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We discuss the thermal gas to Bose-Einstein Condensation (BEC) transition of an ultracold Bose gas in a linear quadrupolar trap with contact
interatomic interactions within the Hartree-Fock (HF) approximation. We briefly review the theoretical framework of the thermodynamics of

a gas confined by a non-uniform potential to show how mechanical equilibria must be formulated in term of generalized volume and pressure
variablesy andP that replace the usual volume and hydrostatic pressure of a uniform system. We solve for the density profile within HF as
a function of temperaturg and molar volume = V/N. With this information, we are able to calculate all the thermodynamic properties

of the system and analyze the behavior of the gas through the BEC (superfluid) transition. We find that the transition is completely smooth,
showing no sign of critical behavior. We emphasize how these predictions can be readily measured with the current experimental setups.

Keywords:Bose-Einstein Condensation in confined systems; weakly interacting ultracold gases; phase transitions.

En este trabajo discutimos la transicide gasérmico a la Condensami de Bose-Einstein (BEC) de un gas de Bose uloainfinado en una
trampa cuadrupolar lineal, considerando interaccion@siats de contacto dentro de la approximaadile Hartree-Fock (HF). Revisamos
brevemente el marcodeco de la termodiamica de un gas confinado por un potencial no uniforme para moétrar debe formularse el
equilibrio me@nico en érminos de variables generalizadas de volumen y @masiand P, que reemplazan el volumen usual y la poesi
hidrosética de un sistema uniforme. Calculamos el perfil de densidad dentro de la apréxirhi&ctcomo fundn de la temperatur@

y el volumen molar generalizado= V/N. Con esta informadn podemos calcular todas las propiedades terraotiites del sistema y
analizamos el comportamiento del gas aé&sagle la transiéin BEC (superfluido). Hallamos que la tranéities completamente suave y que

no muestra signos de comportamientitico. Enfatizamos @mo estas predicciones pueden ser medidas con los dispositivos experimentales
actuales.

Descriptores:Condensadin de Bose-Einstein en sistemas confinados; gases idgrafbilmente interactuantes; transiciones de fase.

PACS: 05.70.-a; 03.75.Hh

1. Introduction the virtue that it allows for a full determination of the ther-
modynamics of the gas, from above the BEC transition all
Since the experimental realization of Bose-Einstein condenge way down to zero temperature. Although it is not con-
sation (BEC) in gases of alkaline atoms [1-3], the theoretsidered the best theory for dealing with a superfluid at very
ical efforts to fully understand the nature of the transition|g, temperatures, due to the fact that the elementary excita-
and the condensate itself have kept a vigorous pace [4-8fion spectrum shows a gap [7,13], HF is still very useful since
Although the basic phenomenon of BEC may be illustrateds goes take into account interatomic interactions and, being

with an ideal gas, it became clear very early on that the inz mean-field theory, should give rise to a correct qualitative

ing both the qualitative and the quantitative properties of the

ultracold gases, especially for temperatures below the transi- The additional property of the current ultracold gas is
tion [5]. It was also proven experimentally that below BEC its confinement by non-uniform magnetic or optical exter-
the gas is certainly superfluid, among other signatures, bpal potentials. As a result of this property, the confined
the creation of vortices after rotation of the samples [9,10]gas becomes inhomogeneous as well. This adds an inter-
This last property makes the inclusion of interatomic interac-esting and novel challenge to the description of these sys-
tions an essential requirement for the correct description ofems because most of the theoretical tools have been devel-
the phenomenon at hand. At the same time, it has also beaped for uniform fluids confined by rigid-wall vessels. Since
determined that the gas is, or can be [11,12], placed withimost of the inhomogeneities of the trapped gases have turned
a weakly interacting regime. Even at this level, however,out to be on macroscopic length scales, contrary to micro-
the statistical mechanics of the many-body states remains uscopic non-uniformities due to interfaces at phase coexis-
solvable and one has to resort to approximated schemes sutdnce states [17], schemes such as the local density approxi-
as those proposed long ago by Bogoliubov [13], Gross [14]mation [18-20] have been very useful in extending uniform-
Pitaevskii [15] and even to older but tractable methods suclgas calculations to inhomogeneous ones [5,7]. Nevertheless,
as Hartree-Fock approximations [7]. The present contributhis is not enough to describe the thermodynamic behavior
tion is within this last approach. The HF approximation hasof non-uniform systems. The main problem is that the me-
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chanical properties of a uniform system, namely, the volumeal second-order phase transition, as one could have expected
occupied by the gas and its hydrostatic pressure, cease to rem calculations in the ideal non-interacting case [8].
thermodynamic variables for an inhomogeneous fluid con- We proceed as follows. In the next section we briefly dis-
fined by a non-uniform trap. The volume is not a variablecuss the introduction of the generalized volume and pressure
since the volume of a trapped gas is unbounded and depenfis a linear quadrupolar potential and the way they can be
on the temperature. The hydrostatic pressure is at best a loalculated. In Sec. 3 we present the Hartree-Fock calculation
cal quantity and, therefore, cannot describe the equilibriunof the density profile for different thermodynamic conditions
state of the gas as a whole. This should not be surprisingnd show numerical results concerning different thermody-
since volume and pressure are consequences of having rigichmic properties across the BEC transition. A section with
walls as a confinement. When the confinement is produceBlinal Remarks concludes the paper.

by a non-uniform external fiel&,..(r), this gives rise to

its own equivalent mechanical variables *volume” and "pres-, - zenarglized volume and pressure for a lin-
sure”. This is the viewpoint that we have been advocating .

recently [21-27]: the usual volume and pressure are replaced ear quadrupolar potential

by a generalized extensive voluiWeand a generalized inten- We considerN identical Bose atoms of mass, with spin

sive pre;sur@, a unique pair for each externgl potential. Thes — 0 or fully polarized in a given spin state [1-3], pairwise
generalized volume turns (.)Ut to be propoonngI to the mea'fhteracting and confined by an anisotropic linear quadrupolar
volume that the gas occupies, and the generalized pressuredc':stemi(,iI

related to the mechanical equilibrium condition of the fluid ’

(i.e. Pascal Law) in the same way as the hydrostatic pressure N 2 N

in a uniform fluid [21-24]. The underlying physics beneath Hy = Z ﬁ + ZU(\T’MD + Z |A - 7). 1)

the identification of these variables is the appropriate ther- i=1 i<j i=1

modynamic limit for each external potential. That is, for an . . . .

external potential to confine a macroscopic number of partig ii;?;i;atg?;'ﬁtig?fé}gﬁ(‘Ti — ;) shall be considered as
cles, the potential itself must also be “macroscopic”, which As i V\E)ell understood. the confinement by a non-uniform
means that its energy level spacing should be much smaller '

o . . potential yields an inhomogeneous fluid. Under such general
than any excitation of the atoms or of the fluid, and Certamlygonditions, and as has been shown [21,23.24], the hydrostatic
of the temperature.

The introduction of generalized volume and pressure nogressure and volume cease to be thermodynamic variables
) 9 o P . nd these are replaced by the so-called generalized pressure
only yields the formal framework for describing non-uniform

fluids, but it also serves as a powerful computational tooland volume. To see how these arise, one may deal first with
Y : : an idealclassicalgas,i.e. u(|r; — r;|) = 0. The canonical
This is due to a remarkable relationship between the generi;— o S
. . : . . “partition function is given by
ized pressure and the inhomogenous particle density (or sim-
ply, density profile). That is, if knowledge is available of the Z(T,N,V) = 1
characteristics of the trap.€. of the generalized volume), LG NIXBN
of the temperature of the gas and of its density profile, then
the generalized pressure can be readily calculated. We recaihereAr = h/(2rmkT)'/? is the de Broglie thermal wave-
that, precisely, it is the density profile that is mostly measuredength,
in the current experiments of ultracold gases [1-3,5,6]. Thus,
direct measurement of the thermodynamics of these gases ap- 1%
pears to be a realistic operation [25-27].
In the present article, making use of the generalized mejs the generalized volume, and the functig(®) is defined
chanical variables and the above considerations, we addregg
the problem of an ultracold Bose gas confined by a linear .
quadrupolar trap [25], treating the interatomic interactions (1YY :/ o= BVeat (7) B3, — 87 (kT)? 1 L ®
within a Hartree-Fock approximation [5,7,16]. We are able Az AyA,
to calculate the full thermodynamics of the gas near and be- . .
low the BEC (superfluid) transition. Among other proper- Helmh.oltz freg energy 1s fou_nd With = —kT'ln Z and, af-
ties, we focus our attention on results for the equation O}ertakmg the limit\" — oo, yields
state, heat capacity and the isothermal compressibility. Al- VE(T)
though HF is a mean-field scheme, and therefore, its predic- F(N,T,V) = =NkT (ln [ NG } + 1) )
tions may fail near a second-order or critical phase transi- r
tion, one expects in any case that it should show qualitativelyror the free energy per particlé;/N, to remain finite in
correct behavior with precursors of the real features of théhe thermodynamic limitNV — oo, it is necessary that the
transition [28,29]. Our HF calculation show that the transi-“generalized” volume divergd,e. ¥V — oo, keeping the
tion is completely smooth, showing no sign of being a criti- “density” N/V constant. We are assuming that not only

Cm®, )

1

T ALAA, (3)
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cany = 1/A, A, A, become arbitrarily large, but that each quadrupolar potential.,;(7) = |A - 7, within the Hartree-
A; — 0 separately; thatis, we are considering the trapped gaBock approximation [5,7,16]. The Hamiltonian of the system
as macroscopic in the three spatial directions. The introduds best described in its second quantized version,

tion of V as abona-fideextensive thermodynamic variable ,
result can be fully justified for an interacting system, clas- H= Zenaian + UZ a}alazam ()]
sical or quantal [21,23,24] such that there exisirgensive n

conjugate variable t®, called the generalized pressure, and
given by

Jklm

where n and ¢, stand for the eigenstates and eigenval-
ues of the three-dimensional one-particle Hamiltonian in
oF the presence of the external linear quadrupolar potential,
P=- (W) (6)  hg=p?/2m+ |A 7], anda], anda, are creation and an-
N,T nihilation operators. The “prime” in the second sum refers
to the restrictions introduced by assuming an isotropic two-
b_body potential. The coupling parameterlis= 4rh%a/m,
with m the atom mass and the scattering length, assumed
throughout to be positive [5].
The Hartree-Fock approximation is a self-consistent pro-
1 N cedure that yields the density profiles of the thermal and the
P <Z 7 Vil A- Fi|> condensate densitiesy, () andpg (), in the form of the fol-
i=1

Here, F = F(N,T,V) is Helmholtz free energy including
interatomic interactions. By a simple calculation, one o
tains that this quantity is related to the local particle density,
or density profileo(7), as

3V lowing set of equations [7,16]:
1 o
= — ) 7 VI|A -7 d®r, 7 1 -
3v/ p(7) A1 @ pin(T) = /\393/z</3[u—|A-f’l
T

where the averages are performed in the corresponding en-
semble. The last equality is one of our principal tools for cal- _oU A — oU 10
culating the thermodynamic properties of the system since it pin(7) po(F)} (10)

gives a direct way to calculate the generalized pressure with

the sole knowledge of the external potentia), (7) = |A-#,  and

the density profileo(#) and the temperaturé. That is, the L1 -

equation of state® = P(V/N,T) is a direct measurable po(7) =3 (“ — 47— QU’)“‘(F» ! (11)
gu::;:gg::nowledge of the density profile and temperaturewith the constraint that the number of particles is a given

As has been shown before [21,23,24], the identificationvalueN’ ‘
of the generalized pressure |s_n0t only a formal one _but it N :/ pen () dPr +/ po(7) d3r. (12)
also has a clear physical meanirfgfor a non-uniform fluid
confined by a given external potential plays the same therm
dynamic role as the hydrostatic pressuiia a uniform fluid, -
since it is the quantity that bears the information that the fluid” —
is in mechanical equilibrium. 1 1
We note that, with the above identification, the change in gn(a@) = / _ (13)

1 T—a _ ]
. n: (&
free energy is 0

% Ed. (10),g3/2(a) is the usual Bose functiop,, (o) for
3/2,

dF = —SdT — PdV + udN (8) The above equations have been derived within the local
density approximation [18-20,24], which, in turn, is valid
with 5 the entropy ang the chemical potential. As we shall Strictly in the thermodynamic limitV. — oo, V — oo with
see below, since the Hartree-Fock approximation, togethel/V = const. Therefore, its applicability to real systems
with Ec. (7), yieldP = P(V/N,T) andy = u(V/N,T), should be restricted to those with a large numpe_r of_partlcles,
the free energy” = N f(V/N, T) can be reconstructed and, say N ~ 10° or larger; for smaller systems, finite size cor-

therefore, all the thermodynamic information becomes availl€ctions may be required. .
able. Note that Eq. (11) is to be understood to be valid for val-

ues when the right-hand-side is positive or zero. As a matter
of fact, this is how the thermal to Bose-Einstein condensa-
3. Thermodynamics and BEC (superfluid) tion (BEC) or superfluid transition is identifieile. given
transition the temperaturd’, the transition occurs for the value of the
chemical potential below which the condensate density)
We now turn our attention to the calculation of the thermody-is different from zero. Equation (11) is the Gross-Pitaevskii
namics of a weakly interacting Bose gas confined in a lineaequation in the thermodynamic limit where the kinetic energy
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term may be safely neglected. HF solutions do show superFIGURE 1. Typical density profileg(r) vs. r of a weakly interact-

fluid behavior in the sense that the spectrum of the elemering Bose gas confined by a linear quadrupolar potential in the HF

tary excitations presents a density-dependent energy gap [74PProximation. Both belong to the same isochore V/N = 0.1

This, however, is known to be an incorrect dependence sianUt for two different temperatures. The solid line corresponds to a

at very low temperatures a superfluid should have gaplessstate with Ia};emperature above the transition BEC (superflw_d) tem-
. . o peraturel,”* and the dotted for a temperature below it. Units are

phonon-like Bogoliubov excitations [5,13]. Nevertheless, HF, = 1anda = 1

should be qualitatively correct for temperatures near the tran-

sition [16] since mean-field theories are known to correctly

predict the order of the transition [17]. »

D) b)

The solution to the above set of equations yields the den-»"
sity profile p(7) = po(7) + pun(7) and the chemical poten- |
tial . for given values of the temperatue and the gener- g
alized volumev = V/N. Figure 1 shows typical density L e

profiles above and belovy the transition. Kn(_)wing the profile,g, s ure 2. Phase diagra®—T', (A) ideal non-interacting gas, (B)
the value of the generalized press@®¢v, T) is found from  pEinteracting gas. Several isochor#¥/(V = constant) are shown
Eq. (7) and, together witp(v, T'), one can further find the in dotted lines. The solid line shows the thermal gas to BEC tran-
molar Helmholtz potentiaf = F//N asf(v,T) = —Pv+ p. sition. Note that the ideal transition temperatiif# is higher than
From the free energy (v, T'), all thermodynamic properties the HF temperaturd,””, for a given isochore. Units are = 1,
follow. The molar entropy is = (9f/9T), and, therefore, m =1anda=1.

the specific heat i, = T(9s/0T),. From the general- . i )
ized pressure, one can calculate the corresponding isothermdl€re go/2(u/kT) is obtained from Eq.(13) with
compressibilityxr = —1/v(0P/dv)r. The internal energy " :9_ 2 ]

may be calculated with(v, T) = f(v,T) + T's(v,T). Our ~_ Figure 2 shows a few isochores € const) of the equa-
results are summarized in Figs. 2 to 7. Note that we usdon of stateP(v, T) comparing the ideal case, Fig. 2a, with
units with i = 1, m = 1 anda = 1. Therefore, lengths the interacting Hartree-Fock approximation, Fig. 2b. We em-

should be multiplied by: to get their actual value, energies phasize the following points. First, in the ideal case, the tran-

by 1?/ma?, etc. Itis interesting to note that, since the the_sition.BE'C line i.ndicates.that the pressure vanishés as 0.

ory has only three “free” parameters, namélyy anda, the That is, just as in 'Fhe? uniform case, the conde_nsate exerts no
predictions are “universal” for all bosonic gases within thePressure [30]. This is clearly changed once interactions are
weak interaction limit, since this reduces all the interatomicincluded: the pressure of the condensate is no longer zero,

interactions to a single paramenter, the (positive) scatterin§nd even afl” = 0, the interactions give rise to a remnant
length. pressure. Second, the transition temperature, different for

. . ] each isochore, is shifted down in the interacting case with
~Inall the figures we compare with the properties of anrespect to the ideal one. This downshift is in agreement with
ideal gas, which can all be computed since the grand poterknown results of more general theories for trapped gases [8].
tial is exactly given by Moreover, this effect is due to the interactions only and not

related to finite size effects [5,31]. And, lastly, the transition
LT 3 line in the interacting case, as shall be further described be-
QWV, T, u) = —87 VKT <)\) gos2(u/KT), (14)  low, marks a smooth thermal gas to superfluid transition, dif-
T ferent from the ideal BEC transition, where discontinuities in
the second derivatives of the free energy are encountered; in
the interacting case, up to second derivatives — and it appears
that at higher orders as well — the free energy is continuous.
Figures 3 and 4 show the entropy and the specific heat,
\ both for the ideal and HF cases, as a function of tempera-
B0 ture for a given isochore. In these and in all the subsequent
figures, the isochore is = V/N = 0.1 and the transi-
tion temperatures argi? ~ 0.436 for the ideal case and
THE ~ 0.306 for HF, with unitsh = 1, m = 1 anda = 1,
showing the mentioned downshift. The transition tempera-
tures are marked with an arrow. Perhaps the most interesting
property of the specific heat in the HF approximation, Fig. 4,
is that the transition temperature occurs at a (locajimum
rather than at a maximum, as is usually expected from the
behavior of the ideal case and critical transitions [29]. From
the behavior of the HF entropy and specific heat at BEC, one

25
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finds that the BEC (superfluid) transition is fully continuous. FIGURE 5. Isothermal compressibilityr vs. temperaturd’ for

Thus, it shows Signs of being neither a first-order nor a Criti_the isochorey = 0.1. The dotted line is the ideal non-interacting
cal transition. gas, the solid line the HF interacting gas. The BEC transition tem-

peratures are marked with arrowg¢ ~ 0.436, T ~ 0.306.
The ideal isothermal compressibility is not defined belfif. See
text for details. Unitsaré = 1, m» = 1 anda = 1.

Additional information on the nature of the transition is
given by the isothermal compressibility-, shown in Fig. 5
for the same isochore as above. We note first that the ideal
xr is only shown for temperatures abo¥%, and we next
explain the underlying reason.

The ideal isothermal compressibility for the quadrupolar
trapped gas, just as in the uniform case, is not defined below
T since(OP/0v)r = 0. In the uniform case, this is usually
considered to be a divergence of the isothermal compressibil-
ity below T4, in apparent agreement with the anomalous be-
havior of the density fluctuations found at those temperatures;
FIGURE 3. Molar entropys = S/N vs. temperaturd for the iso- ~ S€€ Ref. 8 for a detailed. discussion of this poinp This behay-
chorev = 0.1. The dotted line is the ideal non-interacting gas, the '0" €an be contrasted with that of an ideal gas in a harmonic

e . . ” id : :
solid line the HF interacting gas. The BEC transition temperaturestrap belowZ:?, where the density fluctuations are found to be
are marked with arrowg’® ~ 0.436, 7" ~ 0.306. See textfor ~ normal [32]. However, one can analyze the generalized pres-

details. Units aréy = 1, m = 1 anda = 1. sure for the ideal gas in a harmonic trap [23] and find again
that (OP/0v)r = 0 for T < T, whereV = 1/w? for an
B — — — isotropic harmonic trap. In the present article we also find

that the generalized pressure obéy® /0v)r = 0 below

Ti4. Therefore, based on the criterion of the divergence of the
compressibilty, one could conclude that trapped ideal gases
are also unstable below BEC, in contradiction with the men-

tioned stability results based on density fluctuations [8-32].

As we discuss below, there is really not a contradiction.

The minor point is thabelowBEC in an ideal 3D gas,
the isothermal compressibility is no longer related to the den-
sity fluctuations. Such an expected and commonly used re-
lationship arises from the fact that the entropy of a pure
system, determined by the variablég,V, N), is a con-
cave function of two independent variables only; that is,
FIGURE 4. Specific heat at constant generalized (molar) volame ~ Since the entropy is an extensive quantity, it is of the form
vs. temperatur@” for the isochorey = 0.1. The dotted lineisthe  S(E,V,N) = Ns(E/N,V/N) with E/N andV/N the in-
ideal non-interacting gas, the solid line the HF interacting gas. Thedependent variables. The concavity 4fF/N,V/N) im-

BEC transition temperatures are marked with arrGijié,~ 0.436, plies two stability conditions, the positivity of the specific
THF ~ 0.306. Note that in the latter case, the transition does not heat and of the isothermal compressibility [33]. Now, below
occur at the maximum value of, but at a locaminimum See text Téd, since the chemical potentia| remains constant, the num-
for details. Units aré = 1, m = 1 anda = 1. ber of particles is no longer andependenvariable; rather,

its value is determined by the equilibrium condition for given
VY andT, i.e. Ny¢ = Nyc(V,T) with Ny¢ the number

of “thermal” particles not in the condensate. Thus, belgw

the entropy depends on one independent variable only, say
S(E,V) = Vs(E/V) with E/V the independent variable.
Hence, the concavity of( £/V) has as a unique stability im-
plication that the specific heat must be positive; there is no
condition on the isothermal compressibility anymore. There-
fore, the expressiofP/0v)r = 0 below T, simply indi-
cates that the (generalized) pressure dependsimut not on

v; it bears no longer any relationship to the fluctuations of the

0.10 , density nor to the stability of the equilibrium state.
0.0 0.2 0.4 0.6 0.8

T Returning to Fig. 5 for the HF case, one finds that all

20
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the previous discussion becomes irrelevant in the sense th&tGURE 7. Condensate fractionVo /N vs. temperaturd” for the
the interatomic interactions smooth out any difficulty, and theiSochorev = 0.1. the dotted line is the ideal non-interacting gas,
isothermal compressibility becomes continuous at the transi"€ solid line the HF interacting gas. The BEC transition tempera-
tion and remains finite all the way down B = 0. The tures are marked with arrow&’? ~ 0.436, T#¥ ~ 0.306. Note

- - y that the derivative of the interacting HF curve is continuous at the
faf,tFth.‘"‘t the Compre35|plllty Commu.es to be defined bGIOWtransition. See text for details. Units &ie= 1, m» = 1 anda = 1.
T:**, in contrast to the ideal case, is due to the thermody-
namic behavior of the chemical potential, shown in Fig. 6

where we find that it never becomes constant, such as in t

ideal case. What_ IS notorious in both figures, again, is t_hesition in the ideal case has a discontinuity in the derivative.
fact that the transition appears completely smooth, ShOW'ngiowever, for the interacting HF case, as shown in Fig. 7, it

.nOdS'g dn ?:1 any .“expeﬁted” :ype (:f ph;:lse trar][ﬁltlon, Ialthoutghappears that this transition is completely smooth, with no dis-
Indeed, there 1S a phase transition from a thermal gas to ntinuity or singularity at all. That is, the superfluid phase

BEC-superfde gas. i , emerges smoothly from zero.
We certainly understand that HF is a mean-field calcula-

tion and, as mentioned above, not the best description of a

superfluid. However, mean-field theories typically yield in-4. Final remarks

correct quantitative results but do not change the order of the

transition, as one learns from Landau-like theories [29]. TheaVe have analyzed the thermodynamics and the BEC transi-
origin of the continuity of all the thermodynamic properties tion of a weakly interacting Bose gas confined by a linear
may be traced back to the emergence of the condensate fraguadrupolar potentidl.,..(7) = |A - 7], in the Hartree-Fock
tion. This is exemplified in Fig. 7 where we compare theapproximation. To achieve this, we have made use of the
condensate fractioiV,/N of the ideal with the interacting proper mechanical thermodynamic variables, the generalized
volumeV = 1/A4,A,A,, and its conjugate pressure We
emphasize that the latter can be calculated if knowledge of
the density profilep(7) is available. The HF approximation
allows us to self-consistently find such a density profile to-
gether with the chemical potentialin terms of given values

of the temperaturd and the molar volume = V/N. It

is a simple exercise to show that all thermodynamics follows
with this wealth of information.

We have focused our attention on the BEC (superfluid)
transition that a Bose gas undergoes at low temperatures.
From the equation of state = P(v,T) one finds that be-

low the HF transition temperatufB < TXF, the conden-
i - - o - sate exerts pressure due to the interatomic interactions, in
T contrast to the ideal gas, where the condensate is thermody-

FIGURE 6. Chemical potential: ‘ e for the i namically inert. Further, for a given value of the volume
- whemical potential vs. temperaturd for the 150- HF - Tid in agreement with general results on interactin
chorev = 0.1. The dotted line is the ideal non-interacting gas, the ~ ¢ S e 9 9 9

solid line the HF interacting gas. The BEC transition temperaturesgases [8]'.The befhawor of the emmpyf h?at.capacny’ chemi-
are marked with arrows[@ ~ 0.436, T"F ~ 0.306. Note that cal potential and isothermal compressibility indicate that the
below 7%, the ideal chemical potential remains constant. See textifansition in the interacting HF case is completely smooth.
for details. Units ard = 1, m = 1 anda = 1. We have mentioned that this is neither a common first-order
nor a critical second-order phase transition. Moreover, the
‘ smoothness of the isothermal compressibility across the tran-
sition, see Fig. 5, indicates that there are no large fluctuations
near the transition.
) Since HF is a mean-field treatment, one may be inclined
to suggest that the theory is not suitable for capturing crit-
ical behavior. However, we are puzzled by the clear result
that, while the fluctuations may not be correctly accounted
\ for, there is no evidence of a critical transition. We base this
\ statement on the experience with Landau-like theories where
mean-field may not be correct but it does not alter the order
'\\' of the transition. This fact encourages us to improve our cal-
0 51 55 = — = culation, first, by including the proper role and statistical de-
T scription of Bogoliubov modes [34], say, through the Popov

'case. Belowl?, the ideal condensate fraction /N =
(T/Ti4)%/2. AboveTi¢, Ny/N = 0. Thus, the tran-

=2

0.8~

0.2+
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approximation [5,7] and, next, by developing an analysis neazero. However, this may be avoided by slightly altering the
the transition using the proper mechanical variables here usgzbtential around its center, making it different from zero [36],

to search for evidence of critical behavior. On the other handwithout substantially changing the overall form of the poten-
however, if we believe in the HF results found here, namelytial. Once the equation of state is found, the isothermal com-
that the transition is smooth but not critical, this may indi- pressibility follows. As we have indicated before [24], the
cate a kind of first-order transition without the possibility of heat capacity can also be measured. The proposal is an adi-
phase separation. This does not appear to contradict welgbatic expansion or compression, namely a slow change of

known results from superfluidity behavior fide [35] since

the confining potential parameters. After, say, an adiabatic

the analysis of the transition discussed here should be validxpansionAY > 0, the gas must cool dowd\T" < 0. By
for transitions, at very low temperatures, from the thermal gasneasuring the ratid )/ AT and using the following identity,
phase to the superfluid phase; that is, very far from the critithe molar specific heat can be obtained:

cal A-point and from the transition from superfluid to normal
liquid. This study deserves much further research.

knowledge of the trap, the temperature and the density pro-

We finish our report by recalling that the measurement of
the thermodynamic properties of these gases can be readi\lkl/
accomplished with the current experimental setups [25-27].
Hence, one should be able to test the behavior of the hegtt
capacity and the isothermal compressibility found in this pa-
per. We recall that the equation of state essentially require§

a

(15)

oP ov
=T (aﬁv (w)g

here knowledge of the equation of state is needed to evalu-
e the second factor on the right-hand side.

To conclude, we emphasize that the present analysis
hows that the use of the appropriate mechanical variables is
useful and complementary tool for exploring and learning

file, see Eq. (7). Incipient measurements have been peﬁbOUt the physics of gases confined by non-uniform traps.

formed and are under progress, see Ref. 25 for experimen-
tal details of the present quadrupolar trap. Certainly, belowAcknowledgments
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