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Maximum efficiency of an irreversible heat engine with a distributed working fluid, in which the heat transfers between the working fluid
and the heat reservoirs obey the linear phenomenological heat transfer law [q ∝ ∆(T−1)], is studied in this paper by using finite-time
thermodynamics based on Orlov and Berry’s worki. Two kinds of efficiencies are defined, and the problems are divided into three cases.
Optimal control theory is used to determine the upper bounds of efficiencies of the heat engines for various cases. Numerical examples of the
two efficiencies for the irreversible heat engine with lumped-parameter model working between variable temperature reservoirs are provided,
and the effects of changes of the reservoir’s temperature on the maximum efficiency of the heat engine are analyzed. The obtained results are
also compared with those obtained by Orlov and Berryii with Newtonian heat transfer law [q ∝ ∆(T )].

Keywords:Finite-time thermodynamics; linear phenomenological heat transfer law; heat engine; distributed working fluid; maximum effi-
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En este artı́culo se estudia la eficiencia máxima de un motor térmico irreversible con un fluido de trabajo distribuido, en el cual las
transferencias térmicas entre el fluido de trabajo y los depósitos t́ermicos obedecen la ley fenomenológica linear de transferencia térmica
[q ∝ ∆(T−1)], usando la termodińamica del finito-tiempo basada en el trabajo de Orlov y Berryi. Se definen dos clases de eficiencias, y
los problemas se dividen en tres casos. La teorı́a de controĺoptima se utiliza para determinar los lı́mites superiores de las eficiencias de los
motores t́ermicos para varios casos. Se proporcionan ejemplos numéricos de las dos eficiencias de motor térmico irreversible con el modelo
del amontonar-parámetro trabajando entre los depósitos de temperatura variable, y se analizan los efectos de los cambios de temperatura del
recipiente en la eficacia ḿaxima del motor t́ermico. Los resultados obtenidos también se comparan con los obtenidos por Orlov y Barryii

con la ley neutoniana del transferencia térmica [q ∝ ∆(T )].

Descriptores: Termodińamica de tiempos finitos; ley lineal fenomenológica de transferencia de calor; motor térmico; fluido de trabajo
distribuido; eficiencia ḿaxima; controĺoptimo.

PACS: 05.70.Ln; 05.60.Cd; 05.70.-a

1. Introduction

Determining the optimal thermodynamic process for the
given optimization objectives is one of the standard problems
in finite-time thermodynamics [1-12]. Rubin [13,14] derived
the optimal configurations of endoreversible heat engines
with the Newtonian heat transfer law [q ∝ ∆(T )] and differ-
ent constraints, including the optimal configuration with fixed
duration for maximum power output and the optimal config-
uration with fixed energy input for maximum efficiency [13].
The results were extended to a class of heat engines with a
fixed compression ratio [14]. Ondrechenet al. [15] inves-
tigated the optimal configuration of a Newtonian law system
variable-temperature heat reservoir heat engine for maximum
power output. Chenet al. [16] investigated effects of the
heat leakage on the optimal configuration of a Newtonian
law system variable-temperature heat reservoir heat engine
for maximum power output. Angulo-Brownet al. [17] in-
vestigated the optimal configuration of a Newtonian law sys-
tem variable-temperature heat reservoir heat engine for the
maximum modified ecological function. Besides, numerous
studies on the optimal configurations of different theoretical

and practical thermodynamic systems for different optimiza-
tion criteria are performed, such as a heated working fluid in a
cylinder with a moveable piston [18-25], internal-combustion
engines [26-28], dissipative heat engine [29], light-driven en-
gines [30,31], plug flow reactors [32,33] and heat exchang-
ers [34-37]. In these publications, simplified mathematical
descriptions of the processes by ordinary differential equa-
tions (i.e. lumped-parameter models) were used. Unlike the
external environment and heat reservoir, the temperature gra-
dient over the space in the internal system is so small that the
whole system could be treated together with the same temper-
ature. The method of lumped-parameter analysis simplifies
the research object and makes the problem appear to be easily
solved. Besides, the obtained results can provide some theo-
retical guidelines for the designs and operations of practical
installations. However, the practical situation is much more
complex. For example, the working fluid in the system is
not spatially uniform and the molecular motion in the system
has no rule. There are internal dissipation caused by viscous
friction and momentum loss caused by molecular collision,
so the results obtained by the method of lumped-parameter
analysis are still far away from the practical ones, a situation
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that needs to be improved. Orlov and Berry [38] first investi-
gated the maximum power output of an irreversible heat en-
gine with a non-uniform working fluid and Newtonian heat
transfer law. Both the lumped-parameter model with uniform
temperature and the distributed-parameter model described
by partial differential equations are put forward, and the re-
sults showed that the maximum power output of the heat en-
gine in the distributed-parameter model is less than or equal
to that in the lumped-parameter model. Orlov and Berry [39]
further investigated the efficiency performance limit of an ir-
reversible heat engine with distributed working fluid and the
Newtonian heat transfer law. Orlov and Berry [40] further
derived the upper bounds of power and efficiency of an open
internal combustion engine model, taking into account the
finite rate of Newtonian law heat exchange with the environ-
ment and non-zero entropy generation due to chemical com-
bustion reactions.

In general, heat transfer is not necessarily Newtonian heat
transfer law and also obeys other laws; heat transfer laws
not only have significant influences on the performance of
the given thermodynamic processes [41-47], but also have
influences on the optimal configurations of thermodynamic
processes for the given optimization objectives. Songet
al. [48-51], Li et al. [52] and Chenet al. [53] determined
the optimal configurations of endoreversible heat engines
for the maximum efficiency objective and maximum power
output objective with linear phenomenological heat trans-
fer law [q ∝ ∆(T−1)] [48,52], those for maximum power
output with fixed duration and radiative heat transfer law
[q ∝ ∆(T 4)][49,50], and those for maximum power output
maximum efficiency with a fixed compression ratio and gen-
eralized radiative heat transfer law [q ∝ ∆(Tn)] [51,53]. Yan
et al [54] investigated the optimal configuration of a variable-
temperature heat reservoir heat engine for maximum power
output with the linear phenomenological heat transfer law.
Chenet al. [55] investigated effects of the heat leakage on the
optimal configuration of a variable-temperature heat reser-
voir heat engine for maximum power output with the linear
phenomenological heat transfer law. Some studies on the op-
timal configuration of a variable-temperature heat reservoir
heat engine for maximum power output with the generalized
radiative heat transfer law [56], generalized convective heat
transfer law [q ∝ (∆T )m] [57], mixed heat resistance [58],
and generalized heat transfer law [q ∝ (∆(Tn))m][59] were
also performed. Ares de Pargaet al. [60] investigated the
optimal configuration of a variable-temperature heat reser-
voir heat engine for the maximum modified ecological func-
tion with the generalized convective heat transfer law. Xiaet
al. [61] investigated the maximum power output of the irre-
versible heat engine with non-uniform working fluid and the
linear phenomenological heat transfer law. Chenet al. [62]
investigated the effects of different heat resistance model and
rate equation of reactions on the maximum power and effi-
ciency of the open internal combustion engine. Based on
Ref. 39, this paper will study the maximum efficiency of
an irreversible heat engine with distributed working fluid and

linear phenomenological heat transfer law in the heat trans-
fer process between working fluid and the reservoirs. Two
kinds of efficiencies are defined, and the problems are di-
vided into three cases. Optimal control theory is used to de-
termine the upper bounds of efficiencies of the heat engines
for various cases. Numerical examples of the two efficien-
cies for the irreversible heat engine with lumped-parameter
model working between variable temperature reservoirs are
provided, and the effects of changes of the reservoir’s temper-
ature on the maximum efficiency of the heat engine are ana-
lyzed. The obtained results are compared with those obtained
with the Newtonian heat transfer law [39]. The research on
the efficiency performance limit of the engines from the New-
tonian heat transfer law to the linear phenomenological heat
transfer law enriches the finite-time thermodynamic theory.
The results presented herein can provide some guidelines for
the optimal design and operation of real heat engines.

2. Model description

Assume thatξ denotes the space location of some point,τ is
the cycle period,αH(ξ) is the space-dependent coefficients of
heat transfer between the working fluid and the hot reservoir,
αL(ξ) is the space-dependent coefficients of heat transfer be-
tween the working fluid and the cold reservoir, andAH(t)
andAL(t) are the corresponding heat transfer surface areas.
TH(t, ξ) andTL(t, ξ) are the corresponding temperatures of
the engine’s two reservoirs,T (t, ξ) is the temperature of the
working fluid inside the heat engine. The average power out-
put of the heat engine with distributed working fluid and lin-
ear phenomenological heat transfer law in the heat transfer
process between working fluid and the reservoirs has the form

P =
1
τ

τ∫

0

[
vH(t)

∫

AH(t)

αH(ξ)(T−1 − T−1
H )da

+ vL(t)
∫

AL(t)

αL(ξ)(T−1 − T−1
L )da

]
dt (1)

whereda is the area element of contact between the working
fluid and heat reservoirs.vH(t) and vL(t) are the switch-
ing functions. These switching functions regulate the finite-
rate heat transfer between the working fluid and the two heat
reservoirs. When0 < vH(t) ≤ 1, the hot reservoir and
the working fluid are in contact and exchange energy; when
vH(t) = 0, there is no exchange between them. When
0 < vL(t) ≤ 1, the cold reservoir and the working fluid
are in contact and exchange energy; whenvL(t) = 0, there is
no exchange between them. The net amount of heat that the
working fluid receives from the hot reservoir is

QH =

τ∫

0

vH

∫

AH

αH(ξ)(T−1 − T−1
H )dadt (2)
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The corresponding efficiency,i.e. net work per unit of
heat received from the hot reservoir, is

η1 =
τP

QH
(3)

In practical heat engines, situations when the local tempera-
ture of the working fluidT (t, ξ) is greater than the hot reser-
voir’s TH(t, ξ) may occur. For example, the working fluid is
heated by the hot reservoir, further compressed adiabatically
and then brought into contact with the hot reservoir again.
In this case, part of heat in the working fluid will flow back
to the hot reservoir, so the amount of heat that the working
fluid receives from the hot reservoirQ+

H is greater than the
net amount of absorbed heatQH . According to Ref. 39,Q+

H

is approximately defined as follows:

Q+
H =

τ∫

0

vH

∫

AH

{αH(ξ)
[
(T−1 − T−1

H )

+ |(T−1 − T−1
H )|]/2}dadt (4)

Then the efficiency of the heat engineη2 corresponding
to Q+

H is given by:

η2 = τP/Q+
H (5)

It is evident thatη1 ≤ η2 due toQ+
H ≥ QH .

According to Refs. 38 and 39, the total process is also
assumed to be a weakly periodic process herein. It follows
thatS(0) = S(τ) from the weakly periodic condition, where
S represents the total entropy of the working fluid. From
S(0) = S(τ), one further has

τ∫

0

{vH(t)
∫

AH(t)

αH(ξ)(T−1 − T−1
H )/Tda + vL(t)

×
∫

AL(t)

αL(ξ)(T−1 − T−1
L )/Tda + σ(t)}dt = 0 (6)

whereσ(t) ≥ 0 is the integrated entropy production over the
volume in the working fluid.

According to the different given conditions, there
are three different types of efficiency optimization prob-
lems [39]:

(1) To find an upper bound ofη1 with constraints
τP = τP 0 andS(0) = S(τ), i.e. with fixed work per
cycle.

(2) To find an upper bound ofη1 with constraints
QH = Q0

H andS(0) = S(τ), i.e. with fixed net heat
input per cycle.

(3) To find an upper bound ofη2 with constraints
τP = τP 0 andS(0) = S(τ), i.e. with fixed net work
input per cycle. This is equivalent to find an upper
bound of−Q+

H .

The above three problems will be solved step by step in
the following section.

3. Optimization

3.1. Solution procedure for problem 1

For problem 1, evaluating efficiencyη1 with constraints of
τP = τP 0 andS(0) = S(τ) is equivalent to finding an up-
per bound of−QH with the same constraints. In order to
solve this problem, both the two integral constraints are mul-
tiplied by two scalar Lagrange multipliers,λ1 andλ2, and
then they are added to−QH . An unconstrained, averaged
optimization problem is given by

max
T>0,σ≥0

−QH + λ1τ(P − P 0)

+ λ2

τ∫

0

{vH

∫

AH(t)

αH(T−1 − T−1
H )/Tda

+ vL

∫

AL(t)

αL(T−1 − T−1
L )/Tda + σ(t)}dt (7)

whereλ1 > 1, λ2 < 0 and control variableT > 0. Let
φ1(λ1, λ2) be

φ1(λ1, λ2) = max
T>0

τ∫

0

{vH

∫

AH(t)

αH(T−1 − T−1
H )

× (λ1 − 1 + λ2/T )da + vL

∫

AL(t)

αL

× (T−1 − T−1
L )(λ1 + λ2/T )da]dt. (8)

Maximizing the first term of the integrand of Eq. (8)
with respect to T one obtains the optimal argument
T̂1 = −2λ2TH(t)/[(λ1 − 1)TH(t)− λ2] and the maximum
value of this term

fH(t, ξ, λ1, λ2) = −vH(t)αH(ξ)

× [(λ1 − 1)TH(t) + λ2]2/[4λ2T
2
H(t)]. (9)

Maximizing the second term of the integrand of Eq. (8)
with respect to T one obtains the optimal argument
T̂1 = −2λ2TH(t)/[λ1TH(t)− λ2] and the maximum value
of this term

fL(t, ξ, λ1, λ2) = −vL(t)αL(ξ)

× [λ1TL(t) + λ2]2/[4λ2T
2
L(t)] (10)
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Substituting Eqs. (9) and (10) into Eq. (8) yields:

φ1(λ1, λ2) =

τ∫

0

[ ∫

AH(t)

fH(t, ξ, λ1, λ2)da

+
∫

AL(t)

fL(t, ξ, λ1, λ2)da
]
dt. (11)

Combining Eqs. (7) with (8) gives the following inequality:

−QH ≤ φ1(λ1, λ2)− λ1τP 0 + λ2

τ∫

0

σ(t)dt (12)

where the term

λ2

τ∫

0

σ(t)dt ≤ 0

due to the Lagrange multiplierλ2 < 0, one may omit this
term from the inequality (12), in using it to get the upper
bound. The problem 1 to evaluate the upper bound ofη1 can

be further transformed to that of minimizing

φ1(λ1, λ2)− λ1τP 0.

This is a two- dimensional convex optimization problem due
to the fac thatφ1(λ1, λ2) is a convex function. Let̂λ1 andλ̂2

be the solutions to this problem; then Eq. (12) further gives:

QH ≥ λ̂1τP 0 − φ1(λ̂1, λ̂2) (13)

Combining Eqs. (3) with (13) gives the estimation of ef-
ficiencyη1:

η1 ≤ τP 0/[λ̂1τP 0 − φ1(λ̂1, λ̂2)] (14)

Defining functionψ1(λ1, λ2) = φ1(λ1, λ2) − λ1τP 0, one
has∂ψ1/∂λ2 = ∂φ1/∂λ2. From Eq. (11), one can ob-
tain an analytical solution for̂λ2. Combining Eq. (11) with
∂φ1/∂λ2 = 0, one can obtain the optimal term̂λ2 and the
corresponding termψ1(λ1, λ̂2):

λ̂2 = −
√

(vHαH(λ1 − 1) + vLαLλ1)/(vHαH/T 2
H + vLαL/T 2

L) (15)

ψ1(λ1, λ̂2) = τ [fH(t, ξ, λ1, λ̂2) + fL(t, ξ, λ1, λ̂2)]− λ1τP 0 (16)

where

xH = 1/τ

τ∫

0

[ ∫

AH(t)

xH(t, ξ, λ)da
]
dt

and

xL = 1/τ

τ∫

0

[ ∫

AL(t)

xL(t, ξ, λ)da
]
dt.

Problem 1 could be reduced to a one-dimensional opti-
mization problem,i.e. minimize ψ1(λ1, λ̂2) with the con-
straint λ1 > 1. From Eq. (16) and extreme condition
∂ψ1(λ1, λ̂2)/∂λ1 = 0, one cannot further get an analytical
solution forλ̂1. This problem can only be solved numerically.

3.2. Solution procedure for problem 2

For problem 2, evaluating efficiencyη1 with the constraints
of QH = Q0

H andS(0) = S(τ) is equivalent to finding an
upper bound ofτP with the same constraints. With the same
transformation as problem 1, the final problem is to minimize
φ2(λ1, λ2)− λ1Q

0
H with constraintsλ1 > −1 andλ2 < 0,

where

φ2(λ1, λ2) = max
T>0

τ∫

0

[
vH

∫

AH(t)

αH(T−1 − T−1
H )

× (λ1 + 1 + λ2/T )da + vL

∫

AL(t)

αL

× (T−1 − T−1
L )(1 + λ2/T )da

]
dt. (17)

Maximizing the first and the second terms of the integrand of
Eq. (17) with respect toT yields:

φ2(λ1, λ2) =

τ∫

0

[ ∫

AH(t)

gH(t, ξ, λ1, λ2)da

+
∫

AL(t)

gL(t, ξ, λ2)da

]
dt (18)

wheregH andgL are

gH(t, ξ, λ1, λ2)=− vH(t)αH(ξ)

× [(λ1+1)TH(t)+λ2]2/[4λ2T
2
H(t)] (19)
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gL(t, ξ, λ2) = −vL(t)αL(ξ)

× [TL(t) + λ2]2/[4λ2T
2
L(t)] (20)

Let λ̂1 andλ̂2 be the solutions corresponding to the min-
imization ofφ2(λ1, λ2)− λ1Q

0
H . From

τP ≤ φ2(λ̂1, λ̂2)− λ̂1Q
0
H

and Eq. (3), one can get the estimation of efficiencyη1, as

follows:

η1 ≤ [φ2(λ̂1, λ̂2)− λ̂1Q
0
H ]/Q0

H (21)

Defining functionψ2(λ1, λ2) = φ2(λ1, λ2) − λ1Q
0
H ,

one has∂ψ2/∂λ2 = ∂φ2/∂λ2. From Eq. (18), one can
get an analytical solution for̂λ2. Combining Eq. (18) with
∂φ2/∂λ2 = 0 yields the optimal term̂λ2(λ1) and the corre-
sponding termψ2(λ1, λ̂2):

λ̂2 = −
√

(vHαH(λ1 + 1) + vLαL)/(vHαH/T 2
H + vLαL/T 2

L) (22)

ψ2(λ1, λ̂2) = τ [gH(t, ξ, λ1, λ̂2) + gL(t, ξ, λ̂2)]− λ1τP 0 (23)

Problem 2 could also be reduced to a one-dimensional op-
timization problem,i.e. that of minimizingψ1(λ1, λ̂2) with
the constraintλ1 > −1. From Eq. (23) and extreme con-
dition ∂ψ2(λ1, λ̂2)/∂λ1 = 0, one cannot get an analytical
solution for λ̂1. This problem can only be solved numeri-
cally.

3.3. Solution procedure for problem 3

For problem 3, evaluating efficiencyη2 with the constraints
of τP = τP 0 andS(0) = S(τ) is equivalent to finding an
upper bound of−Q+

H with the same constraints. With the
same transformation as problems 1 and 2, the final problem
is to minimizeφ3(λ1, λ2) − λ1τP 0 with constraintsλ1 > 1
andλ2 < 0, whereφ3(λ1, λ2) is given by

φ3(λ1, λ2) = max
T>0

τ∫

0

[
vH

∫

AH(t)

αH(T−1 − T−1
H )

×
[
λ1 − sg(T−1 − T−1

H ) + λ2/T
]
da + vL

×
∫

AL(t)

αL(T−1−T−1
L )(λ1+λ2/T )da

]
dt (24)

wheresg(x) is a step function,i.e. sg(x) = 1 whenx > 0,
andsg(x) = 0 whenx ≤ 0. Maximizing the first term of the
integrand of Eq. (24) with respect toT one gets the optimal
argument

T̂1 = −2λ2TH(t)/{[λ1 − sg(T−1
0 −T−1

H )]TH(t)−λ2}
and the maximum value of this term

yH(t, ξ, λ1, λ2) = −vH(t)αH(ξ){[λ1 − sg(T−1
0 − T−1

H )]

× TH(t) + λ2}2 × [sg(l − 1 + λ/TH)

+ sg(T−1
H − T−1

0 )]/[4λ2T
2
H(t)] (25)

whereT0 = −λ2/λ1. Maximizing the second term of the
integrand of Eq. (24) with respect toT one gets the optimal

argumentT̂2 = −2λ2TH(t)/[λ1TH(t) − λ2] and the maxi-
mum value of this term

yL(t, ξ, λ1, λ2) = −vL(t)αL(ξ)

× {[λ1TL(t) + λ2}2/[4λ2T
2
L(t)] (26)

Thenφ3(λ1, λ2) is given by

φ3(λ1, λ2) =

τ∫

0

[ ∫

AH(t)

yH(t, ξ, λ1, λ2)da

+
∫

AL(t)

yL(t, ξ, λ1, λ2)da
]
dt. (27)

Let λ̂1 and λ̂2 be the solutions corresponding to the
minimization of ϕ3(λ1, λ2) − λ1τP 0. CombiningQ+

H ≥
λ̂1τP 0 − φ3(λ̂1, λ̂2) with Eq. (5), one can get the estimation
of efficiencyη2, as follows:

η2 ≤ τP 0/
[
λ̂1τP 0 − φ3(λ̂1, λ̂2)

]
(28)

Unlike problems 1 and 2, there is no analytical solution for
λ̂1. So this two-dimensional convex optimization problem
cannot be converted to a one-dimensional optimization prob-
lem. This optimization problem can only be solved numeri-
cally.

4. Numerical examples and discussions

The lumped-parameter model with an oscillating high-
reservoir temperature is considered herein. In this model, the
temperature of the hot reservoir is

TH(t) = T 0
H + ∆T sin(4πt),

while the temperature of the cold reservoir isTL(t) = T 0
L.

According to Ref. 39, the following parameters are set:
τ = 1 sec, tH = 0.5τ , T 0

H = 1200 K, T 0
L = 293.15 K,
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vH(t) = 1 when0 ≤ t ≤ tH vH(t) = 0 whentH < t ≤ τ ,
vL(t) = 0 when 0 ≤ t ≤ tH , and vL(t) = 1 when
tH < t ≤ τ . For the cases with different heat transfer laws,
one must change the values ofaHαH in order to generate
heat transfer rates that are comparable to each other for the
same temperature difference, soaHαH = aLαL = 100 W/K
are set for Newtonian heat transfer law [39], while

aHαH = aLαL = 3.52× 107WK

are set for the linear phenomenological heat transfer law.
The numerical calculations are developed in a MATLAB
environment, and the integral function ‘@quadl’ and the
error of 10−6 are chosen. Only cases that optimize two
different kinds of efficiencyη1 and η2 with the given
power outputP 0, i.e. problems 1 and 3, are considered
herein. P 0 = 0.8P̃max(0) is set. η1(0) is the value
of η1 evaluated at∆T = 0, and the Carnot efficiency is
ηc=1−T 0

L/(T 0
H+∆T ) [63].

Problem 1 is to minimizeψ1(λ1, λ̂2) with constraint
λ1 > 1. Figure 1 shows the function−τP 0/ψ1(λ1, λ̂2) ver-
susλ1 with the linear phenomenological heat transfer law.
From Fig. 1, one can see that the function−τP 0/ψ1(λ1, λ̂2)
has a minimum value with the growth ofλ1, and the low-
est point of the curve corresponding to different tempera-
ture ratios∆T/T 0

H is the corresponding maximum efficiency
η1(∆T ). Table I lists the comparison of the maximum effi-
ciencyη1 of the heat engines with two different heat transfer
laws. Both of the efficiency limitsη1(∆T ) of the two differ-
ent cases increase with the increase in the temperature ratio

TABLE I. Comparison of the maximum efficiencyη1 of the heat
engines with two different heat transfer laws.

—— q ∝ ∆T [39] q ∝ ∆(T−1) ——

∆T/T 0
H η1(∆T ) η1(∆T )/η1(0) η1(∆T ) η1(∆T )/η1(0) ηc

0.0000 0.6412 1.0000 0.7033 1.0000 0.7557

0.2000 0.6599 1.0292 0.7037 1.0006 0.7964

0.4000 0.7157 1.1161 0.7075 1.0060 0.8255

0.6000 0.8127 1.2674 0.7332 1.0425 0.8473

TABLE II. Comparison of the maximum efficiencyη2 of the heat
engines with two different heat transfer laws.

—— q ∝ ∆T [39] q ∝ ∆(T−1) ——

∆T/T 0
H η2(∆T ) η2(∆T )/η2(0) η2(∆T ) η2(∆T )/η2(0) ηc

0.0000 0.6412 1.0000 0.7033 1.0000 0.7557

0.2000 0.6599 1.0292 0.7037 1.0006 0.7964

0.4000 0.7099 1.1071 0.7062 1.0041 0.8255

0.6000 0.7568 1.1800 0.7224 1.0272 0.8473

FIGURE 1. The function−τP 0/ψ1(λ1, λ̂2) versusλ1 with the
linear phenomenological heat transfer law.

∆T/T 0
H . However, they are both smaller than Carnot effi-

ciencyηc of heat engines with hot reservoirs of constant tem-
peratureT 0

H . For the case with Newtonian heat transfer law,
the variation ofη1(∆T ) with the increase of∆T/T 0

H is dis-
tinct, andη1(∆T )/η1(0) = 1.2674 when∆T/T 0

H = 0.6.
For the case with the linear phenomenological heat transfer
law, the value ofη1(∆T ) varies little when∆T/T 0

H < 0.4,
i.e. the value ofη1(∆T )/η1(0) is less than1.01. When
∆T/T 0

H = 0.6, the corresponding value ofη1(∆T )/η1(0)
is just1.0425. This difference is due to different heat transfer
laws mainly, so it is very necessary to investigate the effects
of the heat transfer law on the efficiency limit of the irre-
versible heat engine.

Problem 3 is to minimizeφ3(λ1, λ2) − λ1τP 0 with the
constraintsλ1 > 1 andλ2 < 0. Table II lists a comparison of
the maximum efficiencyη2 of the heat engines with two dif-
ferent heat transfer laws. Comparing with the results listed
in Table I, one can see that the maximum efficiencyη2(∆T )
is equal toη1(∆T ) when the temperature ratio∆T/T 0

H is
small, but the former is smaller than the latter when∆T/T 0

H

is larger. This is evident, because the efficiencyη1 is related
to the net absorbed heatQH , while the efficiencyη2 is re-
lated to the practical absorbed heatQ+

H . With the increase of
the temperature variation∆T of the hot reservoir, the situa-
tion that part of the absorbed heat in the working fluid will
flow back to the hot reservoir occurs. As a result,QH is less
thanQ+

H .

5. Conclusion

On the basis of Ref. 39, this paper studies the maximum effi-
ciency of an irreversible heat engine with a distributed work-
ing fluid, in which heat transfers between the working fluid
and the heat reservoirs obey the linear phenomenological heat
transfer law [q ∝ ∆(T−1)]. Two kinds of efficiencies are
defined, and the problems are divided into three cases. Op-
timal control theory is used to determine the upper bounds
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of efficiencies of the heat engine for various cases, respec-
tively. Numerical examples of the two efficiencies for the ir-
reversible heat engine working between variable-temperature
reservoirs are given by numerical calculations, and the ef-
fects of changes of the reservoir’s temperature on the max-
imum efficiency of the heat engine are analyzed. The re-
sults show that these two different efficiencies are equal to
each other when the temperature variation of the hot reser-
voir is small, and when the temperature variation of the hot
reservoir is larger, the difference between these two differ-
ent efficiencies is large. The obtained results are also com-
pared with those obtained with the Newtonian heat transfer
law [q ∝ ∆(T )] [39]. The results show that heat transfer laws
have significant effects on the efficiency performance limit of
the irreversible heat engines. For the case with the Newtonian
heat transfer law, the efficiency performance limit is sensitive
to the temperature variation of the hot reservoir, while for the

case with the linear phenomenological heat transfer law, the
effects of temperature variation of the hot reservoir on the ef-
ficiency performance are relative smaller. In conclusion, it is
very necessary to investigate the effects of heat transfer laws
on the efficiency limit of the irreversible heat engine with a
distributed working fluid.
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