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Maximum efficiency of an irreversible heat engine with a distributed working fluid, in which the heat transfers between the working fluid
and the heat reservoirs obey the linear phenomenological heat transfey lawA (7~")], is studied in this paper by using finite-time
thermodynamics based on Orlov and Berry’s wWorkwo kinds of efficiencies are defined, and the problems are divided into three cases.
Optimal control theory is used to determine the upper bounds of efficiencies of the heat engines for various cases. Numerical examples of the
two efficiencies for the irreversible heat engine with lumped-parameter model working between variable temperature reservoirs are provided,
and the effects of changes of the reservoir's temperature on the maximum efficiency of the heat engine are analyzed. The obtained results a
also compared with those obtained by Orlov and Bémyth Newtonian heat transfer law x A (T)].

Keywords: Finite-time thermodynamics; linear phenomenological heat transfer law; heat engine; distributed working fluid; maximum effi-
ciency; optimal control.

En este aitulo se estudia la eficienciadxima de un motoré&mico irreversible con un fluido de trabajo distribuido, en el cual las
transferenciasermicas entre el fluido de trabajo y los @sfios €rmicos obedecen la ley fenomebgica linear de transferenciarmica

¢ < A(T™1)], usando la termodamica del finito-tiempo basada en el trabajo de Orlov y BerBe definen dos clases de eficiencias, y

los problemas se dividen en tres casos. Laiéede controbptima se utiliza para determinar ldmites superiores de las eficiencias de los
motores érmicos para varios casos. Se proporcionan ejemplogrncos de las dos eficiencias de motmntico irreversible con el modelo

del amontonar-pametro trabajando entre los degitos de temperatura variable, y se analizan los efectos de los cambios de temperatura del
recipiente en la eficaciadmima del motoré&rmico. Los resultados obtenidos taébise comparan con los obtenidos por Orlov y Béarry

con la ley neutoniana del transferen@anica y o< A(T)].

Descriptores: Termodiramica de tiempos finitos; ley lineal fenomebgica de transferencia de calor; motérmico; fluido de trabajo
distribuido; eficiencia raxima; controlbptimo.

PACS: 05.70.Ln; 05.60.Cd; 05.70.-a

1. Introduction and practical thermodynamic systems for different optimiza-
tion criteria are performed, such as a heated working fluid in a
. _ ) cylinder with a moveable piston [18-25], internal-combustion
Determining the optimal thermodynamic process for thegngines [26-28], dissipative heat engine [29], light-driven en-
given optllmlzauon objectlvgs is one of the _standard prot.)lem%meS [30,31], plug flow reactors [32,33] and heat exchang-
in finite-time thermodynamics [1-12]. Rubin [13,14] derived g5 [34-37]. In these publications, simplified mathematical
th_e optimal con_flguratlons of endoreversible heat_ engine§escriptions of the processes by ordinary differential equa-
with the Newtonian heat transfer law fc A(T)] and differ-  {ions (.e. lumped-parameter models) were used. Unlike the
ent constraints, including the optimal configuration with fixed gy ernal environment and heat reservoir, the temperature gra-
duration for maximum power output and the optimal config-gient over the space in the internal system is so small that the
uration with fixed energy input for maximum efficiency [13]. \yhole system could be treated together with the same temper-
The results were extended to a class of heat engines with §,re  The method of lumped-parameter analysis simplifies
fixed compression ratio [14]. Ondrechenal. [15] inves-  ne research object and makes the problem appear to be easily
tigated the optimal configuration of a Newtonian law systemgqjyed. Besides, the obtained results can provide some theo-
variable-temperature heat reservoir heat engine for maximumyyica| guidelines for the designs and operations of practical
power output. Chert al. [16] investigated effects of the jgiajlations. However, the practical situation is much more
heat leakage on the optimal configuration of a Newtonian,gmplex. For example, the working fluid in the system is
law system variable-temperature heat reservoir heat enging, spatially uniform and the molecular motion in the system
for maximum power output. Angulo-Browet al. [17] in- a5 1o rule. There are internal dissipation caused by viscous
vestigated the optimal configuration of a Newtonian law SyS+iction and momentum loss caused by molecular collision,
tem variable-temperature heat reservoir heat engine for thg, the results obtained by the method of lumped-parameter

maximum modified ecological function. Besides, numerous,n,ysis are still far away from the practical ones, a situation
studies on the optimal configurations of different theoretical
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that needs to be improved. Orlov and Berry [38] first investi-linear phenomenological heat transfer law in the heat trans-
gated the maximum power output of an irreversible heat enfer process between working fluid and the reservoirs. Two
gine with a non-uniform working fluid and Newtonian heat kinds of efficiencies are defined, and the problems are di-
transfer law. Both the lumped-parameter model with uniformvided into three cases. Optimal control theory is used to de-
temperature and the distributed-parameter model describadrmine the upper bounds of efficiencies of the heat engines
by partial differential equations are put forward, and the refor various cases. Numerical examples of the two efficien-
sults showed that the maximum power output of the heat ereies for the irreversible heat engine with lumped-parameter
gine in the distributed-parameter model is less than or equahodel working between variable temperature reservoirs are
to that in the lumped-parameter model. Orlov and Berry [39]provided, and the effects of changes of the reservoir's temper-
further investigated the efficiency performance limit of an ir- ature on the maximum efficiency of the heat engine are ana-
reversible heat engine with distributed working fluid and thelyzed. The obtained results are compared with those obtained
Newtonian heat transfer law. Orlov and Berry [40] further with the Newtonian heat transfer law [39]. The research on
derived the upper bounds of power and efficiency of an opethe efficiency performance limit of the engines from the New-
internal combustion engine model, taking into account theonian heat transfer law to the linear phenomenological heat
finite rate of Newtonian law heat exchange with the environ4ransfer law enriches the finite-time thermodynamic theory.
ment and non-zero entropy generation due to chemical conFhe results presented herein can provide some guidelines for
bustion reactions. the optimal design and operation of real heat engines.

In general, heat transfer is not necessarily Newtonian heat
transfer law and also obeys other laws; heat transfer laws .
not only have significant influences on the performance of- Model description

the given thermodynamic processes [41-47], but also have

influences on the optimal configurations of thermodynamic/\SSume that denotes the space location of some poiris
processes for the given optimization objectives. Seng (he Cycle perioday (€) is the space-dependent coefficients of
al. [48-51], Li et al. [52] and Cheret al. [53] determined heat transfer between the working fluid and the hot reservoir,

the optimal configurations of endoreversible heat engineQ‘L(f) is the space-dependent coefficients of heat transfer be-

for the maximum efficiency objective and maximum power Ween the working fluid and the cold reservoir, ang (7)

output objective with linear phenomenological heat trans_andAL(t) are the corresponding heat transfer surface areas.

fer law [g < A(T-1)] [48,52], those for maximum power L (£:€) andTy (¢, €) are the corresponding temperatures of
output with fixed duration and radiative heat transfer lawN® €ngine’s two reservoirgi(t, €) is the temperature of the

[q¢ o< A(T4)][49,50], and those for maximum power output working fluid |n5|de_ the heat engine. The average power put-
maximum efficiency with a fixed compression ratio and gen_put of the heat engine with distributed working fluid and lin-
eralized radiative heat transfer lawd A (7] [51,53]. Yan ear phenomenological heat transfer law in the heat transfer
et al[54] investigated the optimal configuration of a variable- PFOc€sS between working fluid and the reservoirs has the form

temperature heat reservoir heat engine for maximum power -
output with the linear phenomenological heat transfer law. 1 1 -1

Chenet al. [55] investigated effects of the heat leakage on the P= / {UH(t) / an(&)(T" = Ty )da

optimal configuration of a variable-temperature heat reser- 0 An(?)

voir heat engine for maximum power output with the linear . .

phenomenological heat transfer law. Some studies on the op- +or(t) / ar (T -1 )da} dt )

timal configuration of a variable-temperature heat reservoir AL (%)

heat engine for maximum power output with the generalized

radiative heat transfer law [56], generalized convective hea/nereda is the area element of contact between the working
transfer law § o (AT)™] [57], mixed heat resistance [58], fluid and heat reservoirsvy () and v (t) are the switch-
and generalized heat transfer layck (A(77))™][59] were NG functions. These switching functions regulate the finite-
also performed. Ares de Pargaal. [60] investigated the rate heat transfer between the working fluid and the two heat
optimal configuration of a variable-temperature heat reserteservoirs. Wherd < vg(t) < 1, the hot reservoir and
voir heat engine for the maximum modified ecological func-the working fluid are in contact and exchange energy; when
tion with the generalized convective heat transfer law. étia vu(t) = 0, there is no exchange between them. When
al. [61] investigated the maximum power output of the irre-0 < vr(t) < 1, the cold reservoir and the working fluid
versible heat engine with non-uniform working fluid and the @re in contact and exchange energy; wheft) = 0, there is
linear phenomenological heat transfer law. Cle¢l. [62] no exchange between them. The net amount of heat that the
investigated the effects of different heat resistance model an@orking fluid receives from the hot reservoir is

rate equation of reactions on the maximum power and effi-

T

ciency of the open internal combustion engine. Based on _ . 4
Ref. 39, this paper will study the maximum efficiency of Qu = /UH / ag ()T — Ty )dadt @
an irreversible heat engine with distributed working fluid and 0 An
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The corresponding efficiency,e. net work per unit of 3. Optimization
heat received from the hot reservoir, is
TP
m On
In practical heat engines, situations when the local temper
ture of the working fluidl'(¢, ) is greater than the hot reser-
voir's Ty (t,£) may occur. For example, the working fluid is
heated by the hot reservoir, further compressed adiabatical
and then brought into contact with the hot reservoir again
In this case, part of heat in the working fluid will flow back
to the hot reservoir, so the amount of heat that the workin
fluid receives from the hot reserva@}}; is greater than the
net amount of absorbed he@j;. According to Ref. 397},

(3) 3.1. Solution procedure for problem 1

For problem 1, evaluating efficienoy with constraints of
7P = 7P% andS(0) = S(r) is equivalent to finding an up-
er bound of-Qy with the same constraints. In order to
olve this problem, both the two integral constraints are mul-
tiplied by two scalar Lagrange multipliers,; and s, and
then they are added te@Qy. An unconstrained, averaged
%ptimization problem is given by

is approximately defined as follows: max —Qp + M7(P — P°)
. T>0,0>0
@5 = [on [tan©lr - 13" ;
o | H +A2/{UH / an (T~! — T;7Y)/Tda
0 Ay
0 Ag(t
LT — T ] /2)dadt @) ®
Then the efficiency of the heat enging corresponding + v / ap(T™' =T ") /Tda+o(t)}dt (7)
to Q7; is given by: AL(t)
2 =T1P/Q} (5)

Itis evident thaty, < 7 due toQ} > Q. where\; > 1, \s < 0 and control variable” > 0. Let

According to Refs. 38 and 39, the total process is alsd’1 (A1 A2) be
assumed to be a weakly periodic process herein. It follows
that.S(0) = S(r) from the weakly periodic condition, where T
S represents the total entropy of the working fluid. From d1(A1, A2) = max /{vH / ag(T™' =Ty

S(0) = S(r), one further has 0 Ap(t)

/{UH(t) / aH(f)(Tfl—Tﬁl)/Tda—i—vL(t) X ()\1—1+)\2/T)da+vL / arg,
0 A (t) Ap(t)

y / ar(E) (T~ = T/ Tda + o(t)}dt =0 (6) x (T7' =Ty YA\ + Ao /T)daldt.  (8)

Ap(t)

whereo(t) > 0 is the integrated entropy production over the ~ Maximizing the first term of the integrand of Eq. (8)
volume in the working fluid. with respect toT" one obtains the optimal argument
According to the different given conditions, there 77 = —2Xo T4 (t)/[(A1 — 1)Tr(t) — Ao] and the maximum
are three different types of efficiency optimization prob-value of this term

lems [39]:

(1) To find an upper bound ofy; with constraints Fr(t, €M1, M) = —vg (D)o (€)
7P =7P%andS(0) = S(r), i.e. with fixed work per , ,
cycle. x [(A = D)Tu(t) + A2]*/[4XT (¢)]. (9)

(2) To find an upper bound ofjy; with constraints
Qu = Q% andS(0) = S(r), i.e. with fixed net heat

) Maximizing the second term of the integrand of Eq. (8)
input per cycle.

with respect to7' one obtains the optimal argument
(3) To find an upper bound ofjy, with constraints 711 = —2X T (t)/[MTw(t) — A2] and the maximum value
7P = 7P% andS(0) = S(7), i.e. with fixed net work  Of this term
input per cycle. This is equivalent to find an upper
bound of-Q7;.

frt.& A1, A2) = —vp(H)ar(€)
The above three problems will be solved step by step in ) )
the following section. X MTL(t) + A2]™/[AXNTL (1)) (10)
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Substituting Egs. (9) and (10) into Eq. (8) yields: be further transformed to that of minimizing
d1(A1, A2) Z/{ / fu(t,& A1, A2)da ¢1(A1, A2) = M PP
0 Agn(?)

This is a two- dimensional convex optimization problem due
+ / Fo(t, & A1, )\Q)da] dt. (11) tothefacthat; (A1, A2) is a convex function. Lek; andA,

Al be the solutions to this problem; then Eq. (12) further gives:
L

Combining Egs. (7) with (8) gives the following inequality: On > M7P° — ¢1(5\1 5\2) (13)

T

0
—Qu < $1(A1, he) — T PT A )‘Q/U(t)dt (12) Combining Egs. (3) with (13) gives the estimation of ef-
0 ficiencyn;:
where the term

T

A2 /a(t)dt <0
0 Defining functionwy; (A1, \2) = ¢1(A1, A2) — A 7P, one
due to the Lagrange multipliexs < 0, one may omit this hasdy, /0 2 = 0¢1/0Ns. From Eq. (11), one can ob-
term from the inequality (12), in using it to get the upper tain an analytical solution fok,. Combining Eq. (11) with
bound. The problem 1 to evaluate the upper boungiafan  d¢,/9X2 = 0, one can obtain the optimal teriy and the
| corresponding termp; (A, \o):

7]1 S TPO/[S\lTPO — ¢1(5\1, 5\2)] (14)

Ao = —\/(vHaH(/\l — 1) 4+vragh)/(vaan /T +viarn/T?) (15)
1A, A2) = Tfu (8, €A, Ae) + fr(t, € A, Ae)] = TP (16)
where
k/vhere
T = 1/T/ [ / v (€, \)da) dt ) max/ o / g (T — T=)
0 an® T>0
0 Am(t)
and X (A1 + 14 Xo/T)da+ v, / ar,
- AL (t)
aTle/ /;v t,&, N)da|dt.
L / / {A " L(t:6A) X (T_1 —Tgl)(1+A2/T)da dt. a7

Problem 1 could be reduced to a one-dimensional optiMaximizing the first and the second terms of the integrand of

mization problem,.e. minimize 11 (A1, \2) with the con-  EQ. (17) with respect t@’ yields:

straint A; > 1. From Eg. (16) and extreme condition -

01 (A, /\2)/8)\1 = 0, one cannot further get an analytical _

solution for);. This problem can only be solved numerically. $2(A1, Aa) = gn (€, A1, Az)da
0 ta

H(t)
3.2. Solution procedure for problem 2 + / g1(t: €, AQ)da] di (18)

AL(t)

For problem 2, evaluating efficieney with the constraints  wheregy andg;, are

of Qu = QY% andS(0) = S(r) is equivalent to finding an

upper bound of P with the same constraints. With the same gy (¢,&, A1, \2)= — vy (t)aw (€)

transformation as problem 1, the final problem is to minimize ) )

d2(A1, A2) — M1QY with constraints\; > —1 and\, < 0, X [(MA1D)TH (1) 4]/ [ANT (1)) (19)
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gr(t,&,A2) = —vp(t)ar(§) follows:
2 2 N N N
) ) X [TL(t) + A2)*/[ANTE(t))] (20) m < [6a(01, Ae) — MQ%1/QY (1)
Let A; and )\, be the solutions corresponding to the min- o _
imization of o (A1, A2) — A1 QY. From Defining functionys (A, A2) = da(A1, A2) — MQY,

PO N one hasdys /0Ny = O0¢2/0\e. From Eq. (18), one can
TP < ¢2(A1, h2) = MQp get an analytical solution fok,. Combining Eq. (18) with
and Eq. (3), one can get the estimation of efficiengyas O¢2/0X2 = 0 yields the optimal term\z(A;) and the corre-
| sponding termiy (A1, A2):

So = —\/(oman O + 1) + 77a7)/ (onan /T3 + vpar/TF) (22)

P2, A2) = Tlgm (8, €, M, A2) + gr(t, €, X2)] — M7 P° (23)

Problem 2 could also be reduced to a one-dimensional op-
timization problemj.e. that of minimizingyy (A1, 5\2) with E\rgumentfg = =27y (t)/[M T (t) — A2] and the maxi-
the constraint\; > —1. From Eq. (23) and extreme con- mum value of this term
dition 9o (A, ;\2)/8/\1 = 0, one cannot get an analytical
solution for A\;. This problem can only be solved numeri-  ¥r(t,& A1, A2) = —vr(t)ar(§)

cally. x {IMTL(t) + A} /[ANTE ()] (26)

3.3. Solution procedure for problem 3

Thengs(A1, A2) is given by

For problem 3, evaluating efficienay with the constraints T
of 7P = 7P% andS(0) = S(r) is equivalent to finding an b3(A1, \o) = / [ / yr (€ A1, A2)da
upper bound of—QE with the same constraints. With the

same transformation as problems 1 and 2, the final problem 0 Ax(®

is to minimizegs (A1, A2) — A7 P° with constraints\; > 1

and)\y < 0, wheregps (A, Xz is given by + / yr(t: €A1, Ao)da dt. 27)

AL(t)
P3(A1, Ag) = max/ lUH / ag(T™1 = T5Y) Let \; and )\, be the solutions corresponding to the
=0 0 Ao minimization of p3(A1, A2) — A 7P%. CombiningQj; >
M TPY — ¢3(\1, A2) with Eq. (5), one can get the estimation
X [)\1 —sg(T™ ' = T7") + AQ/T} da +vp, of efficiencyns,, as follows:
e < TPY/|MTPY — h3(A1, A2) (28)

« / (T~ =T ) (M 4+Ae/T)da
AL(t)

dt (24)

Unlike problems 1 and 2, there is no analytical solution for
A1. So this two-dimensional convex optimization problem
cannot be converted to a one-dimensional optimization prob-
lem. This optimization problem can only be solved numeri-

wheresg(x) is a step functioni.e. sg(x) = 1 whenz > 0,
andsg(xz) = 0 whenz < 0. Maximizing the first term of the
integrand of Eq. (24) with respect # one gets the optimal

cally.
argument
Ty = =20 Tw (1) /{[M — s9(Ty =T )| Ter (1) = A2} 4. Numerical examples and discussions
and the maximum value of this term The lumped-parameter model with an oscillating high-
1 1 reservoir temperature is considered herein. In this model, the
yu(t:& A, Ae) = —vn (an (M —s9(Te” =T)]  temperature of the hot reservoir is
2 p—
X Th(t) + Az)" x [sg(l = 14 4/Tir) Ty(t) = TS + AT sin(4nt),
+sg(Ty' = Tg DI/E2TH®)]  (25)

while the temperature of the cold reservoirTis(t) = T7.
whereTy = —A3/A;. Maximizing the second term of the According to Ref. 39, the following parameters are set:
integrand of Eq. (24) with respect ©one gets the optimal 7 = 1sec, ty = 0.57, Ty = 1200 K, T? = 293.15 K,
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vi(t) = 1when0 <t <ty vy (t) = Owhenty <t <, 18 4
vr(t) = 0when0 < ¢t < tg, andur(t) = 1 when == AT [Ty =00

ty < t < 7. For the cases with different heat transfer laws, il — ATIT, =02
one must change the values @f g in order to generate ~ S AT /T° =04
heat transfer rates that are comparable to each other for th¢™ | \ S -
same temperature difference,&@ay = aray = 100 W/K %1 5 . == M =08

are set for Newtonian heat transfer law [39], while :7 B

Ry

agyg = arpdoyp = 3.52 x 107WK 1T

are set for the linear phenomenological heat transfer law. 0.8}
The numerical calculations are developed in a MATLAB
environment, and the integral function ‘@quadl’ and the
error of 10.—6 are cho;gn. Only cases that optlml'ze two 0-61 IT 98 & 43 . 1F A& A7 18 48 =
different kinds of efficiencyn; and 7, with the given 4

power outputP’, i.e. problems 1 and 3, are considered FiGURE 1. The function—rP° /4 (A1, A2) versusA; with the
herein. PY = 0.8Py.x(0) is set. 7;(0) is the value linear phenomenological heat transfer law.

of n; evaluated atAT = 0, and the Carnot efficiency is
ne=1-T% /(T%+AT) [63]. AT/T§,. However, they are both smaller than Carnot effi-

ciencyr,. of heat engines with hot reservoirs of constant tem-
peraturel’y;. For the case with Newtonian heat transfer law,
the variation ofy; (AT) with the increase oAT/TY, is dis-

Problem 1 is to minimizez/zl()\l,;\z) with constraint
A1 > 1. Figure 1 shows the functionr P/ (A1, A2) ver-

sus A; with the linear phenomenological heat transfer IaW'tinct, andn (AT)/m (0) = 1.2674 when AT/TS — 0.6.

. . O <
From Fig. 1, one can see that the functionP” /v (M1, Aa) - £ S e o ce with the linear phenomenological heat transfer

has a minimum value with the growth of;, and the low- L o
est point of the curve corresponding to different tempera-!aw’ the value ofy, (AT) varies little whenAT/Ty < 0.4,

ture ratiosAT'/TY, is the corresponding maximum efficiency IAeT t;oe \ialgeg otfr?é(é?e/sméa)diﬁ I?/ZTu;ham'ng' Whgn
m (AT). Table | lists the comparison of the maximum effi- /Ty = 0.6, P 9 0 (AT),/n:(0)

; . : . is just1.0425. This difference is due to different heat transfer
ciencyn; of the heat engines with two different heat transferlaws mainly, so it is very necessary to investigate the effects
laws. Both of the efficiency limitg, (AT') of the two differ- Y. y y g

ent cases increase with the increase in the temperature raticg)f the heat transfer law on the efficiency limit of the irre-
versible heat engine.

Problem 3 is to minimizes(\1, A2) — A7 P° with the
constraints\; > 1 and\, < 0. Table Il lists a comparison of
the maximum efficiency), of the heat engines with two dif-
ferent heat transfer laws. Comparing with the results listed
9] — in Table I, one can see that the maximum efficiengfAT)

— qx AT g AT — is equal ton; (AT) when the temperature ratiaT /T, is

AT/ Ty m (AT) 1 (AT) /m1.(0) 1 (AT) m1 (AT) /1 (0)  7e small, but the former is smaller than the latter whsfi /T,
0.0000 0.6412 1.0000 0.7033 1.0000 0.7557 is larger. This is evident, because the efficiengys related
0.2000 0.6599 1.0292 0.7037 1.0006 0.7964 to the net absorbed he@H, while the effiCiencyT]Q is re-
0.4000 0.7157 11161 0.7075 10060  0.8255 lated to the pracncal_ apsorbed héxg. With the increase of

the temperature variatioAT" of the hot reservoir, the situa-
0.6000 0.8127 1.2674 0.7332 10425  0.8473 ion that part of the absorbed heat in the working fluid will
flow back to the hot reservoir occurs. As a res@j; is less
thanQ7;.

TABLE |. Comparison of the maximum efficieney of the heat
engines with two different heat transfer laws.

TaBLE Il. Comparison of the maximum efficieney of the heat

engines with two different heat transfer laws. .
5. Conclusion

— g oc AT g x AT N On the basis of Ref. 39, this paper studies the maximum effi-
AT/Ti n2(AT) 12(AT) /12(0) n2(AT) 12(AT) /12(0)  ne ciency of an irreversible heat engine with a distributed work-
0.0000 0.6412 1.0000 0.7033 1.0000 0.7557 ing fluid, in which heat transfers between the working fluid
0.2000 0.6599 1.0292 0.7037 1.0006 0.7964 andthe heatreservoirs obey the linear phenomenological heat
04000 07099 11071 07062 10041  0.8255 ansferiaw § oc A(T"1)). Two kinds of efficiencies are
defined, and the problems are divided into three cases. Op-
0.6000 0.7568 1.1800 0.7224 10272 08473 {ima) control theory is used to determine the upper bounds
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of efficiencies of the heat engine for various cases, respe@ase with the linear phenomenological heat transfer law, the
tively. Numerical examples of the two efficiencies for the ir- effects of temperature variation of the hot reservoir on the ef-
reversible heat engine working between variable-temperaturéciency performance are relative smaller. In conclusion, it is
reservoirs are given by numerical calculations, and the efvery necessary to investigate the effects of heat transfer laws
fects of changes of the reservoir's temperature on the maxen the efficiency limit of the irreversible heat engine with a
imum efficiency of the heat engine are analyzed. The redistributed working fluid.

sults show that these two different efficiencies are equal to

ea_ch_ other when the temperature variation _of_the hot rese{r&Cknowledgements
voir is small, and when the temperature variation of the ho

reservoir is larger, the difference between these two differTnis paper is supported by The National Natural Science
ent efficiencies is large. The obtained results are also com=qyndation of P. R. China (Project No. 10905093), Pro-
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