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We discuss the thermal gas to Bose-Einstein Condensation (BEC) transition of an ultracold Bose gas in a linear quadrupolar trap with contact
interatomic interactions within the Hartree-Fock (HF) approximation. We briefly review the theoretical framework of the thermodynamics of
a gas confined by a non-uniform potential to show how mechanical equilibria must be formulated in term of generalized volume and pressure
variablesV andP that replace the usual volume and hydrostatic pressure of a uniform system. We solve for the density profile within HF as
a function of temperatureT and molar volumev = V/N . With this information, we are able to calculate all the thermodynamic properties
of the system and analyze the behavior of the gas through the BEC (superfluid) transition. We find that the transition is completely smooth,
showing no sign of critical behavior. We emphasize how these predictions can be readily measured with the current experimental setups.

Keywords:Bose-Einstein Condensation in confined systems; weakly interacting ultracold gases; phase transitions.

En este trabajo discutimos la transición de gas t́ermico a la Condensación de Bose-Einstein (BEC) de un gas de Bose ultrafrı́o confinado en una
trampa cuadrupolar lineal, considerando interacciones atómicas de contacto dentro de la approximación de Hartree-Fock (HF). Revisamos
brevemente el marco teórico de la termodińamica de un gas confinado por un potencial no uniforme para mostrar cómo debe formularse el
equilibrio mećanico en t́erminos de variables generalizadas de volumen y presiónV andP , que reemplazan el volumen usual y la presión
hidrost́atica de un sistema uniforme. Calculamos el perfil de densidad dentro de la aproximación HF como funcíon de la temperaturaT
y el volumen molar generalizadov = V/N . Con esta información podemos calcular todas las propiedades termodinámicas del sistema y
analizamos el comportamiento del gas a través de la transición BEC (superfluido). Hallamos que la transición es completamente suave y que
no muestra signos de comportamiento crı́tico. Enfatizamos ćomo estas predicciones pueden ser medidas con los dispositivos experimentales
actuales.

Descriptores:Condensación de Bose-Einstein en sistemas confinados; gases ultrafrı́os d́ebilmente interactuantes; transiciones de fase.

PACS: 05.70.-a; 03.75.Hh

1. Introduction

Since the experimental realization of Bose-Einstein conden-
sation (BEC) in gases of alkaline atoms [1-3], the theoret-
ical efforts to fully understand the nature of the transition
and the condensate itself have kept a vigorous pace [4-8].
Although the basic phenomenon of BEC may be illustrated
with an ideal gas, it became clear very early on that the in-
teratomic interactions play a predominant role in determin-
ing both the qualitative and the quantitative properties of the
ultracold gases, especially for temperatures below the transi-
tion [5]. It was also proven experimentally that below BEC
the gas is certainly superfluid, among other signatures, by
the creation of vortices after rotation of the samples [9,10].
This last property makes the inclusion of interatomic interac-
tions an essential requirement for the correct description of
the phenomenon at hand. At the same time, it has also been
determined that the gas is, or can be [11,12], placed within
a weakly interacting regime. Even at this level, however,
the statistical mechanics of the many-body states remains un-
solvable and one has to resort to approximated schemes such
as those proposed long ago by Bogoliubov [13], Gross [14],
Pitaevskii [15] and even to older but tractable methods such
as Hartree-Fock approximations [7]. The present contribu-
tion is within this last approach. The HF approximation has

the virtue that it allows for a full determination of the ther-
modynamics of the gas, from above the BEC transition all
the way down to zero temperature. Although it is not con-
sidered the best theory for dealing with a superfluid at very
low temperatures, due to the fact that the elementary excita-
tion spectrum shows a gap [7,13], HF is still very useful since
it does take into account interatomic interactions and, being
a mean-field theory, should give rise to a correct qualitative
picture of a phase transition [16,17].

The additional property of the current ultracold gas is
its confinement by non-uniform magnetic or optical exter-
nal potentials. As a result of this property, the confined
gas becomes inhomogeneous as well. This adds an inter-
esting and novel challenge to the description of these sys-
tems because most of the theoretical tools have been devel-
oped for uniform fluids confined by rigid-wall vessels. Since
most of the inhomogeneities of the trapped gases have turned
out to be on macroscopic length scales, contrary to micro-
scopic non-uniformities due to interfaces at phase coexis-
tence states [17], schemes such as the local density approxi-
mation [18-20] have been very useful in extending uniform-
gas calculations to inhomogeneous ones [5,7]. Nevertheless,
this is not enough to describe the thermodynamic behavior
of non-uniform systems. The main problem is that the me-
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chanical properties of a uniform system, namely, the volume
occupied by the gas and its hydrostatic pressure, cease to be
thermodynamic variables for an inhomogeneous fluid con-
fined by a non-uniform trap. The volume is not a variable
since the volume of a trapped gas is unbounded and depends
on the temperature. The hydrostatic pressure is at best a lo-
cal quantity and, therefore, cannot describe the equilibrium
state of the gas as a whole. This should not be surprising
since volume and pressure are consequences of having rigid
walls as a confinement. When the confinement is produced
by a non-uniform external fieldVext(~r), this gives rise to
its own equivalent mechanical variables “volume” and “pres-
sure”. This is the viewpoint that we have been advocating
recently [21-27]: the usual volume and pressure are replaced
by a generalized extensive volumeV and a generalized inten-
sive pressureP, a unique pair for each external potential. The
generalized volume turns out to be proportional to the mean
volume that the gas occupies, and the generalized pressure is
related to the mechanical equilibrium condition of the fluid
(i.e. Pascal Law) in the same way as the hydrostatic pressure
in a uniform fluid [21-24]. The underlying physics beneath
the identification of these variables is the appropriate ther-
modynamic limit for each external potential. That is, for an
external potential to confine a macroscopic number of parti-
cles, the potential itself must also be “macroscopic”, which
means that its energy level spacing should be much smaller
than any excitation of the atoms or of the fluid, and certainly
of the temperature.

The introduction of generalized volume and pressure not
only yields the formal framework for describing non-uniform
fluids, but it also serves as a powerful computational tool.
This is due to a remarkable relationship between the general-
ized pressure and the inhomogenous particle density (or sim-
ply, density profile). That is, if knowledge is available of the
characteristics of the trap (i.e. of the generalized volume),
of the temperature of the gas and of its density profile, then
the generalized pressure can be readily calculated. We recall
that, precisely, it is the density profile that is mostly measured
in the current experiments of ultracold gases [1-3,5,6]. Thus,
direct measurement of the thermodynamics of these gases ap-
pears to be a realistic operation [25-27].

In the present article, making use of the generalized me-
chanical variables and the above considerations, we address
the problem of an ultracold Bose gas confined by a linear
quadrupolar trap [25], treating the interatomic interactions
within a Hartree-Fock approximation [5,7,16]. We are able
to calculate the full thermodynamics of the gas near and be-
low the BEC (superfluid) transition. Among other proper-
ties, we focus our attention on results for the equation of
state, heat capacity and the isothermal compressibility. Al-
though HF is a mean-field scheme, and therefore, its predic-
tions may fail near a second-order or critical phase transi-
tion, one expects in any case that it should show qualitatively
correct behavior with precursors of the real features of the
transition [28,29]. Our HF calculation show that the transi-
tion is completely smooth, showing no sign of being a criti-

cal second-order phase transition, as one could have expected
from calculations in the ideal non-interacting case [8].

We proceed as follows. In the next section we briefly dis-
cuss the introduction of the generalized volume and pressure
for a linear quadrupolar potential and the way they can be
calculated. In Sec. 3 we present the Hartree-Fock calculation
of the density profile for different thermodynamic conditions
and show numerical results concerning different thermody-
namic properties across the BEC transition. A section with
Final Remarks concludes the paper.

2. Generalized volume and pressure for a lin-
ear quadrupolar potential

We considerN identical Bose atoms of massm, with spin
s = 0 or fully polarized in a given spin state [1-3], pairwise
interacting and confined by an anisotropic linear quadrupolar
potential,

HN =
N∑

i=1

~p2
i

2m
+

∑

i<j

u(|rij |) +
N∑

i=1

| ~A · ~ri|. (1)

The interatomic potentialu(|ri − rj |) shall be considered as
a contact potential below.

As is well understood, the confinement by a non-uniform
potential yields an inhomogeneous fluid. Under such general
conditions, and as has been shown [21,23,24], the hydrostatic
pressure and volume cease to be thermodynamic variables
and these are replaced by the so-called generalized pressure
and volume. To see how these arise, one may deal first with
an idealclassicalgas,i.e. u(|ri − rj |) ≡ 0. The canonical
partition function is given by

Z(T, N,V) =
1

N !λ3N
T

(ζ(T )V)N
, (2)

whereλT = h/(2πmkT )1/2 is the de Broglie thermal wave-
length,

V =
1

AxAyAz
(3)

is the generalized volume, and the functionζ(β) is defined
by

ζ(T )V =
∫

e−βVext(~r) d3r = 8π(kT )3
1

AxAyAz
. (4)

Helmholtz free energy is found withF = −kT ln Z and, af-
ter taking the limitN →∞, yields

F (N, T,V) = −NkT

(
ln

[Vζ(T )
Nλ3

T

]
+ 1

)
. (5)

For the free energy per particle,F/N , to remain finite in
the thermodynamic limit,N → ∞, it is necessary that the
“generalized” volume diverge,i.e. V → ∞, keeping the
“density” N/V constant. We are assuming that not only
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canV = 1/AxAyAz become arbitrarily large, but that each
Ai → 0 separately; that is, we are considering the trapped gas
as macroscopic in the three spatial directions. The introduc-
tion of V as abona-fideextensive thermodynamic variable
result can be fully justified for an interacting system, clas-
sical or quantal [21,23,24] such that there exist anintensive
conjugate variable toV, called the generalized pressure, and
given by

P = −
(

∂F

∂V
)

N,T

. (6)

Here,F = F (N, T,V) is Helmholtz free energy including
interatomic interactions. By a simple calculation, one ob-
tains that this quantity is related to the local particle density,
or density profileρ(~r), as

P =
1

3V

〈
N∑

i=1

~ri · ∇i| ~A · ~ri|
〉

=
1

3V
∫

ρ(~r) ~r · ∇| ~A · ~r| d3r, (7)

where the averages are performed in the corresponding en-
semble. The last equality is one of our principal tools for cal-
culating the thermodynamic properties of the system since it
gives a direct way to calculate the generalized pressure with
the sole knowledge of the external potentialVext(~r) = | ~A ·~r|,
the density profileρ(~r) and the temperatureT . That is, the
equation of stateP = P(V/N, T ) is a direct measurable
quantity if knowledge of the density profile and temperature
is available.

As has been shown before [21,23,24], the identification
of the generalized pressure is not only a formal one but it
also has a clear physical meaning:P for a non-uniform fluid
confined by a given external potential plays the same thermo-
dynamic role as the hydrostatic pressurep in a uniform fluid,
since it is the quantity that bears the information that the fluid
is in mechanical equilibrium.

We note that, with the above identification, the change in
free energy is

dF = −SdT − PdV + µdN (8)

with S the entropy andµ the chemical potential. As we shall
see below, since the Hartree-Fock approximation, together
with Ec. (7), yieldP = P(V/N, T ) andµ = µ(V/N, T ),
the free energyF ≡ Nf(V/N, T ) can be reconstructed and,
therefore, all the thermodynamic information becomes avail-
able.

3. Thermodynamics and BEC (superfluid)
transition

We now turn our attention to the calculation of the thermody-
namics of a weakly interacting Bose gas confined in a linear

quadrupolar potential,Vext(~r) = | ~A · ~r|, within the Hartree-
Fock approximation [5,7,16]. The Hamiltonian of the system
is best described in its second quantized version,

H =
∑

n

εna†nan + U
∑

jklm

′
a†ja

†
kalam (9)

where n and εn stand for the eigenstates and eigenval-
ues of the three-dimensional one-particle Hamiltonian in
the presence of the external linear quadrupolar potential,
h0 = ~p2/2m + | ~A · ~r|, anda†n andan are creation and an-
nihilation operators. The “prime” in the second sum refers
to the restrictions introduced by assuming an isotropic two-
body potential. The coupling parameter isU = 4π~2a/m,
with m the atom mass anda the scattering length, assumed
throughout to be positive [5].

The Hartree-Fock approximation is a self-consistent pro-
cedure that yields the density profiles of the thermal and the
condensate densities,ρth(~r) andρ0(~r), in the form of the fol-
lowing set of equations [7,16]:

ρth(~r) =
1

λ3
T

g3/2

(
β
[
µ− | ~A · ~r|

− 2Uρth(~r)− 2Uρ0(~r)
])

(10)

and

ρ0(~r) =
1
U

(
µ− | ~A · ~r| − 2Uρth(~r)

)
, (11)

with the constraint that the number of particles is a given
valueN ,

N =
∫

ρth(~r) d3r +
∫

ρ0(~r) d3r. (12)

In Eq. (10),g3/2(α) is the usual Bose functiongn(α) for
n = 3/2,

gn(α) =
1
n!

∞∫

0

xn−1dx

ex−α − 1
. (13)

The above equations have been derived within the local
density approximation [18-20,24], which, in turn, is valid
strictly in the thermodynamic limit,N → ∞, V → ∞ with
N/V = const. Therefore, its applicability to real systems
should be restricted to those with a large number of particles,
sayN ∼ 106 or larger; for smaller systems, finite size cor-
rections may be required.

Note that Eq. (11) is to be understood to be valid for val-
ues when the right-hand-side is positive or zero. As a matter
of fact, this is how the thermal to Bose-Einstein condensa-
tion (BEC) or superfluid transition is identified,i.e. given
the temperatureT , the transition occurs for the value of the
chemical potential below which the condensate densityρ0(~r)
is different from zero. Equation (11) is the Gross-Pitaevskii
equation in the thermodynamic limit where the kinetic energy
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term may be safely neglected. HF solutions do show super-
fluid behavior in the sense that the spectrum of the elemen-
tary excitations presents a density-dependent energy gap [7].
This, however, is known to be an incorrect dependence since
at very low temperatures a superfluid should have gapless
phonon-like Bogoliubov excitations [5,13]. Nevertheless, HF
should be qualitatively correct for temperatures near the tran-
sition [16] since mean-field theories are known to correctly
predict the order of the transition [17].

The solution to the above set of equations yields the den-
sity profileρ(~r) = ρ0(~r) + ρth(~r) and the chemical poten-
tial µ for given values of the temperatureT and the gener-
alized volumev = V/N . Figure 1 shows typical density
profiles above and below the transition. Knowing the profile,
the value of the generalized pressureP(v, T ) is found from
Eq. (7) and, together withµ(v, T ), one can further find the
molar Helmholtz potentialf = F/N asf(v, T ) = −Pv+µ.
From the free energyf(v, T ), all thermodynamic properties
follow. The molar entropy iss = (∂f/∂T )v and, therefore,
the specific heat iscv = T (∂s/∂T )v. From the general-
ized pressure, one can calculate the corresponding isothermal
compressibility,κT = −1/v(∂P/∂v)T . The internal energy
may be calculated withe(v, T ) = f(v, T ) + Ts(v, T ). Our
results are summarized in Figs. 2 to 7. Note that we use
units with ~ = 1, m = 1 anda = 1. Therefore, lengths
should be multiplied bya to get their actual value, energies
by ~2/ma2, etc. It is interesting to note that, since the the-
ory has only three “free” parameters, namely,~, m anda, the
predictions are “universal” for all bosonic gases within the
weak interaction limit, since this reduces all the interatomic
interactions to a single paramenter, the (positive) scattering
length.

In all the figures we compare with the properties of an
ideal gas, which can all be computed since the grand poten-
tial is exactly given by

Ω(V, T, µ) = −8πVkT

(
kT

λT

)3

g9/2(µ/kT ), (14)

FIGURE 1. Typical density profilesρ(r) vs. r of a weakly interact-
ing Bose gas confined by a linear quadrupolar potential in the HF
approximation. Both belong to the same isochorev = V/N = 0.1
but for two different temperatures. The solid line corresponds to a
state with a temperature above the transition BEC (superfluid) tem-
peratureT HF

c and the dotted for a temperature below it. Units are
~ = 1, m = 1 anda = 1.

FIGURE 2. Phase diagramP−T , (A) ideal non-interacting gas, (B)
HF interacting gas. Several isochores (V/N = constant) are shown
in dotted lines. The solid line shows the thermal gas to BEC tran-
sition. Note that the ideal transition temperatureT id

c is higher than
the HF temperatureT HF

c , for a given isochore. Units are~ = 1,
m = 1 anda = 1.

where g9/2(µ/kT ) is obtained from Eq.(13) with
n = 9/2.

Figure 2 shows a few isochores (v = const) of the equa-
tion of stateP(v, T ) comparing the ideal case, Fig. 2a, with
the interacting Hartree-Fock approximation, Fig. 2b. We em-
phasize the following points. First, in the ideal case, the tran-
sition BEC line indicates that the pressure vanishes asT → 0.
That is, just as in the uniform case, the condensate exerts no
pressure [30]. This is clearly changed once interactions are
included: the pressure of the condensate is no longer zero,
and even atT = 0, the interactions give rise to a remnant
pressure. Second, the transition temperature, different for
each isochore, is shifted down in the interacting case with
respect to the ideal one. This downshift is in agreement with
known results of more general theories for trapped gases [8].
Moreover, this effect is due to the interactions only and not
related to finite size effects [5,31]. And, lastly, the transition
line in the interacting case, as shall be further described be-
low, marks a smooth thermal gas to superfluid transition, dif-
ferent from the ideal BEC transition, where discontinuities in
the second derivatives of the free energy are encountered; in
the interacting case, up to second derivatives – and it appears
that at higher orders as well – the free energy is continuous.

Figures 3 and 4 show the entropy and the specific heat,
both for the ideal and HF cases, as a function of tempera-
ture for a given isochore. In these and in all the subsequent
figures, the isochore isv = V/N = 0.1 and the transi-
tion temperatures areT id

c ≈ 0.436 for the ideal case and
THF

c ≈ 0.306 for HF, with units~ = 1, m = 1 anda = 1,
showing the mentioned downshift. The transition tempera-
tures are marked with an arrow. Perhaps the most interesting
property of the specific heat in the HF approximation, Fig. 4,
is that the transition temperature occurs at a (local)minimum
rather than at a maximum, as is usually expected from the
behavior of the ideal case and critical transitions [29]. From
the behavior of the HF entropy and specific heat at BEC, one
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finds that the BEC (superfluid) transition is fully continuous.
Thus, it shows signs of being neither a first-order nor a criti-
cal transition.

FIGURE 3. Molar entropys = S/N vs. temperatureT for the iso-
chorev = 0.1. The dotted line is the ideal non-interacting gas, the
solid line the HF interacting gas. The BEC transition temperatures
are marked with arrows,T id

c ≈ 0.436, T HF
c ≈ 0.306. See text for

details. Units are~ = 1, m = 1 anda = 1.

FIGURE 4. Specific heat at constant generalized (molar) volumecv

vs. temperatureT for the isochorev = 0.1. The dotted line is the
ideal non-interacting gas, the solid line the HF interacting gas. The
BEC transition temperatures are marked with arrows,T id

c ≈ 0.436,
T HF

c ≈ 0.306. Note that in the latter case, the transition does not
occur at the maximum value ofcv but at a localminimum. See text
for details. Units are~ = 1, m = 1 anda = 1.

FIGURE 5. Isothermal compressibilityκT vs. temperatureT for
the isochorev = 0.1. The dotted line is the ideal non-interacting
gas, the solid line the HF interacting gas. The BEC transition tem-
peratures are marked with arrows,T id

c ≈ 0.436, T HF
c ≈ 0.306.

The ideal isothermal compressibility is not defined belowT id
c . See

text for details. Units are~ = 1, m = 1 anda = 1.

Additional information on the nature of the transition is
given by the isothermal compressibilityκT , shown in Fig. 5
for the same isochore as above. We note first that the ideal
κT is only shown for temperatures aboveT id

c , and we next
explain the underlying reason.

The ideal isothermal compressibility for the quadrupolar
trapped gas, just as in the uniform case, is not defined below
T id

c since(∂P/∂v)T = 0. In the uniform case, this is usually
considered to be a divergence of the isothermal compressibil-
ity belowT id

c , in apparent agreement with the anomalous be-
havior of the density fluctuations found at those temperatures;
see Ref. 8 for a detailed discussion of this point. This behav-
ior can be contrasted with that of an ideal gas in a harmonic
trap belowT id

c , where the density fluctuations are found to be
normal [32]. However, one can analyze the generalized pres-
sure for the ideal gas in a harmonic trap [23] and find again
that (∂P/∂v)T = 0 for T < T id

c , whereV = 1/ω3 for an
isotropic harmonic trap. In the present article we also find
that the generalized pressure obeys(∂P/∂v)T = 0 below
T id

c . Therefore, based on the criterion of the divergence of the
compressibilty, one could conclude that trapped ideal gases
are also unstable below BEC, in contradiction with the men-
tioned stability results based on density fluctuations [8-32].
As we discuss below, there is really not a contradiction.

The minor point is thatbelowBEC in an ideal 3D gas,
the isothermal compressibility is no longer related to the den-
sity fluctuations. Such an expected and commonly used re-
lationship arises from the fact that the entropy of a pure
system, determined by the variables(E,V, N), is a con-
cave function of two independent variables only; that is,
since the entropy is an extensive quantity, it is of the form
S(E,V, N) = Ns(E/N,V/N) with E/N andV/N the in-
dependent variables. The concavity ofs(E/N,V/N) im-
plies two stability conditions, the positivity of the specific
heat and of the isothermal compressibility [33]. Now, below
T id

c , since the chemical potential remains constant, the num-
ber of particles is no longer anindependentvariable; rather,
its value is determined by the equilibrium condition for given
V andT , i.e. NNC = NNC(V, T ) with NNC the number
of “thermal” particles not in the condensate. Thus, belowTc,
the entropy depends on one independent variable only, say
S(E,V) = Vs(E/V) with E/V the independent variable.
Hence, the concavity ofs(E/V) has as a unique stability im-
plication that the specific heat must be positive; there is no
condition on the isothermal compressibility anymore. There-
fore, the expression(∂P/∂v)T = 0 below Tc simply indi-
cates that the (generalized) pressure depends onT but not on
v; it bears no longer any relationship to the fluctuations of the
density nor to the stability of the equilibrium state.

Returning to Fig. 5 for the HF case, one finds that all
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the previous discussion becomes irrelevant in the sense that
the interatomic interactions smooth out any difficulty, and the
isothermal compressibility becomes continuous at the transi-
tion and remains finite all the way down toT = 0. The
fact that the compressibility continues to be defined below
THF

c , in contrast to the ideal case, is due to the thermody-
namic behavior of the chemical potential, shown in Fig. 6,
where we find that it never becomes constant, such as in the
ideal case. What is notorious in both figures, again, is the
fact that the transition appears completely smooth, showing
no sign of any “expected” type of phase transition, although
indeed, there is a phase transition from a thermal gas to a
BEC-superfluid gas.

We certainly understand that HF is a mean-field calcula-
tion and, as mentioned above, not the best description of a
superfluid. However, mean-field theories typically yield in-
correct quantitative results but do not change the order of the
transition, as one learns from Landau-like theories [29]. The
origin of the continuity of all the thermodynamic properties
may be traced back to the emergence of the condensate frac-
tion. This is exemplified in Fig. 7 where we compare the
condensate fractionN0/N of the ideal with the interacting

FIGURE 6. Chemical potentialµ vs. temperatureT for the iso-
chorev = 0.1. The dotted line is the ideal non-interacting gas, the
solid line the HF interacting gas. The BEC transition temperatures
are marked with arrows,T id

c ≈ 0.436, T HF
c ≈ 0.306. Note that

belowT id
c , the ideal chemical potential remains constant. See text

for details. Units are~ = 1, m = 1 anda = 1.

FIGURE 7. Condensate fractionN0/N vs. temperatureT for the
isochorev = 0.1. the dotted line is the ideal non-interacting gas,
the solid line the HF interacting gas. The BEC transition tempera-
tures are marked with arrows,T id

c ≈ 0.436, T HF
c ≈ 0.306. Note

that the derivative of the interacting HF curve is continuous at the
transition. See text for details. Units are~ = 1, m = 1 anda = 1.

case. BelowT id
c , the ideal condensate fraction isN0/N =

1 − (T/T id
c )9/2. Above T id

c , N0/N = 0. Thus, the tran-
sition in the ideal case has a discontinuity in the derivative.
However, for the interacting HF case, as shown in Fig. 7, it
appears that this transition is completely smooth, with no dis-
continuity or singularity at all. That is, the superfluid phase
emerges smoothly from zero.

4. Final remarks

We have analyzed the thermodynamics and the BEC transi-
tion of a weakly interacting Bose gas confined by a linear
quadrupolar potentialVext(~r) = | ~A · ~r|, in the Hartree-Fock
approximation. To achieve this, we have made use of the
proper mechanical thermodynamic variables, the generalized
volumeV = 1/AxAyAz, and its conjugate pressureP. We
emphasize that the latter can be calculated if knowledge of
the density profileρ(~r) is available. The HF approximation
allows us to self-consistently find such a density profile to-
gether with the chemical potentialµ in terms of given values
of the temperatureT and the molar volumev = V/N . It
is a simple exercise to show that all thermodynamics follows
with this wealth of information.

We have focused our attention on the BEC (superfluid)
transition that a Bose gas undergoes at low temperatures.
From the equation of stateP = P(v, T ) one finds that be-
low the HF transition temperatureT < THF

c , the conden-
sate exerts pressure due to the interatomic interactions, in
contrast to the ideal gas, where the condensate is thermody-
namically inert. Further, for a given value of the volumev,
THF

c < T id
c , in agreement with general results on interacting

gases [8]. The behavior of the entropy, heat capacity, chemi-
cal potential and isothermal compressibility indicate that the
transition in the interacting HF case is completely smooth.
We have mentioned that this is neither a common first-order
nor a critical second-order phase transition. Moreover, the
smoothness of the isothermal compressibility across the tran-
sition, see Fig. 5, indicates that there are no large fluctuations
near the transition.

Since HF is a mean-field treatment, one may be inclined
to suggest that the theory is not suitable for capturing crit-
ical behavior. However, we are puzzled by the clear result
that, while the fluctuations may not be correctly accounted
for, there is no evidence of a critical transition. We base this
statement on the experience with Landau-like theories where
mean-field may not be correct but it does not alter the order
of the transition. This fact encourages us to improve our cal-
culation, first, by including the proper role and statistical de-
scription of Bogoliubov modes [34], say, through the Popov

Rev. Mex. F́ıs. 56 (3) (2010) 223–230



BEC TRANSITION OF A WEAKLY INTERACTING ULTRACOLD BOSE GAS IN A LINEAR QUADRUPOLAR TRAP 229

approximation [5,7] and, next, by developing an analysis near
the transition using the proper mechanical variables here used
to search for evidence of critical behavior. On the other hand,
however, if we believe in the HF results found here, namely,
that the transition is smooth but not critical, this may indi-
cate a kind of first-order transition without the possibility of
phase separation. This does not appear to contradict well-
known results from superfluidity behavior in4He [35] since
the analysis of the transition discussed here should be valid
for transitions, at very low temperatures, from the thermal gas
phase to the superfluid phase; that is, very far from the criti-
calλ-point and from the transition from superfluid to normal
liquid. This study deserves much further research.

We finish our report by recalling that the measurement of
the thermodynamic properties of these gases can be readily
accomplished with the current experimental setups [25-27].
Hence, one should be able to test the behavior of the heat
capacity and the isothermal compressibility found in this pa-
per. We recall that the equation of state essentially requires
knowledge of the trap, the temperature and the density pro-
file, see Eq. (7). Incipient measurements have been per-
formed and are under progress, see Ref. 25 for experimen-
tal details of the present quadrupolar trap. Certainly, below
BEC, Majorana losses of particles at the center of the trap can
occur [2] since in that region the external potential becomes

zero. However, this may be avoided by slightly altering the
potential around its center, making it different from zero [36],
without substantially changing the overall form of the poten-
tial. Once the equation of state is found, the isothermal com-
pressibility follows. As we have indicated before [24], the
heat capacity can also be measured. The proposal is an adi-
abatic expansion or compression, namely a slow change of
the confining potential parameters. After, say, an adiabatic
expansion,∆V > 0, the gas must cool down,∆T < 0. By
measuring the ratio∆V/∆T and using the following identity,
the molar specific heat can be obtained:

cv = −T

(
∂P
∂T

)

v

(
∂v

∂T

)

s

, (15)

where knowledge of the equation of state is needed to evalu-
ate the second factor on the right-hand side.

To conclude, we emphasize that the present analysis
shows that the use of the appropriate mechanical variables is
a useful and complementary tool for exploring and learning
about the physics of gases confined by non-uniform traps.
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