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Analysis of theπ phase-shifts obtained in the Fourier spectra of phase gratings
and grids by using two-window grating interferometry
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As it is very well known, the Fourier coefficients of only-phase gratings are Bessel functions of the first kind of integer order. Because the
values of these real-valued functions oscillate around zero, they can adopt negative values, thereby producing phase shifts ofπ between some
diffraction orders. To better understand the practical implications of this effect, in this work the phase shifts in the Fourier spectra of several
phase gratings and grids are numerically found in order to compare them with experimental phase shifts. These experimental shifts induce
changes in the modulation of the interference fringes formed by grating (or grid) interferometers when placing two windows at object plane
of the system. Measurements of the changes in the interferograms are presented.
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Es conocido, que los coeficientes de Fourier de rejillas de fase son funciones de Bessel de la primera clase de orden entero. Ya que los valores
de estas funciones reales oscilan alrededor de cero, entonces pueden adoptar valores negativos, de tal manera que pueden producir cambios
de fase deπ entre algunośordenes de difracción. Para entender mejor las implicaciones prácticas de este efecto, en este trabajo se encuentran
numéricamente los corrimientos de fase en el espectro de Fourier de varias rejillas y mallas de fase y son comparadas con los corrimientos
de fase experimentales. Estos corrimientos de fase inducen cambios en la modulación de franjas de los patrones de interferencia formados
por interfeŕometros de rejilla (o malla) al colocar dos ventanas en el plano del objeto del sistema. Se presentan mediciones de los cambios
surgidos en los interferogramas.

Descriptores: Difracción; rejillas de fase; corrimiento de fase; interferometrı́a; ańalisis de franjas; funciones de Bessel.

PACS: 42.87.Bg; 42.79.Ci; 42.79.Dj; 42.15.Eq; 42.25.Hz; 07.05.Pj

1. Introduction

Phase gratings have been employed as an optical element
with more diffraction efficiency than absorption gratings to
perform a variety of tasks. Among them we find splitting
for interferometry, intensity measuring [1] and optical shop
testing [2,3]. The performance of phase gratings depends
strongly upon their Fourier spectra. The case of sinusoidal
phase grating has been discussed for a long time [4], so it is
well known that its Fourier coefficients are Bessel functions
of the first kind of integer orderq, Jq [5]. Such functions
are real valued and their values oscillate around zero; hence
they can introduceπ phase-shifts in a given grating Fourier
spectrum. These shifts are of little relevance, if any, to ap-
plications where the power spectrum results as the main con-
cern, as is often the case in spectroscopy [6]. But recently it
has been pointed out that a grating interferometer with two
windows at the object plane performs as a common path in-
terferometer [7]. Several advantages have been shown, such
as its mechanical stability [8,9]. Two-window phase-grating
interferometers (TWPG) are based on the interference be-
tween neighboring diffraction orders [7]. Thus, the fringe
contrast of each interference pattern can be affected when
π phase-shifts are presented [10]. Furthermore, these phase

shifts have to be taken into account for the overall perfor-
mance of the system and can influence its design even with
practical advantages [10]. This note is aimed at the phase
changes between diffraction orders that have been observed
in the Fourier spectra of a phase grating. To show the variety
of Fourier spectra that it is possible to attain, some exam-
ples of sinusoidal phase gratings are calculated with a stan-
dard FFT routine. This would serve for the interpretation of
the experimental observations reported. Because some ex-
perimental consequences of phase shifts appear also in phase
grids, the corresponding discussion for sinusoidal phase grat-
ings follows. Experimental observations in agreement with
the previous discussions are then shown by using commer-
cial phase gratings.

2. Basic considerations

A TWPG is depicted in Fig. 1. Basically, it consists of a
4f Fourier optical system, beingf the focal length of each
transforming lens. Illumination comes from aY V O4 laser
operating at 532 nm. Two windows (A and B) are placed
at the object plane (x, y), while a periodic phase-only trans-
mittanceG (u/λf, v/λf) is placed at the frequency plane
(u, v). Then,µ andζ are the frequency coordinates scaled
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to the wavelengthλ and the focal length. At the plane (u, v),
the period ofG is denoted byd, and its spatial frequency by
σ = 1/d. Two neighboring diffraction orders thus have a dis-
tance ofX0 = λf/d at the image plane. Then,σ ·u = X0 ·µ.

2.1. Sinusoidal phase gratings

The complex amplitude of a plane, sinusoidal phase grating
placed at the Fourier plane of a 4f system can be expressed as

G1(µ, ζ) = ei2π·Ag sin[2πX0µ]

=
∞∑

q=−∞
Jq(2πAg)e2πqX0µ, (1)

with 2πAg being the grating phase amplitude andJq the
Bessel function of the first kind of integer orderq. The
Fourier transform of Eq. (1) is then given by

G̃1(x, y) =
∞∑

q=−∞
Jq(2πAg)δ(x− qX0, y), (2)

with δ(x, y) being the two-dimensional Dirac delta function.
Thus, the Fourier spectrum of a sinusoidal phase grating com-
prises point-like diffraction orders of amplitude weighted by
Bessel functions. Such spectrum can be detected at the image
plane of the 4f system.

2.2. Phase grids

A sinusoidal phase grid can be generated by the multipli-
cation of two sinusoidal phase gratings whose respective
grating vectors are forming an angle of 90 degrees. Taking
the rulings of one grating along the “µ” direction, and the
rulings of the second grating along the “ζ” direction, the re-
sulting phase grid can be written as

G2(µ, ζ) = ei2π·Ag sin[2πXxµ]ei2π·Ag sin[2πXyζ] (3)

=
∞∑

q=−∞
Jq(2πAg)e2πqX0µ

∞∑
r=−∞

Jr(2πAg)e2πrX0ζ ,

where the frequencies along each axes directions are taken
asXx = Xy = X0. By convolving the Fourier transform
of both gratings, the Fourier transform of the phase grid be-
comes

G̃2(x, y) =
∞∑

q=−∞

∞∑
r=−∞

Jq(2πAg)Jr(2πAg)

× δ(x− qX0, y − rX0), (4)

which are point-like diffraction orders distributed on the
image plane on the nodes of a lattice with a period given by
the valueX0.

FIGURE 1. TWPG with phase periodic elementG of periodX0.

3. Two-window phase-grating interferometry:
interference-pattern contrasts and modula-
tion

Phase grating interferometry is based on a phase grating
placed as the pupil of a 4f Fourier optical system [7-11]. The
use of two windows at the object plane in conjunction with
phase grating interferometry allows interference between the
optical fields associated to each window with higher diffrac-
tion efficiency [7,10,11]. Such a system performs as a com-
mon path interferometer (Fig. 1). A convenient window pair
for a grating interferometer implies an amplitude transmit-
tance given by

t1(x, y) = w
(
x +

x0

2
, y

)
+ w′

(
x− x0

2
, y

)
, (5)

wherex0 is the separation from center to center between two
rectangular windows. One rectangular aperture,w(x, y), can
be written asw(x, y) = rect[x/a] · rect[y/b], and the second
one asw′(x, y) = w(x, y) exp{iφ(x, y)}, while a relative
object phase is described with the functionφ(x, y). As shown
in Fig. 2,a andb represent the side lengths of each window
(A andB). Placing a grating of spatial periodd = λf/X0

at the Fourier plane, the corresponding transmittance is given
by G1(µ, ζ). The image formed by the system consists ba-
sically of replications of each window at distancesX0, that
is, the convolution(∗) of t1(x, y) with the point spread func-
tion of the system, defined bỹG1(x, y). This results into the
following

tf1(x, y) = t1(x, y) ∗ G̃1(x, y)

=
∞∑

q=−∞
Jq(2πAg)w

(
x +

x0

2
, y

)
∗ δ(x− qX0, y)

+
∞∑

q=−∞
Jq(2πAg)w′

(
x− x0

2
, y

)
∗ δ(x− qX0, y).

By adding the termsq andq − 1 [both located within the
same replicated windoww(x−X0[q − 1/2], y)], and for the
case of matching the windows positions with the diffraction
order positions (X0=x0 ), the previous equation simplifies to
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TABLE I. Bessel coefficients sign relations of superimposed orders. Case ofφ(x, y) = 0.

q = 0 J0 + J−1 = J0 − J1 q = −1 J−1 + J−2 = −J1 + J2

q = 1 J1 + J0 q = −2 J−2 + J−3 = J2 − J3

q = 2 J2 + J1 q = −3 J−3 + J−4 = −J3 + J4

q = 3 J3 + J2 q = −4 J−4 + J−5 = J4 − J5

FIGURE 2. Amplitude of diffraction orders in the image plane of a
TWPG resulting from a window displacement of±x0/2. Window
geometry (upper left).

FIGURE 3. Fourier spectra of phase gratings: left column, Bessel
region (first seven Bessel functions shown), right column, grating
spectra.

FIGURE 4. Fourier spectrum of a phase grating. Case: ninth lobule.

tf1(x, y) =
∞∑

q=−∞
[Jq(2πAg)w (x− x0[q − 1/2], y)]

+
∞∑

q=−∞

[
Jq−1(2πAg)eiφ(x−x0[q−1/2],y)

× w (x− x0[q − 1/2], y)
]
. (6)

Thus, an interference pattern between fields associated to
each window must appear within each replicated window.
The fringe modulationmq of each pattern would be of the
form

mq =
2JqJq−1

J2
q + J2

q−1

. (7)

3.1. π-shifts of the Fourier spectra of sinusoidal phase
gratings

According to Eq. (7), the modulation of each interference
pattern depends on the relative phases ofJq andJq−1. Thus,
the signs ofJq are also relevant. For the case ofφ(x, y) = 0,
this relation is shown in Table I for some cases ofq. For cases
of q = 0,−1,−2,−3,−4, a negative contrast is expected;
otherwise, it would be positive.

The interference pattern contrast is positive for one half of
the diffraction orders if the grating’s Fourier coefficients are
all positive forq > 0, whereas the other half will show alter-
nating contrasts due to the odd parity ofJ2q+1. These results
can also be depicted as in Fig. 2, where only the diffraction
orders from a given grating are separately shown as displaced
from the origin due to the respective displacement of win-
dowsA andB (first two plots from above the top). The case
of J4 < 0 is shown. For simplicity, the replicated windows
are not plotted. The third row in the graph exhibits the super-
position of the two previous spectra. Contrast changes appear
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in both halves of the image plane. The expected signs of each
fringe contrast in this case would be +,-,-,-,+,+,+,- from left
to right.

3.2. Some examples of calculated Fourier spectra: sinu-
soidal phase gratings

In order to show some cases of phase-shifts in grating spec-
tra, several fast Fourier transforms have been calculated for
gratings of different phase amplitudesAg. We use the lobules
of J0 as a reference to indicate the Bessel region within
which the amplitudeAg of the corresponding phase grating is
to be found. Only seven Bessel functions are shown in Fig. 3.
In the first case, within the first lobule ofJ0, the associated
spectrum results with one half of its Fourier components in
phase, while the other half show phase shifts ofπ in an alter-
nating way. In this region,J0 is positive and in phase with the
Fourier components of the first half above mentioned. For the
second case,J0 is negative. Taking a value ofAg such that
the Bessel functions withq = 1...6 adopt only positive val-
ues, the Fourier spectrum of the resulting grating turn out to
be similar to the first case,J0 being negative as the only dif-
ferent phase shift. Within the3rd lobule, it is possible to pick
up negative values forq = 1, 2, 3, the resulting Fourier spec-
trum showingπ-shifts accordingly. In Fig. 4 we show a case
of positive values forq = 1, 2, 3, and negative forq = 4, 5.

This situation corresponds to a region within the9th lobule
of J0. The varieties of shifts suggested by the previous sim-
ulations are in agreement with Eq. (7). When using this type
of gratings in a TWPG, the corresponding interference con-
trast around each diffraction order can be obtained with plots
similar to the ones in Fig. 2.

3.3. π-shifts of the Fourier spectra of sinusoidal phase
grids

A rectangular phase grid can be generated with two phase
gratings of equal spatial frequency. Fig. 5a depicts the signs
of the diffraction orders of a grid made up from two crossed
gratings having spectra as the one in Fig. 2. Positive signs
are denoted with hollow circles, whereas negative signs are
marked with crosses. The dashed lines form regions enclos-
ing diffraction orders of index pairs0, n or m, 0. Then, order
0, 0 is located at the intersection of these regions. Several
possible configurations of windows can be considered for a
TWPG. Two of these configurations are shown in Fig. 5b.
They are denoted byW1 and W2. Respective displace-
ments of diffraction patterns are also indicated with displaced
dashed lines.

For the case of phase grids with windows in configuration
W2, the image can be written as:

tf2(x, y) = t2(x, y) ∗ G̃2(x, y) =
∞∑

q=−∞

∞∑
r=−∞

w
(
x +

x0

2
, y +

x0

2

)
∗ Jq(2πAg)Jr(2πAg)δ(x− qX0, y − rX0)

+
∞∑

q=−∞

∞∑
r=−∞

w′
(
x− x0

2
, y − x0

2

)
∗ Jq(2πAg)Jr(2πAg)δ(x− qX0, y − rX0),

Again, withX0 = x0

tf2(x, y) =
∞∑

q=−∞

∞∑
r=−∞

Jq(2πAg)Jr(2πAg)w
(
x +

x0

2
[1− 2q], y +

x0

2
[1− 2r]

)
(8)

×
∞∑

q′=−∞

∞∑

r′=−∞
Jq′(2πAg)Jr′(2πAg)w′

(
x +

x0

2
[1 + 2q′], y +

x0

2
[1 + 2r′]

)
.

where

t2(x, y) = w
(
x +

x0

2
, y +

x0

2

)
+ w′

(
x− x0

2
, y − x0

2

)
.

With q′ = q − 1,r′ = r − 1, this result simplifies to

tf2(x, y) =
∞∑

q=−∞

∞∑
r=−∞

[
Jq(2πAg)Jr(2πAg) + Jq−1(2πAg)Jr−1(2πAg)eiφ(x−x0[q−1/2],y−x0[r−1/2])

]
(9)

× w (x− x0[q − 1/2], y − x0[r − 1/2]) .

Similarly as for gratings, the fringe modulation of the interference pattern within a window centered in
(x0[q − 1/2], x0[r − 1/2]) is

mqr =
2JqJq−1JrJr−1

(JqJr)2 + (Jq−1Jr−1)2
. (10)
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TABLE II. Phase shifts measured of experimental patterns of Fig.6 according to the method from Kreis.

shifts(rad)

steps g0 g1 g2 g3 g4 g5 g6 g7

(Standar steps

is π) 0 3.150 3.130 3.510 0.005 0.014 0.008 3.154

FIGURE 5. a) π-phase distribution of diffraction orders of grids.
b) TWPG order superpositions: ConfigurationW1 : interference
pattern signs for displaced windows along the x-axis. Configura-
tion W1: interference patterns signs for displaced windows along a
line at 45◦.

FIGURE 6. Two experimental sets of interferograms with a phase-
grating.

TABLE III. Phase shifts measured of experimental patterns of
Fig. 7 according to the method from Kreis (square in dashed lines).

Shifts (rad)

0.026 0.015 3.174 3.133

0.038 0.002 3.153 3.164

3.136 3.135 0.000 0.024

3.131 3.158 0.020 0.031

FIGURE 7. Experimental patterns for a phase-grid (composite
image, windows configurationW2).

4. Experimental testing of the phase-shifts in
phase gratings and phase grids

Figure 6 shows the superposition of Fourier amplitude spec-
tra under windows configurationW1 for a phase grating with
110 lines/mm. The contrast of the corresponding experimen-
tal interference patterns can be interpreted as if its first four
Fourier coefficients had phase relations as the ones sketched
in Fig. 4. They were obtained with the system in Fig. 1.
Two different situations are depicted, one on the upper row
(a small tilt in one window) and another on the lower row
(oil on glass). The patterns show the relative phases of the
diffraction orders discussed in previous sections (modulation
with signs +,-,-,-,+,+,+,- from left to right). The phase-shifted
steps of the experimental fringe patterns can be calculated by
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applying the algorithm proposed by Kreis [12]. The resulting
mean values for the upper row of interferograms are shown
in Table II. It can be seen from the table that they depart by
small amounts fromπ or 0.

For the case of the diffraction orders belonging to a
phase-grid constructed with two crossed gratings of equal fre-
quency, the corresponding interference patterns are shown in
Fig. 7 for windows configurationW2. Each grating gives
patterns as in Fig. 6 when placed in the system of Fig. 1.
The whole image is a composite image because patterns of
higher order have low intensities. The contrasts are in agree-
ment with the conclusions derived from Fig. 5. The rela-
tive phase values of the 16 patterns shown within the square
drawn with dashed lines in the patterns of Fig. 7 employing
the method from Kreis can be seen in Table III. Configuration
W1 gives pattern contrasts in agreement with Fig. 5b (they
are not shown). The use of a grid as a beam divider having as
a result several interferograms resembles some shearing in-
terferometers proposed earlier [13], but ours is not a shearing
system.

5. Final remarks

Theoretical and experimental evidence ofπ-shifts in the
Fourier spectra of phase gratings and phase grids were pre-

sented. These shifts are not discussed in the literature as far
as we know. The usual focus on the power spectrum tends to
hide the effect, but it can be of considerable relevance when
using gratings or grids for interferometric applications, for
example: in phase shift interferometry, these results are con-
venient since only one grating displacement is necessary to
capture four interferograms and for the case of polarization
phase shifting interferometry, the characteristics of the phase
gratings under study simplify the placement of polarization
filters and allow us to obtain ofn-patterns in one shot with
adjustable phase shift.
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