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A note on a traveling wave on an extensible capsule membrane
–with bending rigidity– in poiseuille flow
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We consider the effects of the bending rigidity of a capsule membrane convected by Poiseuille flow. We show numerically how the transition
from a “discoidal shape” to “V shape or cordial form” capsules is mediated by travelling waves responsible for the required change in
curvature. We show numerically that the wave velocity is an increasing function of both the rigidity of the membrane and the pressure
gradient. A qualitative explanation of the observation is given in terms of a Burger’s type equation for the curvature.

Keywords:Capsules; waves; Poiseuille flow.

Consideramos los efectos de la rigidez de doblez de una capsula convectada por el flujo de Poiseville. Demostramos numéricamente ćomo la
transicíon de una “forma discoide” a una tipo “V o cordial” de las cápsulas son mediante ondas viajeras responsables del cambio requerido
en curvatura. Demostramos numéricamente que la velocidad de onda es una función de aumento de la rigidez de la membrana y del gradiente
de presíon. Una explicacíon cualitativa del la observación se da en términos de una ecuación tipo Burger para la curvatura.

Descriptores:Cápsula; ondas; flujo de Poiseuille.

PACS: 46.40.-f; 83.50.-v

1. Introduction

The study of the behavior of capsules in Poiseuille flow has
received a great deal of attention due to the relevance to stud-
ies of the behavior of red cells in blood vessels. The contin-
uum models for the membrane stresses, including effects of
bending, have been proposed and studied for capsules in sim-
ple shear flow in the fundamental studies of Pozrikidis [1].

Subsequent simulations have been used to study the be-
havior of capsules in Poiseuille flow. In particular to bet-
ter understand the lateral migration of capsules in Poiseuille
flow, Doddi and Bagchi have presented a complete study [2]
with relevant references provided in this work. Recently, the
study of the change of shape of capsules has been undertaken
using, on one hand, particle dynamics –to describe the flow
field– and, on the other, a discrete description of the mem-
brane in terms of the energy of stretching and bending en-
ergies [3]. In these studies, a transition from discoidal to V
shaped capsules is documented. This depends on the flow
velocity and the bending rigidity of the membrane.

The present two-dimensional study is complementary in
several ways to the one mentioned above. In the first place,
using a continuum description of the membrane form, its de-
formation was studied in Poiseuille flow. For drops as well
as capsules, we find, as in [2], that two vortices form inside
the vesicles. For drops a high curvature static region on its
trailing edge is observed, with larger curvatures for higher
flow velocities. When bending effects are taken into account,
the high curvature region generates a traveling wave along
the membrane. This wave, as it travels along, separates the
regions of positive and negative curvature, leading ultimately

to the transition from discoidal configuration to the V-shape
observed experimentally and numerically in Ref. 3 to 5 for
capsules.

In this work it is shown numerically that the traveling
wave propagates with constant velocity along the capsule’s
membrane. The dependence of the velocity on the applied
pressure gradient and the extensibility of the capsule is stud-
ied. We can thus provide a qualitative explanation of the re-
sulting terms of a Burger’s type equation.

This Note is organized as follows. In the second section
we formulate the problem and describe the numerical solu-
tion. The third section is devoted to a description of the re-
sults whereas the last section provides the Conclusions.

2. Formulation of the problem and numerical
solutions

The problem of the two-dimensional motion of a drop or cap-
sule in a prescribed Poiseuille flow geometry –as shown in
Fig. 1– is presented, for the velocityu1 and pressurep1 fields
of the ambient —external— flow, andu2 and pressurep2

fields for the inner flow respectively. The flow is assumed to
be Stokes flow. The capsule is described by the moving curve
C(t), parametrized byx(s, t) with normaln. This surface re-
gion, enclosing regionΩ2 and shown in Fig. 1, satisfies the
kinematic conditions

dx(s, t)
dt

= u1 (x (s, t)) = u2 (x (s, t)) (1)
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FIGURE 1. Basic geometry.

The fluid inside the capsule —withinΩ2— satisfies the
Stokes equation:

ν2 ∆u2 = ∇p2,

∇ · u2 = 0. (2)

The ambient fluid satisfies Stokes flow equation inΩ1 for
the region outside the drop and between the parallel walls at
y = ±l namely:

ν1 ∆u1 = ∇p1,

∇ · u1 = 0. (3)

with u1 = 0 on y = ±l. Given that our interest is in the
motion of the drop or capsule in an imposed Poiseuille flow,
with velocity profile as shown in Fig. 1, then the boundary
condition is

u1 '
(

px

2µ

(
y2 − l2

)
, 0

)
as |x| → ∞, (4)

wherepx is the negative constant pressure gradient along the
flow to be satisfied. Boundary conditions at the interface
are specified by continuity of the velocity field —kinematic
condition— Eq. 1, and a prescribed jump in the normal
stresses which depend on the model for the mechanical prop-
erties of the interface.

The tension of the membrane or capsule, which is
parametrized by the arc-lengths, is given by

T = γ τ + qn, (5)

whereτ andn are the unit tangent and unit normal toC(t),
respectively. The functionγ is the elastic tension. The func-
tion q that accounts for the bending, withq = dm/ds, where
the bending moment, in the formm(s) = ρK(s), is related
to the local curvature of the vesicleK(s).

The stress balance on the interfaceC(t) gives for the
jump ∆f of the normal component of the fluid stress tensor
in the form:

∆f = −dT
ds

=
(

γ K(s)− ρ
d2K

ds2

)
n

−
(

ρ K
dK

ds
+

d γ

ds

)
τ. (6)

The latter equation closes the system for the evolution of the
interface. In the case of inextensible capsules,γ is taken as
a constant and corresponds to the surface tension, andρ is
taken to be zero because its rigidity is neglected. For cap-
sules, the bending moment contribution has a normal direc-
tion componentKss, which regularizes the termγ K when
large gradients ofK are present. This term will be shown to
be responsible for the traveling of the inflection point of the
curvature along the membrane.

In biological membranes [1], it is known thatγ may de-
pend on the state of compression or extension of the mem-
brane; this rate is given by consideringλs = ∂ S (s0, t) /∂s0,
which is the rate of extension relative to the initial reference
configuration parametrized bys0.

Takingγ = E(λs−1) gives an interfacial tension contri-
bution when the membrane is stretched, and a negative contri-
bution for compressed interfaces. At each point, and in order
to calculate the corresponding deformations, it is necessary
to knows0 = s0 (s, t) as a function of the position along the
current interface.

The equations to be solved are the fluid equations—(2)
and (3)—, coupled with the kinematic condition, (1), and the
dynamic equation, (6), respectively.

These equations are solved numerically using the bound-
ary integral formulation [8] reducing the problem to the so-
lution of an integral equation on the boundaryC(t), which
gives the velocities of the external fluid —u1 (x ∈ C(t))—
in terms of the imposed flow, and the jump in stress, which is
given by (5) in terms of the shape ofC(t).

3. Numerical solution

In this formulation we denote byG the Green’s Function for
the channel with zero boundary conditions on the walls. In
this case, for theG matrix we have:

G (x,x0) = −ln |x− x0|1

+
(x− x0) (x− x0)

|x− x0|2
+ Gw (x,x0) . (7)

Here,Gw (x,x0) is the sum of images needed to satisfy the
boundary condition of zero velocity at the walls. The third-
order traction tensor is also expressed in the form:

T (x,x0) = −4
(x− x0) (x− x0) (x− x0)

|x− x0|4

+ Tw (x,x0) . (8)

where(x = x− x0) Following the usual procedure [8-10] of
multiplying (2) and (3) by the Green’s functionG and inte-
grating by parts to transform the integrals into boundary in-
tegrals, which are subsequently evaluated using the boundary
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conditions, we obtain the integral equation for the velocity
u1 on the boundary of the vesicle in the form:

1 + λµ

2
u1 (x)− 1− λµ

4 π

∫

C

u1 (ξ) ·T (x, ξ) · n (ξ) dl (ξ)

= u∞ (x)− 1
4 πµ1

∫

C

∆f (ξ) ·G (x, ξ) dl (ξ) (9)

whereλµ is the ratio of viscosities forx ∈ C(t). When the
vesicle is small compared with the size of the channel, then
d/l ¿ 1, and the image contributions to the motion of the
drop are small;i.e., Gw (x,x0) andTw (x,x0) being smaller
than the leading term. The integral equation is solved rapidly
using this approximation.

Then given the initial curve,∆f is computed using (6).
The integral equation is solved and the velocity fieldu1 (x)
is obtained. This velocity is then used in the equation

dx
dt

= (u1 · n)n (10)

to advance the surface, and the process is repeated. The dis-
cretization of the integrals with arc segments as proposed
by [8] is used. The consistency of the method was checked
by doubling the number of segments with no appreciable
changes in the solution. The simulations show that the evo-
lution of the drop continues for long times without numerical
instabilities.

4. Results

We begin by considering the evolution of a drop with sizes
d = 1 inside a channel of sizel = 4. The nondimensional
pressure gradient of the Poiseuille flow ispx = 1 , the in-
terfacial tensionγ = 1, and this gives a capillary number
Ca = 0.5.

In Figs. 2a – 2c the time evolution of the drop is shown
for t = 0, t = 2, t = 3.5. Inside the drop, two vortices are
present. It is clear that the drop inverts the curvature at the
trailing edge.

FIGURE 2. The time evolution of the drop with a flow ofCa = 0.5. The curvature plots for (a)t = 0, (b) t = 0.1875, and (c)t = 1.7425
–after the first arc segment reaches a curvature of zero– show a small invasion of the region of negative curvature when the steady state in
(c) is obtained. (d) shows the rapid transient leading to the steady state with small deformation.
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The curvature is plotted as a function of the arc-length
parameter. We observe in the trailing edge a region in the
center where the curvature changes sign. This region then
expands. The zero curvature value indicates the position of
the position of the curvature front along the back end of the
drop. In Fig. 2c the position of the front is shown as a func-
tion of time. It also shows that the negative curvature region
grows and rapidly settles (at least numerically) to an asymp-
totic state.

We can give a qualitative explanation of this evolution by
obtaining a simplified equation for the evolution of the cur-
vature as follows. To obtainu1, the first iterate is used as an
approximation to the solution of the integral equation such
that

u1 (x (s, t)) .= u∞ (x (s, t))

− 1
4 πµ1

∫

C

∆f ·G (x, ξ) dl (ξ) . (11)

The integral is approximated with the mean value to obtain

u1 (x (s, t)) .= u∞ (x (s, t))

− 1
4 πµ1

∆f (x(t))
∫

C(t)

G (x, ξ) dl (ξ) . (12)

For the case of a drop,i.e., ∆f(x(s, t)) = K n, the approxi-
mate equation for the evolution of the boundary is:

dx (s, t)
dt

= u∞ (x (s, t)) + h (t) K (s, t) n (s, t) , (13)

where

h (t) =
∫

C

G (x, ξ) dl (ξ) .

Now, from (13) an equation for the curvature can be ob-
tained. To this end, recall thatK(s, t) = (τ̇ · τ̇)1/2, whereτ
is the unit tangent vectorτ = xs, wheres is the arc-length.

Usingτs = K n, the evolution of the curvature is

d K

dt
=

1
K

xss · xsst = n · xsst. (14)

The evolution ofxss is obtained by differentiation of
Eq. (13). After usingṅ = −K τs in (14), the evolution for
the curvature is given by:

d K

dt
= n · u∞ (x)ss

+ h (t) n · (Kssn−K3n−KKsτ
)

(15)

Notice that (15) coupled witḣτ = K n andṅ = −K τ
gives a closed set of equations since the termu∞ (x)ss as a
nonlocal function ofτ andn. Notice that the hyperbolic term
KKsτ is absent becausen · τ = 0. Then, if solutions with
large gradients are considered, the dominant term in (15) is
just the diffusion equation. Thus, it shows that changes in

curvature do not propagate along the membrane. Thus, in
this regime the balance is localized. As time evolves a cusp
develops towards the interior of the drop, in a process similar
to the one described in Ref 7, the latter being generated at the

FIGURE 3. The time evolution of a capsule withE = 0.5, ρ = 1,
and a flow ofCa = 0.5. The inserts show the form of the capsule
whereas the curvature plots show the invasion of the region of neg-
ative curvature into the membrane deforming the capsule. Capsule
forms after onset of negative curvature at (a)t = 0, (b) t = 0.1675,
and (c)t = 0.335.
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FIGURE 4. Plots of the wave front position as a function of time
for Ca = 0.5, ρ = 1, and different extensibility by changing the
pressure gradient of the flow. HereΓ = px/2µ, and curve (a)
Γ = 0.1, E = 0.2; (b) Γ = 0.25, E = 0.5; (c) Γ = 0.5, E = 1.0;
and (d)Γ = 0.75, E = 1.5. The insert shows that the evolu-
tion arc is self-similar provided that the time is scaled within the
corresponding shear rate.

FIGURE 5. Evolution of the front for different values of the cap-
sule rigidity and different capillary number of the flow. The pa-
rameters are:ρ = 1, and the values for (a)Ca = 0.25, E = 2.0;
(b) Ca = 0.5, E = 1.0; (c) Ca = 0.75, E = 0.667; and (d)
Ca = 5.0, E = 0.1.

free interface of fluid-air by a slightly immersed vortex dipole
in the highly viscous liquid. The inner flow of the capsule is
also generated by a vortex dipole.

Now, the effects of the extensibility of the membrane are
considered. To this end, Fig. 3 displays the evolution of a
capsule with bending momentρ = 1, extensibility parameter
E = 0.5 andCa = 0.5. A relatively rapid propagation of the
region of negative curvature can be observed, which is gen-
erated —as in the case of drops— by the inner vortices in the
upper and lower portion of the capsule. This invasion front
disturbs substantially the capsule due to the finite extensibil-
ity.

This curvature front (which is absent in drops) travels
with an almost constant speed along the membrane. This
markedly different behavior is due to both the membrane ex-
tensibility and the presence of the bending moment, which

acts as a regularization for the evolution of the curvature
while preventing the formation of sharply turning interfaces.
Also, for the extensible capsule the curvature of the traveling
wave does not increase after the capsule, has been bent.

Figure 4 details the evolution of the fronts for different
pressure gradients with a constant capillary number as shown
in the figure. Larger pressure gradients produce faster motion
of the fronts. It can be also observed that the motion is self-
similar with the same asymptotic shape provided that time is
scaled with the corresponding shear rate.

Finally, we studied the behavior of the front as a function
of the rigidity E for constant values of the flow. It can be
observed that the front travels faster with larger values of the
rigidity. These results are displayed in Fig. 5.

These effects can be explained qualitatively as before
considering in the derivation of (14) those effects due to the
extensibility and the bending moments. The same argument
used for the drop is readily modified using an appropriate
∆f(x(t)) for the capsule. In this case, the most nonsingular
terms give:

dx (s, t)
dt

= h (t) {λ (s, t) K + ρKss}n (s, t) , (16)

where now the local extensionλ(s, t) is no longer constant.
Again, the same procedure gives a diffusion equation with a
hyperbolic term, which comes fromλs. Thus,

dK(s, t)
dt

=h(t) {Eλss (s, t)KKs−λKss−ρKssss} . (17)

This equation —that to leading order is Burges Equation
with variable coefficients— sustains traveling fronts that are
regularized shocks of the nonlinear hyperbolic equation. The
solution of the equation demonstrate that as the rigidityE
increasesE λss also grows, giving a larger speed of propaga-
tion of the front as shown in Fig. 5. The results of Fig. 4 can
be explained as follows: as the flow increases, the inner cor-
tices become stronger and the curvature perturbation is larger
as well. The perturbation of the membrane decouples from
the flow and evolves according to Burges’ equation. In this
case, larger perturbations travel faster and this explains the
results of Fig. 4. It is to be noted that the wiggly behavior of
the curves is an effect of the discretization and the fact that a
term of fourth-order derivatives of the curvature needs to be
resolved.

5. Conclusions

In this study we found that capsules do sustain traveling
waves of bending along their membrane while subjected to
Poiseuille flow. The waves originate from the curvature gra-
dient of the trailing edge of the vesicle, which is balanced by
the extensibility of the membrane and the bending moment,
producing a wave of diffusion of curvature. We also obtained
that the velocity of the curvature wave increases with the
pressure gradient, and with the rigidity. This type of behavior
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was qualitatively explained in terms of a drastic approxima-
tion leading to a nonlinear advection–diffusion equation for
the curvature, which accounts for all the observed features.
However, to obtain the precise information, the detailed nu-
merical study is required.

Acknowledgments

We thank PROFIP-DGAPA of UNAM for their continued
support and encouragement, as well as CONACyT for fund-
ing of this research work.

1. C. Pozrikidis,The IMA Volumes in Mathematics and Its Appli-
cations221(2001) 189.

2. S.K. Doddi and P. Bagchi,International J. of Multiphase Flow
34 (2008) 966.

3. Tsorng-Whay Pan and T. Wang,International J. of Numerical
Analysis and Modeling6 (2009) 455.

4. H. Noguchi and G. Gompper,Proc. National Academy of Sci-
ences102(2005) 14159.

5. V. Vitkova, M. Mader, and T. Podgorski,Europhys. Lett.68
(2004) 398.

6. J.J. Herrera, A.A. Minzoni, and R. Ondarza,Physica D57
(1992) 249.

7. Y.D. Shikhmurzaev,Capillary flows with forming interfaces
(Chapman & Hall/CRC 2008).

8. C. Pozrikidis,Boundary Integral and Singular Methods for Lin-
earized Viscous Flow(Cambridge Univ. Press, USA. 1992).

9. C. Pozrikidis,A Practical Guide to Boundary Element Methods
with the Software Library BEMLIB(Chapman-Hall/CRC Press,
USA. 2002).

10. L. Gary Leal, Advanced Transport Phenomena. (Cambridge
Univ. Press, USA. 2007).

Rev. Mex. F́ıs. 56 (3) (2010) 239–244


