INVESTIGACION REVISTA MEXICANA DE FISICA 56 (4) 281286 AGOSTO 2010

Analysis of thew phase-shifts obtained in the Fourier spectra of phase gratings
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As it is very well known, the Fourier coefficients of only-phase gratings are Bessel functions of the first kind of integer order. Because the
values of these real-valued functions oscillate around zero, they can adopt negative values, thereby producing phaséehifeeofsome
diffraction orders. To better understand the practical implications of this effect, in this work the phase shifts in the Fourier spectra of several
phase gratings and grids are numerically found in order to compare them with experimental phase shifts. These experimental shifts induce
changes in the modulation of the interference fringes formed by grating (or grid) interferometers when placing two windows at object plane
of the system. Measurements of the changes in the interferograms are presented.
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Es conocido, que los coeficientes de Fourier de rejillas de fase son funciones de Bessel de la primera clase de orden entero. Ya que los valor
de estas funciones reales oscilan alrededor de cero, entonces pueden adoptar valores negativos, de tal manera que pueden producir cami
de fase der entre alguno$rdenes de difracon. Para entender mejor las implicacionesgticas de este efecto, en este trabajo se encuentran
numéricamente los corrimientos de fase en el espectro de Fourier de varias rejillas y mallas de fase y son comparadas con los corrimiento
de fase experimentales. Estos corrimientos de fase inducen cambios en la nboddéefrainjas de los patrones de interferencia formados

por interfebmetros de rejilla (0 malla) al colocar dos ventanas en el plano del objeto del sistema. Se presentan mediciones de los cambios
surgidos en los interferogramas.

Descriptores: Difraccion; rejillas de fase; corrimiento de fase; interferongtaralisis de franjas; funciones de Bessel.
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1. Introduction shifts have to be taken into account for the overall perfor-
mance of the system and can influence its design even with

Phase gratings have been employed as an optical elemepfactical advantages [10]. This note is aimed at the phase
with more diffraction efficiency than absorption gratings to changes between diffraction orders that have been observed

perform a variety of tasks. Among them we find splitting I the Fpurier spectra of.a_phase grating. To §how the variety
for interferometry, intensity measuring [1] and optical shop®f Fourier spectra that it is possible to attain, some exam-
testing [2,3]. The performance of phase gratings depend@'es of SInUSO_IdaI phc'_slse gratings are calcul_ated with a stan-
strongly upon their Fourier spectra. The case of sinusoidsfard FFT routine. This Woyld serve for the interpretation of
phase grating has been discussed for a long time [4], so it i§'® €xperimental observations reported. Because some ex-
well known that its Fourier coefficients are Bessel functionsP€rimental consequences of phase shifts appear also in phase
of the first kind of integer orde, J, [5]. Such functions grlds, the correspoqdmg discussion fprsmusmdal phase g'rat—
are real valued and their values oscillate around zero; hendg89S fO”QWS- E_xperlmental observations in agreement with
they can introducer phase-shifts in a given grating Fourier € previous discussions are then shown by using commer-
spectrum. These shifts are of little relevance, if any, to ap€i@l phase gratings.

plications where the power spectrum results as the main con-

cern, as is often the case in spectroscopy [6]. But recently i2. Basic considerations

has been pointed out that a grating interferometer with two

windows at the object plane performs as a common path inA TWPG is depicted in Fig. 1. Basically, it consists of a
terferometer [7]. Several advantages have been shown, sudlf Fourier optical system, beinfj the focal length of each

as its mechanical stability [8,9]. Two-window phase-gratingtransforming lens. lllumination comes from¥a/’ O, laser
interferometers (TWPG) are based on the interference beperating at 532 nm. Two window#\ (and B) are placed
tween neighboring diffraction orders [7]. Thus, the fringe at the object planex y), while a periodic phase-only trans-
contrast of each interference pattern can be affected whemittanceG (u/\f,v/Af) is placed at the frequency plane

7w phase-shifts are presented [10]. Furthermore, these phaée v). Then,u and( are the frequency coordinates scaled
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to the wavelength and the focal length. At the plane, (@), oLy
the period ofG is denoted byi, and its spatial frequency by " ’ ' ‘
o = 1/d. Two neighboring diffraction orders thus have a dis- 0 A
tance ofX, = Af/d atthe image plane. Thea; u = Xg- p. m‘% ;
v B
2.1. Sinusoidal phase gratings :
£y} Gl t{xyl

The complex amplitude of a plane, sinusoidal phase grating
placed at the Fourier plane of & 8ystem can be expressed as Figure 1. TWPG with phase periodic elemefitof period Xo.

Gl(u, C) — eiQﬂ"-Ag sin[27 Xop]

3. Two-window phase-grating interferometry:
interference-pattern contrasts and modula-
tion

= > J(2mAg)e*mor, 1)

g=—00

with 2w A, being the grating phase amplitude aug the
Bessel function of the first kind of integer ordger The  phase grating interferometry is based on a phase grating
Fourier transform of Eqg. (1) is then given by placed as the pupil of af4Fourier optical system [7-11]. The
- use of two windows at the object plane in conjunction with
5 _ - phase grating interferometry allows interference between the
Gula,y) = Z Ta(2m44)0(@ = aXo,y) @ optical fields associated to each window with higher diffrac-
tion efficiency [7,10,11]. Such a system performs as a com-
with &(x,y) being the two-dimensional Dirac delta function. mon path interferometer (Fig. 1). A convenient window pair
Thus, the Fourier spectrum of a sinusoidal phase grating confor @ grating interferometer implies an amplitude transmit-
prises point-like diffraction orders of amplitude weighted by tance given by
Bessel functions. Such spectrum can be detected at the image

g=—00

plane of the 4 system. ti(x,y) = w (x + %,y) +w (x — %’y) , (5
2.2. Phase grids wherez, is the separation from center to center between two

rectangular windows. One rectangular aperturg;, y), can
A sinusoidal phase grid can be generated by the multiplipe written asv(z,y) = rect[z/a] - rect[y/b], and the second
cation of two sinusoidal phase gratings whose respectivene asw’(z,y) = w(x,y)exp{id(z,y)}, while a relative
grating vectors are forming an angle of 90 degrees. Takingbject phase is described with the functig(a:, ). As shown
the rulings of one grating along they” direction, and the in Fig. 2, andb represent the side lengths of each window
rulings of the second grating along th¢™direction, the re- (A andB). Placing a grating of spatial periafl = \f/X,

sulting phase grid can be written as at the Fourier plane, the corresponding transmittance is given
} _ ‘ } by G1(u, ¢). The image formed by the system consists ba-
Ga(p, Q) = €2 Ao s Xeul gi2m Ay sinf2n Xy (] (3) sically of replications of each window at distanc¥s, that
. oo is, the convolutior(x) of ¢, (z, y) with the point spread func-
_ Z Jq(27rAg)e2”‘1X°“ Z JT(QWAg)eQW"X"g, ]Eio"n of the system, defined ', («, y). This results into the
q=—00 r=—00 oliowing

where the frequencies along each axes directions are takent Lz, y) = ti(z, y) * é1(£ v)
asX, = X, = Xo. By convolving the Fourier transform ’ ’ ’

of both gratlngs, the Fourier transform of the phase grid be-
comes Z J(2mAg)w ( ,y) x0(x — qXo,y)
gq=—00
Z Z Jq(2mAg)Jr(2mAg) + Z Jg(2m A )w'’ (m — %,y) *8(z — qXo,y).
g=—00 r=—00 g=——o0
x 6(x — qXo,y —rXo), 4)

By adding the termg andq — 1 [both located within the
which are point-like diffraction orders distributed on the same replicated window (z — X,[¢ — 1/2],y)], and for the
image plane on the nodes of a lattice with a period given bycase of matching the windows positions with the diffraction
the valueX,. order positions Xo=x¢ ), the previous equation simplifies to
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TABLE |. Bessel coefficients sign relations of superimposed orders. Casaof) = 0.

FIGURE 2. Amplitude of diffraction orders in the image plane of a
TWPG resulting from a window displacement-fc /2. Window

qu Jo+J_1=Jyo— J1 q:fl J1+Jo=—J +Jo
g=1 J1+Jo qg= -2 JoodtJ as=Js—Js
q=2 Jo+ 1 qg= -3 JatJd a=—Js+Js
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tr(ey) = Y [Ja@rAg)w (z — wolg —1/2],y)]

g=—00

+ 30 [Jar(emay)eidtemlat/2

g=—00

xw (e —20lg = 1/2.9) |- (6)

Thus, an interference pattern between fields associated to
each window must appear within each replicated window.
The fringe modulationn, of each pattern would be of the
form

2Jydg

=5 (7
J2+J2

Mg
3.1. =-shifts of the Fourier spectra of sinusoidal phase
gratings

According to Eq. (7), the modulation of each interference
pattern depends on the relative phaseg,aind.J,_;. Thus,
the signs of/, are also relevant. For the casegdfr, y) = 0,
this relation is shown in Table | for some caseg.ofFor cases

of ¢ = 0,—1,—2,—-3,—4, a negative contrast is expected;
otherwise, it would be positive.

The interference pattern contrast is positive for one half of
the diffraction orders if the grating’s Fourier coefficients are
all positive forq > 0, whereas the other half will show alter-
nating contrasts due to the odd parity.Bf.;. These results
can also be depicted as in Fig. 2, where only the diffraction
orders from a given grating are separately shown as displaced
from the origin due to the respective displacement of win-
dowsA andB (first two plots from above the top). The case

FIGURE 3. Fourier spectra of phase gratings: left column, Bessel Of J1 < 0 is shown. F_Or simp_licity, the replicgtgd windows
region (first seven Bessel functions shown), right column, gratingare not plotted. The third row in the graph exhibits the super-
spectra.

position of the two previous spectra. Contrast changes appear
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in both halves of the image plane. The expected signs of eachhis situation corresponds to a region within 9té lobule
fringe contrast in this case would be +,-,-,-,+,+,+,- from leftof Jy. The varieties of shifts suggested by the previous sim-
to right. ulations are in agreement with Eq. (7). When using this type
of gratings in a TWPG, the corresponding interference con-
3.2. Some examples of calculated Fourier spectra: sinu- trast around each diffraction order can be obtained with plots
soidal phase gratings similar to the ones in Fig. 2.

In order to show some cases of phase-shifts in grating spec-

tra, several fast Fourier transforms have been calculated for

gratings of different phase amplituddg. We use the lobules 3.3, r-shifts of the Fourier spectra of sinusoidal phase
of J, as a reference to indicate the Bessel region within grids

which the amplitudel,, of the corresponding phase grating is

to be found. Only seven Bessel functions are shown in Fig.
In the first case, within the first lobule of,, the associated
spectrum results with one half of its Fourier components i
phase, while the other half show phase shifts @f an alter-
nating way. In this regionJ, is positive and in phase with the
Fourier components of the first half above mentioned. For th

second case], is negative. Taking a value of, such that . _ . : _
the Bessel functions with = 1...6 adopt only SOSitive val- N9 diffraction orders of index paif n. orm, 0. Then, order

ues, the Fourier spectrum of the resulting grating turn out té)’o IS Iocateq at the |ntersept|on of these regions. Several
be similar to the first casel, being negative as the only dif- possible configurations of windows can be considered for a

ferent phase shift. Within th&¢ lobule, it is possible to pick PFIIVPG' Tvx:jo oftthdesbe conﬁg(;;;/?/UonsRare shtgwnC;n Fllg' 5b.
up negative values fay = 1, 2, 3, the resulting Fourier spec- <Y aré denote V1 and ;. Respective displace-
trum showingr-shifts accordingly. In Fig. 4 we show a case ments of diffraction patterns are also indicated with displaced

of positive values fog = 1,2, 3, and negative fog = 4,5. dashed lines.

3A rectangular phase grid can be generated with two phase
rTgratings of equal spatial frequency. Fig. 5a depicts the signs
of the diffraction orders of a grid made up from two crossed

gratings having spectra as the one in Fig. 2. Positive signs
are denoted with hollow circles, whereas negative signs are
marked with crosses. The dashed lines form regions enclos-

For the case of phase grids with windows in configuration
|  Ws, the image can be written as:

oo o0

~ xT X
tfg(CC,y) = tQ(Iay) * GQ(Iay) = Z Z w (I + ?O7y + g) * J(I(27TA9)JT(27TA9)5(I - qX07y - TXO)

gq=—00 r=—00

o [e'e} zo 1‘0
LZDO r;oo W (= Gy = ) T2 AT (2mA )8 (e — aXoy = rXo),
Again, with Xy = z
o0 o0 . .
tra(w,y) = Z Z Jg(2mAg)Jr (2T Ag)w (m + ?0[1 - 2q],y + ?0[1 - 2r]) (8)

q=—00 r=—00

9] o) o o
x /Z /Z Ty (21 Ag) s (21 Ay’ (x + D+ y+ P+ 27»’]) .
q'=—ocor'=—

where

i) Zo ’ i) Zo
t y = ( -+ —, 7) ( — , ) .
2(1’ y) wl\xT Yy + +w (x y

With ¢’ = ¢ — 1,7/ = r — 1, this result simplifies to

tpa(z,y)= > Y. [Jq(QwAg)JT(QwAg)+Jq,l(QWAQ)JT,l(QWAg)eW*wo[Q*1/217y*w0[“1/21> 9)
gq=—00T=—00
x w(x —xolg — 1/2],y — xo[r — 1/2]).
Similarly as for gratings, the fringe modulation of the interference pattern within a window centered in
(zolg — 1/2], zo[r — 1/2]) is
2JgJg—1JdrJr1

(Jg )2 + (Jyo1Jr1)? (10)

Mgr =
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TABLE Il. Phase shifts measured of experimental patterns of Fig.6 according to the method from Kreis.

shifts(rad)
steps g 01 02 Os O Os 9 g7
(Standar steps
is ) 0 3.150 3.130 3.510 0.005 0.014 0.008 3.154
A B
VEREORARSE OOKRE (g @ Q) 30) TaBLE Ill. Phase shifts measured of experimental patterns of
RROIJVIDEOOHEOS RO Qa @ : Fig. 7 according to the method from Kreis (square in dashed lines).
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FIGURE 5. a) 7-

(b)

phase distribution of diffraction orders of grids.
b) TWPG order superpositions: Configuratitiry :
pattern signs for displaced windows along the x-axis. Configura-

interference

FIGURE 7. Experlmental patterns for a phase-grid (composite
image, windows configuratioi).

4. Experimental testing of the phase-shifts in
phase gratings and phase grids

tion W7 interference patterns signs for displaced windows along a

line at 45.

Figure 6 shows the superposition of Fourier amplitude spec-
tra under windows configuratidiv; for a phase grating with

110 lines/mm. The contrast of the corresponding experimen-
tal interference patterns can be interpreted as if its first four
Fourier coefficients had phase relations as the ones sketched
in Fig. 4. They were obtained with the system in Fig. 1.
Two different situations are depicted, one on the upper row
(a small tilt in one window) and another on the lower row
(oil on glass). The patterns show the relative phases of the
diffraction orders discussed in previous sections (modulation

FIGURE 6. Two experimental sets of interferograms with a phase- with signs +,-,-,-,+,+,+,- from left to right). The phase-shifted

grating.

steps of the experimental fringe patterns can be calculated by
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applying the algorithm proposed by Kreis [12]. The resultingsented. These shifts are not discussed in the literature as far
mean values for the upper row of interferograms are showias we know. The usual focus on the power spectrum tends to
in Table Il. It can be seen from the table that they depart byhide the effect, but it can be of considerable relevance when
small amounts fromr or 0. using gratings or grids for interferometric applications, for
For the case of the diffraction orders belonging to aexample: in phase shift interferometry, these results are con-
phase-grid constructed with two crossed gratings of equal frevenient since only one grating displacement is necessary to
guency, the corresponding interference patterns are shown gapture four interferograms and for the case of polarization
Fig. 7 for windows configuratio?,. Each grating gives phase shifting interferometry, the characteristics of the phase
patterns as in Fig. 6 when placed in the system of Fig. lgratings under study simplify the placement of polarization
The whole image is a composite image because patterns €ifters and allow us to obtain at-patterns in one shot with
higher order have low intensities. The contrasts are in agreexdjustable phase shift.
ment with the conclusions derived from Fig. 5. The rela-
tive phase values of the 16 patterns shown within the squarg
drawn with dashed lines in the patterns of Fig. 7 employing
the method from Kreis can be seen in Table lll. Configurationaythors thank M.A.Ruiz Berganza for his contribution in

W1 gives pattern contrasts in agreement with Fig. 5b (theyyroofreading the manuscript. Enlightening comments and
are not shown). The use of a grid as a beam divider having agferences from anonymous referees are also acknowledged.
a result several interferograms resembles some shearing ifyne of the authors (NITA) occupies a postdoctoral position
terferometers proposed earlier [13], but ours is not a shearing; c|0 and expresses sincere appreciation to Luisa, Miguel,
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Fourier spectra of phase gratings and phase grids were pre-
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