

dz

[
µnp

Te

]
(11)

In Eq. (10),qn is a parameter of order of unity which
depends on the momentum dissipation mechanisms,i.e. the
electron-phonon interaction, electron-charged or neutral im-
purity interaction [7]. The equivalent expression for holes
In
rs can be obtained by substituting the nonequilibrium elec-

tron concentrationn, qn, mn by p, qp,mp, respectively. Due
to the excess of the carrier densities created in the semicon-
ductor and the increasing of the carrier average energy by
the heating electric field, the spatial variation in the chemical
potential for electrons and holes are given by the following
expressions:

d

dz

[
µn

Te

]
=

1
n0

dδn

dz
− 3

2T0

dθ

dz
,

d

dz

[
µp

To

]
=

1
n0

dδp

dz
(12)

Equations (7)-(12) allow us to expressJn,Jp andQn in terms
of δn, δn, δϕ andθ in the following form:

Jn = σ0
n

[
−dδϕ

dz
+

T0

en0

dδn

dz
+ αn

dθ

dz

]
(13)

Jp = σ0
p

[
−dδϕ

dz
− T0

ep0

dδp

dz

]
(14)

Qn = −κe
dθ

dz
+

qn + 5/2
e

T0σ
0
n

×
[
−dδϕ

dz
+

T0

e

(
1
n0

dδn

dz
− 3

2T0

dθ

dz

)]
(15)

Here

σ0
n,p =

4(n, p)e2

3π1/2mn,pνn,p
Γ(qn,p + 5/2)

is the electrical conductivity for electrons (holes) and

κe = (qn + 5)(qn + 5/2)
T0

e2
σ0

n

is the electron thermal conductivity,νn,p the electron (hole)
momentum relaxation andαn = −(1)/(e)(qn+4) is the See-
beck coefficient. Finally, the continuity equations for elec-
trons and holes, Poisson equation and the thermal balance
equation for the nonequilibrium charge carriers, the electri-
cal potential and the nonuniform electron temperature in the
sample are:

d2δϕ

dz2
=

4πe

ε0
(δn− δp) (16)

− d2δϕ

dz2
+

T0

en0

d2δn

dz2
+ αn

d2θ

dz2

=
e

2τσ0
n

(δn + δp + βθ) (17)

− d2δϕ

dz2
− T0

en0

d2δp

dz2
= − e

2τσ0
p

(δn + δp + βθ) (18)

− κe
d2θ

dz2
+

eκe

qn + 5

[
−d2δϕ

dz2
+

T0

en0

d2δn

dz2

]

− ξεg

2τ
(δn + δp)−

(
ξεg

2τ
β − n0νε

)
θ = σ0

nE2
0 (19)

The thermal balance equation should be supplemented by
boundary conditions describing the absorption of the carrier
energy at the boundaries of the semiconductor. Assuming
that the sample is bounded in thez-axis,we find that accord-
ing to the physical arguments discussed in the previous sec-
tion, these can be written

Qn|z=±a = ±η θ|z=±a ∓ ξsεgRs (20)

whereRs = S (δn + δp + βθ) |z=±a are the carrier recom-
bination rates at the surfaces of the sample with efficiency
ξs, S is the carrier surface recombination velocity andη is
the surface electron heat conductivity;η=0 corresponds to
the absence of the surface mechanisms. On the other hand
for the electron and the hole density currents at the two semi-
conductor boundaries, we choose

Jn|z=±a = ±eRs, Jp|z=±a = ∓eRs (21)

because∇ (Jn + Jp) = 0and Jn + Jp|z=±a = 0 then
Jn(z) + Jp(z) = 0 and only three of the four boundary con-
ditions in Eqs. (21) are independent: the choice of the ref-
erence level forδϕ (a)=0 acts as a complementary boundary
condition [24].
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Solutions to Eqs. (16)-(19) with Eqs. (20)-(21) are in general a complicated task even for the simplest intrinsic semicon-
ductor sample. Therefore, in order to gain some insight into the physics of hot electron transport in bounded semiconductors,
we restrict ourselves to the case of quasi-neutrality approachi.e, δn = δp [26] which is valid if the intrinsic Debye length
(lD =

√
ε0T0/4πe2n0) is much smaller than the characteristic lengths of the sample. In this approach the Poisson equation is

not necessary and the solutions to Eqs. (16)-(19) are

θ(z) = θ1(z) + θ2(z) + θc (22)

δn(z) = N1(z) + N2(z) + Nc (23)

δϕ(z) = ϕ1(z) + ϕ2(z) + ϕc (24)

Here

θ1(z) = b0e
m1z + b1e

−m1z; θ2 = b2e
m2z + b3e

−m2z; θc =
σ0

n

n0νε
E2

0 (25)

Ni(z) = Niθi(z) (26)

ϕi(z) = ϕiθi(z)i = 1, 2 (27)

Ni = − αnsi − eβ/2τσ

2T0si/en0 − e/τσ
, Nc = −1

2
βθc (28)

ϕi =
1
si

[
eβ

2τσ0
p

−Ni

(
T0si

en0
− e

τσ0
p

)]
; ϕc = ϕ∗0 + ϕ∗1z (29)

b0 + b1 =
χ2

t1
m2

+ t2
m1

(tanhm2a− ξ2)
(s1t2 − s2t1) cosh m1a [(χ1 + tanh m1a)(tanhm2a− ξ2) + χ2ξ1]

ηθc (30)

b2 + b3 =
ξ1

t2
m1

− t1
m2

(tanhm1a− χ1)
(s1t2 − s2t1) cosh m2a [(χ1 + tanh m1a)(tanhm2a− ξ2) + χ2ξ1]

ηθc (31)

b2 − b3 = −
ξ1

t2
m1

(
s2
t2
− eκe

qn+5

)
− t1

m2

(
s1
t1
− eκe

qn+5

)
(coth m1 + χ1)

(s1t2 − s2t1) sinh m1a [(χ1 + cot m1a)(cothm2a− ξ2) + χ2ξ1]
ϕ∗1 (32)

b0 − b1 = −
χ1

t1
m2

(
s1
t1
− eκe

qn+5

)
+ t2

m1

(
s2
t2
− eκe

qn+5

)
(coth m2 − ξ2)

(s1t2 − s2t1) sinh m1a [(χ1 + coth m1a)(coth m2a− ξ2) + χ2ξ1]
ϕ∗1 (33)

ξ1,2 =
t1

m2(s1t2 − s2t1)

[
S(2N1,2 + β)(

e

σ0
n

s1

t1
+ ξsεg)− η

]
(34)

χ1,2 =
t2

m1(s1t2 − s2t1)

[
S(2N1,2 + β)(

e

σ0
n

s2

t2
+ ξsεg)− η

]
(35)

si = −κe − eκe

qn + 5
ϕi +

T0

en0
Ni; ti = −ϕi +

T0

en0
Ni + αn (36)

mi =
√

ψi; ψi =
−B ±√B2 + 4AC

2A
(37)

A = −2T0

en0

(
κe +

eκe

qn + 5
αn

)
(38)

B =
2T0

en0

(
1
2
βγn + n0νε

)
+ κe

e

τσ
+ αnγp (39)

C =
e

τσ
n0νε (40)

1
σ

=
1
σ0

n

+
1
σ0

p

; γn,p =
eκe

qn + 5
e

τσ0
n,p

∓ ξεg

τ
(41)
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The evaluation of the unknown parametersϕ∗1 and ϕ∗0
is straightforward; it follows from the boundary conditions
Jn(z) + Jp(z) = 0 andδϕ(a)=0, and presents a lengthy al-
gebraic expression proportional toE2

0 so it will omitted here.
As can be observed, the finite size of the semiconductor

introduces a spatial dependence on the nonequilibrium car-
rier current densities, electron temperature and electrostatic
potential; of course this dependence disappears for homoge-
neous samplei.e. in the limit mia À 1.

Setting the electron temperatureTn(z, E0)and the
nonequilibrium charge densitiesn(z, E0), p(z,E0), the total
electrical conductivity for an intrinsic semiconductor and in
the quasineutrality approximation in thex−direction leads to

σ=σn(z, n, p, Tn)+σp(z, p)=
ne2τn(Tn)

mn
+

pe2τp(Tp)
mp

= σ0

[
1 + qn

σ0
n

σ0

θ

T0
+

δn

n0

]
(42)

with σ0 = σ0
n + σ0

p the total electrical conductivity in
thermal equilibrium. Therefore the average electric current is

jx =
1
2a

a∫

−a

σ(z, n, p, Tn, n)E0dz = σ0 [1 + λθc] E0 (43)

where

λ =
[

qn

T0

σ0
n

σ0
− β

2n0

]
+

[
qn

T0

σ0
n

σ0
+

N1

n0

]
b0 + b1

θc

sinhm1a

m1a

+
[

qn

T0

σ0
n

σ0
+

N2

n0

]
b2 + b3

θc

sinhm2a

m2a
(44)

At this point, we believe that it is important to compare
our results with previous theories on electron transport in
the presence of heating electric fields, in particular bounded
semiconductors. The gist of standard theory of hot electron
transport in semiconductors is that nonlinear effects which
arise when current carriers move in heating electric fields and
the electron current density is related to the electric field as

Jx = σ0

[
1 + λ0 (1− γ∗)E2

0

]
E0 (45)

whereγ∗ is a factor including size and thermal surface ef-
fects as well as the electron-phonon energy interaction and is
defined as

γ∗ =
F

G

sinh ka

ka
,

where

F = ζk + ζ2 tanh ka,

G=
[
(k2+ζ2) tanh ka+kζ(1+ tanh2 ka)

]
cosh ka (46)

and

ζ = (η/κe(T0))(qn + 2), k2 = n0νε(qn + 2)/κe(T0).

The parameterk−1 is the length scale of the variation in the
electron temperature,i.e. the energy relaxation length (or
cooling length). As can be observed, in the limit of uni-
form semiconductor,ka À 1, the conventional theory of hot
electron transport in homogeneous sample is recovered,i.e.
γ∗=0.

In Eq. (45)λ0 = qnσ0νε/n0T0 is the nonlinear parame-
ter for a homogeneous sample which describes the influences
of the carrier heating on the electrical conductivity forqn 6=0.
This coefficient vanishes for the case whereqn = 0, i.e. the
carrier transport is a linear function of the electric field.

As is well known, recombination is a key feature
when describing carrier transport in semiconductors, since
it strongly affects the electrical response of the semiconduc-
tor at all levels of external excitation. It has been shown in
Ref. 22 that recombination of hot electrons plays a mayor
role in the nonlinear transport of hot electrons when the tem-
peratures of the electron gas and phonons differ. This effect
results from the dependence of the capture coefficient on the
electron temperature (β 6=0). As can be seen, when recombi-
nation of carriers andβ 6=0 are taken into account in hot car-
rier transport in bounded semiconductors, two special cases
are important to emphasize in our theory:

One of them is related to when the recombination of car-
riers vanishes,i.e. τ →∞, R=0: the noneqilibrium electrons
and holes distributions remain in the conduction and valence
band, respectively, and in this case,δn6= 0 andδp6= 0, i.e.
they reach their maximum value.

The second one is concerned with the strong recombina-
tion limit, i.e. τ →0, and in order to keepR=constant.,the
following relationship, see Eq. (5),δn+δp+βθ = 0. There-
fore, if β 6=0 (the capture coefficient depends on the electron
temperature),δn6= 0 andδp6= 0 and the solutions can be ob-
tained by solving the set of Eqs. (16)-(19) without the bulk
recombination term in Eq. (4), the recombination of carri-
ers in this limit becomes significant only at the surface of the
sample since the diffusion length is extremely small as com-
pared with all the characteristic lengths involved in the hot
carrier transport phenomenon. It is worth mentioning that,
for this special case, if in addition the capture factor is elec-
tron temperature independent,i.e. β=0, thenδn, δp=0 and
Eq. (45) is recovered.

Finally, it is important to note that in our theory, the cool-
ing and diffusion lengthsm−1

1 ,m−1
2 respectively, depend be-

sides on the momentum (νn) and energy relaxation frequency
(νε ), on the recombination time of carriers and the energy
gap of the semiconductor [Eq. (37)]. Unlike previous the-
ories, where these parameters are well defined, in our the-
ory they are slightly different as a consequence of allowing
the simultaneous recombination of carriers and energy ex-
change between electrons and phonons. In addition when
qn = 0,the nonlinear behavior in the carrier current den-
sity is still present, see Eqs. (43), and (44), in other words,
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when the latter parameters are considered in the theory, addi-
tional terms appear in the nonlinear coefficient in the current-
voltage characteristic curve even when the electron (hole)
mobility is independent of the electron temperature. These
additional nonlinear terms in the current density have never
been considered in the standard classical theory of hot elec-
tron transport in semiconductors.

3. Conclusions

Nonequilibrium electron and hole distributions generated by
the presence of heating electric fields in bounded semicon-
ductors provide an interesting topic for study. When the av-
erage carrier energy exceeds the equilibrium thermal energy
(hot electrons and holes), the electron (hole) populations will
build up preferentially above the minimum (maximum) con-
duction (valence) band, and as a consequence the recombina-
tion rate will be strongly affected; in particular the electron-
hole pair capture factor depends on the carrier temperature.

The calculations in this work describe the nonlinearity of
the electron current density in heating electric fields consid-
ering the effects of the boundaries of the sample, the recom-
bination mechanisms and electron temperature dependence
on the capture coefficient in the quasi-neutrality approxima-
tion. Under these conditions we obtain results not found in
standard theories on hot electron transport in bounded semi-
conductors,e.g. it is shown that the nonequilibrium carriers
are different from zero in both strong and weak electron-hole
recombination limits, the cooling and diffusion lengths differ
substantially from those calculated in Ref. 28 and in addition,
the behavior of the nonlinear current-voltage characteristics
persists even forqn = 0.
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