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The problem of the maximum work that can be extracted from a system consisting of one finite heat reservoir and one subsystem with the
generalized radiative heat transfer laywdk A(7™)] is investigated in this paper. Finite-time exergy is derived for a fixed duration and a
given initial state of the subsystem by applying optimal control theory. The optimal subsystem temperature configuration for the finite-time
exergy consists of three segments, including the initial and final instantaneous adiabatic branches and the intermediate heat transfer branc
Analyses for special examples show that the optimal configuration of the heat transfer branch with Newton’s heat transterAe{#@']]

is that the temperatures of the reservoir and the subsystem change exponentially with time and the temperature ratio between them is
constant; The optimal configuration of the heat transfer branch with the linear phenomenological heat trangfet IagT )] is such

that the temperatures of the reservoir and the subsystem change linearly and non-linearly with time, respectively, and the difference in
reciprocal temperature between them is a constant. The optimal configuration of the heat transfer branch with the radiative heat transfer law
[q o< A(T*)] is significantly different from those with the former two different heat transfer laws. Numerical examples are given, effects of
changes in the reservoir’s heat capacity on the optimized results are analyzed, and the results for the cases with some special heat transf
laws are also compared with each other. The results show that heat transfer laws have significant effects on the finite-time exergy and the
corresponding optimal thermodynamic process. The finite-time exergy tends to the classical thermodynamic exergy and the average powe
tends to zero when the process duration tends to infinitely large. Some modifications are also made to the results from recent literatures.

Keywords:Finite time thermodynamics; finite-time exergy; finite heat reservoir; generalized radiative heat transfer law; optimal control.

En este trabajo se investiga el problema dakimo trabajo que es posible extraer del sistema consistente en un recipremttfinito

y un subsistema con la ley generalizada de transferencia de calor porgadiact A(7™)]. Se obtiene la exefg de tiempo finito para

una duradn fija y un estado inicial del subsistema dado aplicando laaets controbptimo. La configuradin 6ptima de temperatura del
subsistema para la exéagle tiempo finito consiste en tres segmentos: la rama iasteardiaktica inicial y final, y la rama de transferencia

de calor intermedia. El @tisis de ejemplos especiales muestra que la configurapitima de la rama de transferencia de calor con la ley de
Newton de transferenciétmica [y «« A(T')] es aquella en la que la temperatura del recipiente y del subsistema cambian exponencialmente
con el tiempo y la ra@n de temperaturas es constante. La configragptima de la rama de transferenc@rhica con la ley lineal
fenomenadbgica [y o« A(T1)] es aquella en la que las temperaturas del recipiente y del subsistema cambian lineal y no linealmente con
el tiempo respectivamente y la diferencia en la temperatuiigroma entre ellos es constante. La configumadiptima para la rama de
transferenciaérmica con la ley radiativa de transferencia de cajox[A(7*)] es significativamente diferente de las que emplean las dos
leyes anteriores. Se dan ejemplos @uicos, se analizan los efectos de los cambios en la capacidatficaldel recipiente en los resultados
optimizados, y los resultados para los casos con alguna ley especial de transféranica $e comparan unos con otros. Los resultados
muestran que las leyes de transfereneiantca tienen efectos significativos en la exerde tiempos finitos y en el proceso termadirico

optimo correspondiente. La exéagle tiempos finitos tiende a la de la termddiica chsica y la potencia promedio tiende a cero cuando la
duracbn del proceso tiende a ser infinitamente largo. Témise hacen algunas modificaciones a resultados recientemente publicados.

Descriptores:Termodiramica a tiempos finitos; exdega tiempos finitos; recipientérmico finito; ley generalizada de transferencia de calor
por radiacdn; controloptimo.

PACS: 44.10.+i; 44.40.+a

1. Introduction mance analysis and optimization for various thermodynamic
processes, cycles and devices [1-10]. The conventional ex-
One of the classical problems of thermodynamics has bee®9Y is the classical thermodynamic exergy and the solution
the determination of the maximum work that might be ex-meéthodology of classical thermodynamics problems assumes
tracted when a prepared system is allowed to undergo a tran&versible thermodynamic processies, processes in which
formation from its initial state to a designated final state.the system preserves internal equilibrium, the total entropy
When that final state is defined by the condition of equilib-Of the system and the environment does not increase; the dif-
rium between the system and some environment, the maxfeérences between the values of intensive variables (temper-
mum extractable work is generally known as the exergy. Exatures, pressures, chemical potentiisl) of the system
ergy concept and exergy analysis have been applied to perfoand those of the environment are infinitely small, and the
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process duration is infinitely large. Performance limits ob-Based on Refs. 15 to 18, this paper will further investigate the
tained with the aid of reversible processes are independeptoblem of the maximum work that can be extracted from a
of the equation of state of the system and are limiting in thesystem consisting of one finite heat reservoir and one subsys-
sense that they remain unattainable in all real processes. Aiém, in which heat transfer obeys the generalized radiative
real thermodynamic processes are irreversible since the rateat transfer lawdq oc (AT™)] [31-39], and drive the finite-

of exchange between the system and the environment is ntime exergy for a fixed duration and a given initial state of the
infinitesimally small, the system does not maintain internalsubsystem by using optimal control theory.

equilibrium, and the process duration is finite.

In 1975, Curzon and Ahlborn [11] postulated a real
Carnot engine, with power output limited by the rates of hea),  System model
transfer to and from the working substance, and showed that

the hot- and cold-end temperatures of a power plant can bgne model to be considered in this paper is illustrated in
optimized such that the power output is maximal. The effi-rig. 1, which consists of one finite heat reservoir and one
ciency at maximum power point igca = 1 — v TL_/TP{- subsystem. There is no mechanical interaction or mass trans-
This provided a new performance limit, which is differ- fer phetween the subsystem and the reservoir and only heat
ent from Carnot efficiency, for the heat engine characteryansfer between them. The heat reservoir has a finite ther-
ized by finite rate, finite duration, and finite-size. Since g capacity, and its thermal capacity, temperature, entropy,
the mid 1970s, finite time thermodynamicse. the re- pressure, volume, and internal energy are denoted, A%},
search into identifying the performance limits of thermody- Sy, p1, Vi, andE;, respectively, while the corresponding pa-
namic processes and optimizing thermodynamic processegmeters of the subsystem are denote@asss, ps, Va, and

has made great progress in the fields of physics and engg, respectively. The heat transfer between the reservoir and
neering [12-21]. Ondrechest al, [22] investigated the prob-  the subsystem obeys the generalized radiative heat transfer
lem of maximizing work output from a finite heat reservoir |5 q(Ty,Ty) = k(T — T7), wherek is the heat conduc-
b_y_infinite sequential Carnot cycles. Yan [23] der_ived the ef-tance, and different values of power exponerdenote dif-
ficiency of a sequence of Carnot cycles operating betweefprent heat transfer laws. Both the reservoir and the subsys-
a finite source and an infinite sink at maximum power outtem have fixed composition and are assumed to be in internal
put. Andreseret al, [24] first put forward the concept of equjlibrium, so their states could be described by two inde-
finite-time exergy. With the help of a conventional exergy pendent thermodynamic variables. Once these two indepen-
analysis approach, Mironow al.,[25] introduced the crite-  gent variables are chosen, the other variables are determined
rion of thermodynamic ideality, which is defined as the ratiopy the independent variables via the equation of state. For ex-
of actual rate of entropy production to the minimum rate Ofample, when the independent variables of internal ené&rgy

entropy production, and applied it to the evaluation of per-qnd volumel” are chosen to describe the state of the system,
formances of thermodynamic systems. Sieniutycz and vogne has the following relationships:

Sparkovsky [26] obtained the optimal reservoir temperature
p_rofiles of multistage endoreversible co_nt?nuous CA heat en- ¢ _ S(E,V), 1/T =08S/0E, p/T =0S/aV (1)
gine [11] systems operating between a finite source and an in-
finite sink for maximum work output (also called finite time

exergy in Ref. 25), in which the heat transfer between the
working fluid and the reservoirs obeys Newton’s heat trans-

fer law [¢ < A(T)]. Sieniutycz [27] further obtained those Finite heat reservoir
of multistage endoreversible discrete heat engine systems fo

maximum work output. Tsirlin [15,18], Bermt al.,[16] and Coe To. 85 &
Mironovaet al.,[17] investigated the problem of the maximal

work that can be extracted from a system consisting of one in-
finite heat reservoir and one subsystem with the generalizec
radiative heat transfer lawg [cc A(7™)], and further investi-
gated the problem of the maximal work that can be extracted
from a system consisting of one finite heat reservoir and one
subsystem with Newton’s heat transfer law. Tsirlin and Kaza-
kov [28] investigated the maximum work problems of several
subsystems with an infinite heat reservoir and one subsysten
with an infinite mass reservoir. Sieniutycz [29,30] obtained
a finite-rate generalization of the maximum-work potential
called generalized (rate-dependent) exergy with the method
of variational calculus [29], and further investigated the ef-
fects of heat transfer laws on the rate-dependent exergy [30FIGURE 1. Model of one finite heat reservoir and one subsystem.

]_)
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The independent variables of entropyand volumeV  where
are chosen, and so .

E=E(S,V), T=0E/dS, p=—0E/dV (2) AS; = /[_Q(ThTQ)/Tl]dt
0
If the reservoir has an infinite heat capacity, its temper- q
atureT; and pressure, are constants. From Eq. (1), one &"
obtains T

AS, = / [(Th. Ty)/ To)dt

1/Ty = 05,/0E1, p1/Ti = 051/0Vi 3 J

~ The right hand sides of Eq. (3) are constants; then cOMyre the entropy changes of the reservoir and the subsystem,
bining Egs. (1) and (3) yields respectively. The work done by the subsystem is

S1=E /T +pi Vi /11, 4) 7
A:/P@ﬁ

If the working fluid of the subsystem is an ideal gas, its J

constant volume heat capacity > and mole numbeN, are

constants. From Eg. (1), one can obtain and its absorbed heat is
Sy = CyalnEy + NoRIn Vs, 7
Q= /th.
T =Ey/Cya, p2=Na2RT5/V (5)

0

whereR is the universal gas constant. The reservoir's heatFrom Eq. (6), one obtains

capacity and its initial temperature are given 6y and

T1(0) = T, respectively. The initial internal energy and A=Q—AE; =Q+ E2(0) — Ex(7) (8)

temperature of the subsystem are giveniy0) and7>(0),

respectively. The amount of the heat transfer and the process Determining the finite-time exergyl” is equivalent to

duration are given by) andr, respectively. Exergy is a rel- Minimizing the internal energy change of the subsysfiefr

ative Concept, which depends on the Choosing of the refer@Je to the fact that the amount of heat transfer is known. One

environment. If the referee environment is considered to be §an see thab £, /dS; = T > 0 holds from Eq. (2). Then

finite heat reservoir, when the capacity of the reservoir tend§linimizing AE, could be further equivalent to minimizing

to infinity (C; — oo), the obtained results would reduce to the entropy change of the subsystexs,. The reservoir's

those obtained with an infinite heat reservaie( the uni-  heat capacity’; is a finite value; then

versal environment) [15-18]. Now suppose that the duration

of the process is a finite value. Then the maximal work

output A* of the system is smaller than the classical exergy

A,., that is achieved in a reversible procass,a processin = 3.  Finite-time exergy

which the parameters of the system are infinitesimally sepa-

rated from those of the environment and the process duratiolhrom the above analysis, for the given amount of h@at

is effectively infinitely large. It is natural to call*(7) the  determining the finite-time exergy* with a finite heat reser-

finite-time exergy or finite-time availability [24]. voir is equivalent to minimizing the entropy change of the
In terms of the first law of thermodynamics, for the reser-subsysten\S,. Let AS, be the objective function; one has

voir and the subsystem, one has

Oy = —q(T1,Tz), Ti(0) = Tho 9

T

By =—q(T1,T»), S =o01=—q(T1,T»)/T", min - ASy = /[q(Tl’T2)/T2]dt (10)
. . 0
By =q(Ty,T2) = P, Sy =o09=q(T1,T2)/T>  (6) . . _
The corresponding constraints are given by
whereo; ando, are the entropy change rates of the reservoir

T

and the subsystem, respectively, aid = dF, /dt, the dot
notation signifies the time derivative. From the second law /Q(T17T2)dt =Q (11)
of thermodynamics, the total entropy generation in the heat 0
transfer procesAsS is given by . —o(T,. T
=40 oo, a2
T 1
AS = /Q(T17T2)(1/T2 —1/T)dt = AS, + ASy (7) Equation (11) shows that the amount of heat transfer is
0 fixed, and Eqg. (12) shows that the thermal capacity of the
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heat reservoir is a finite value. This is a typical average opentropy changéS3 (7). From Eq. (8), the finite-time exergy
timal control problem in optimal control theory. The prob- A* is given by

lem could be simplified if one replaces the variable of time

¢ by the control variable of temperatufg. From Egs. (11) A" =Q — AEy(AS3(1), V5 (7)) (19)
and (12), for the giver) and T}, the final temperature of

the reservoir is given byfi (r) = T1o — Q/C. Substituting Assume that the working fluid in the subsystem is an ideal

Eq. (12) into Eq. (10) yields gas; from Eg. (5), one has
T1o ASQ (T):Cvg In |:£2 (g):| +RIn |:“;2(g):| (20)
min ASQ = / (Cl/Tg)dTl (13) 2( ) 2( )
Ta(7) AEy=Cly5[Ty(7)—T2(0)]=F2(0) E? 8 —1] (21)
Combining Eq. (11) with Eq. (12) yields ?
Combining Eq. (20) with Eq. (21) yields
T T10
/dt = / [C1/q(Th, T2)|dTy = T (14) AE;=E5(0) {(VQ(T))—(R/CM exp(w)—l} (22)
; ) V2(0) Cva
Our problem now s to find the minimal value AfS, in Subsiltutlng Eq. (22) into Eqg. (19) yields the finite-time
; . ._exergyA
Eq. (13) and the corresponding optimal temperature config-
uration of the subsystem subject to the finite time constraint V*(r) —(R/Cv2)
of Eq. (14). The problem is similar to that of determining A" =Q — E2(0) K V(0) )
the optimal configurations of heat engines operating between
a finite source and an infinite sink for maximum power out- % ex AS3(T)\ 1 (23)
put [40-48]. The modified Lagrange function is given by p Va2

L(Ty, A) = Gi[l/T2 + M q(Th, T2)] (15 4. Analyses for special examples

where)\ is a Lagrange constant. From the extreme conditiory 1 The results for the case with Newton’s heat transfer
OL/0T, = 0, one has

law
Xq/0Ty = —[q(Ty, T2)/To)? (16)  In this case;n = 1. SinceT; > Ty, from Eq. (17), one
obtains
Assume that the reservoir’s heat capacitydoes not de- I
pend on its temperatuf® ; then substituting = k(77" —T5") T — Ti\/k/A 24
into Egs. (12) and (14), respectively, yields 2= (1+ \/m) (24)
et _ k(T{ - T3')? a7 Substituting Eq. (24) into Eq. (18) yields
> (n)
In[Tyo/(T1o — Q/C1)] kr/Cy (25)

(1/(T7" = T3))dTy = k1/Cy (18)

T10-Q/Ch

70 1 — VRN (1+VEN)]

Combining Eqg. (24) with Eq. (25) yields the optimal relation
between the reservoir temperature and the subsystem temper-
Equations (17) and (18) determine the optimal temperaturature:

profiles of the reservoir and the subsystem, and they can be

solved analytically for only some special heat transfer laws, 75 (71) = T1{1 — C1 In[T1o/(T10 — Q/Ch)]/kT}  (26)

for instance, Newton’s heat transfer lgw = 1) and the lin-
ear phenomenological heat transfer law= —1). For other s i
heat transfer laws, they need to be solved numerically. Equaiiure of the reservoir versus time:

tion (17) has the same expression as that of the optimal tem- w0\ )T

perature profiles of the finite high-temperature source and the 7 (8) = Tool(Tho = Q/Cl)/Tw]( o 27)
hot-side working fluid of the heat engine operating between &pstituting Eq. (27) into Eq. (26) yields the optimal tem-
finite source and an infinite sink for maximum power outputperature of the subsystem versus time:

with the generalized radiative heat transfer law [43, 48]. One

could obtain the optimal temperature profiles of the reservoir T5(t) = Tho{l — Cy n[Tho/(Tho — Q/Ch)]/k7}

T5(t) and the subsysteffi; (¢) from Egs. (17) and (18). Sub- /")

stituting 77 (t) and 75 (¢) into Eq. (10) yields the minimum x [(Tho = Q/C1)/Tho (28)

Substituting Eq. (26) into Eq. (9) yields the optimal temper-
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The optimal temperature configuration of the subsystenand Eq. (28), one can see that the optimal configuration of
for the finite-time exergy consists of three segments, inthe heat transfer process for the finite-time exergy with New-
cluding the initial and final instantaneous adiabatic brancheton’s heat transfer law such is that the temperatures of the
and the intermediate heat transfer branch, as follows: ateservoir and the subsystem change exponentially with time
t = 0, the subsystem jumps instantly from the given ini- and the temperature ratio between the reservoir and the sub-
tial 75(0) to the T5(0); then T3 (¢) changes according to system is a constant. They are the same as those obtained in
Eq. (28) during the time intervalo, 7); finally, att = T, Refs. 41 to 44 and 48. Substituting Eq. (26) into Eq. (13)
the temperature of the subsystem jumps again, and its fisields the minimal entropy chang®eS;(7):
nal state is defined by the equation of state and the opti-
mal volumeV*(7), which is to be found from the condi- _
tion V*(r) = ar(g )minv2 E»(S3(7), Va(r)), i.e. the volume AS3(r) = ¢ ka_Clch;[Tw/ (To _Q/ Gl (29)

. ) . . 1 In[Tho/(Tho — Q/Ch)]}
of the working fluid corresponding to the minimuf; ()
among the admissible set of volunig(7). From Eq. (27)
|

Substituting Eq. (29) into Eq. (23) yields

. ‘/2* (7') _(R/CV2) kTCl hl[Tlo/(Tlo — Q/Cl)]
s B0 { (%) o { Gt Ol T = GGV )

Equations (29) and (30) are the same as those obtained
in Refs. 15 to 18. It is noted that the optimal relation be- ) ,
tween the reservoir temperature and the subsystem tempéh:2-  The results for the case with the linear phenomeno-
ature and the optimal temperature of the subsystem versus  |0gical heat transfer law
time obtained in Refs. 15 to 18 are as follows:

In this casen = —1, and the heat conductankes negative.
SinceTy > Ts, from Eq. (17), one obtains
kT — Cl 1D[T10/(T10 — Q/Cl)]

T3 () =T, o (31) Ty =T = =Nk (34)
T3(t) = (T = Q/Ch) Substituting Eq. (34) into Eq. (18) yields
kr — Cy [Ty /(Tho — Q/C ¢
7= CnlTiol (o~ Q0 (T) (32) SR = k10 (35)

Combining Eq. (34) with Eq. (35) yields the optimal re-
Equation (31) is correct, which is the same as Eq. (26) in thisation between the reservoir temperature and the subsystem
paper, while Eq. (32) is wrong. This could be proved easilytemperature,
Assume Eq. (32) is correct; then from Egs. (31) and (32),
one obtains the optimal temperature of the reservoir versus T (t) = Tio[(Tho — Q/C1)/T1o] /™ (36)
time, as follows:
Substituting Eq. (36) into Eqg. (9) yields the optimal tem-
. perature of the reservoir versus time:
T (t) = (Tho — exp | — 33
i(t) = (Two — Q/Ch)exp <r> (33) Ty (t) = Tio — Qt/(Ci7) (37)

Substituting Eq. (37) into Eq. (36) yields the optimal
From Eq. (33)15(0) = Tip — Q/Cy, whent = 0, and  temperature of the subsystem versus time:

Ty (1) = (Tho — Q/C1)e whent = 7. It does not coincide
with the given boundary conditions of the reservoir tempera- Ty (t) = k7(CiT107 — Q1)
ture,i.e. Tl*(O) =Tio andTl* (’7’) =T — Q/Cl [ClkTQ - Q(ClTIOT - Qt)]

Therefore, Eg. (5.45) on page 209 in Ref. 16 and the The optimal temperature configuration of the subsystem
same equation on page 215 in Ref. 15, page 209 in Ref. 17or the finite-time exergy consists of three segments, in-
and page 78 in Ref. 18 (Eq. (32) in this paper) should becluding the initial and final instantaneous adiabatic branches
replaced by Eq. (28) in this paper. Because the minimal enand the intermediate heat transfer branch, as follows: at
tropy change AS;(7)] of the system in Refs. 15to 18 was ¢ = 0, the subsystem jumps instantly from the given ini-
obtained based on Eqg. (31) rather than Eq. (32) in this papetial 7>(0) to the 75 (0); then Ty (t) changes according to
it is correct. Eqg. (38) during the time intervad0, 7); finally, att = T,

(38)
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the temperature of the subsystem jumps again, and its fi-
nal state is defined by the equation of state and the opti-
mal volumeV*(7), which can be found from the condition
V*(1) = argminy, E»[S5(7), Va(7)]. From Eq. (37) and
Eq. (38), the optimal configuration of the heat transfer pro- <

1000
900

800

cess for the finite-time exergy with the linear phenomenologi- *
cal heat transfer law is such that the temperatures of the reser~
voir and the subsystem change linearly and non-linearly with

time, respectively, and the difference in reciprocal tempera- 0 r=8s ~. ™
ture between the reservoir and the subsystem is a constan [ == (=20//K ™ 1
They are the same as those obtained in Refs. 42, 43, and 4¢ — =808 P By
Substituting Eq. (36) into Eq. (13) yields the minimal en- >~~~ 47~ e ]
tropy changeAS; (7), as follows: 0 . . . . . . . T
B 8
AS3(r) = C1In[T1o/(T1o — Q/C1)] — Q*/(k7)  (39) e

FIGURE 2. Optimal temperature configurations for the finite-time
Assume that the working fluid in the subsystem is an ideaf*€"9y during the heat transfer processes with Newton’s heat trans-

gas; substituting Eq. (39) into Eq. (23) yields fer law.
Vi)W ey
A*=Q - F .
o-50| ()
ErCyInlTio/ (Tho~@/C1)|-@? "L
7O L0 10— 1)]—
X exp ( ktCyva ) _1] (40) 5000
4.3. The results for the case with the radiative heat 54000 i
transfer law “3000L ¢
i —— =20/ /K
In this casen = 4. Egs. (9) and (17) further give 2000 Fif 0 — Ly =Rl K .
i -==- (-
ClTl = 7k(T14 - T24), Tl(O) = T10 (41) 1000 -'.:‘ .1-! 7
TS = k(T{ — T4)%/(4)) (42) i M e

ul
10 10 #(s)

respectively. There are no analytical solutions®y¢) and  FIGURE 3. Finite-time exergy versus process duration for the case
T5(t), which should be solved numerically. It is shown that with Newton’s heat transfer law.

the optimal temperature configuration of the subsystem for

the finite-time exergy consists of three segments, includingt-4. The results for the case with infinite thermal capac-
the initial and final instantaneous adiabatic branches and the ity reservoir

intermediate heat transfer branch, as followst at 0, the
subsystem jumps instantly from the given initfal(0) to the
T5(0); thenT (t) changes according to Eq. (42) during the
time interval(0, 7); finally, att = 7, the temperature of the
subsystem jumps again, and its final state is defined by th
equation of state and the optimal voluriié (), which can

be found from the condition

In this caseC; — oo. Now the finite-time exergy with a
finite reservoir reduces to that with an infinite reservoir. Ac-
cording to Refs. 15 to 18, the optimal thermodynamic pro-
gesses for the finite-time exergy with Newton’s, linear phe-
nomenological, and radiative heat transfer law are those for
which the temperature of the subsystem is a constant and the
temperature difference between the reservoir and the subsys-
V*(7) = arg miny, B (S5(7), Va(7)). tem is alsq a constant during the heat transfer process \_/vith-
out exception. Then the temperature of the working fluid is a

The minimal entropy changaS; (r) is also obtained numer- constant and equal @;; from Eq. (13) one obtains
ically. Assume that the working fluid in the subsystem is an AS3 (1) =Q/Ty (44)

ideal gas, substituting\S; (7) into Eq. (23) yields Substituting Eq. (44) into Eq. (23) yields

A*=Q—FE5(0) A" =Q — Ex(0)
() e (FE) A w0 (T e (aty) ] e
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SinceTy is non-negativeA* () is defined for S000 i R
> Tin=Q/ (KTY'). N i
L & , —= C=20J/K J
e —— -80S K |
5. Numerical examples and discussions S S e
. H
1500 - .
In the calculations, the initial temperature of the heat reser- :
voir is T;p=1000 K, the subsystem isiol ideal gas, the uni- el |

versal gas constant 8 = 8.314 J/(mol- K), the mole con- [
stant volume heat capacityd$» = 3R/2, the initial volume I
is V5 (0) = 22.4 liter, the initial temperature i${0)=300 K,

the amount of heat transferd® = 1 x 10* J, and the initial
internal energy if»(0) = 3741.5 J. In order to analyze ef-
fects of changes of the heat capacity on the optimized results,
the heat capacity of the reservoir is set tote = 20 J/K,
C;1 = 80 J/K, andC; — oo, respectively.

500

10' 2(s) 10° 10°

FIGURE 4. Maximum average power versus process duration for
the case with Newton'’s heat transfer law.

5.1. Numerical example for the case with Newton’s heat
transfer law 1000

In this case, the heat conductance is set as 13.5 W/K. 900
Figure 2 shows the optimal temperature configurations for I
the finite-time exergy during the heat transfer processes with Z gy

7 = 8 s. Figure 3 shows the finite-time exergy versus pro- .

cess duration. From Fig. 2, one can see that the optimal -7

temperature configuration during the heat transfer process is I "-«.\_7\21-“) '\\

such that the temperatures of the reservoir and the subsys ¢y L =8 \'*5\,__ e _
tem change exponentially with time, and the temperature ra- _ fjiﬁf;i i ™

tio between the reservoir and the subsystem is a constant. Thi 5y L s _m' e ¥
amounts of temperature changes of the reservoir and the sub ' -
system decrease with the increase in the heat capacityofthe 4o Lo .+ .+ . + . + . + .
reservoir. When the heat capacity of the reservoir tends to 0 ! 2 3 L. 6 7 8

infinitely large, the optimal configuration of the heat transfer

branch is such that the subsystem temperature is a constapigure 5. Optimal temperature configurations for the finite-
and the temperature difference between the reservoir and thigne exergy during the heat transfer processes with the linear phe-
subsystem is also a constant during the heat transfer procesgmenological heat transfer law.

From Fig. 3, one can see that with the increase of the process
duration, the finite time exergy tends to a constast, the

classical thermodynamic exergy. For the same process du- 7000
ration, the finite-time exergy is an increasing function of the

heat capacity of the reservoir. the finite-time exergy with 6000
a finite thermal capacity heat reservoir is less than that with an
infinite thermal capacity heat reservoir under the same con- |
dition. For a fixed process duration the maximum average 4000
power isP(7) = A*(r)/r, which is equal to the tangent of > e ]
the slope of the line segment connecting the origin with the ~“3000F / / e G SRR .
point A*(7) in Fig. 3. Figure 4 shows the maximum average ]/ — & =10IK
power P versus process duratian From Fig. 4, one can 2000 - TTT Lo
see that the maximum average power attains its maximum /
value at one point along the axis of process duration, and the Kz
average power tends to zero when the process time tends v ¢! . ... o0
infinitely large,i.e. the power for the reversible process is 10° 10' 7(s) 10’ 10
zero. It is evident that the finite-time exergy is a more real-

istic, stronger limit compared to the classical thermodynamicricurE 6. Finite-time exergy versus process duration for the case
exergy. with the linear phenomenological heat transfer law.
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5.2.  Numerical example for the case with the linear phe-
nomenological heat transfer law

In this case, the heat conductance is sétas4.0x 105W-K.
Figure 5 shows the optimal temperature configurations for
the finite-time exergy during the heat transfer processes with
T = 8 . Figure 6 shows the finite-time exergy versus process
duration. From Fig. 5, one can see that the optimal tempera-
ture configuration during the heat transfer process is such that
the temperatures of the reservoir and the subsystem change
linearly and non-linearly with time, respectively, and the dif-
ference in reciprocal temperature between them is a constant.
The amounts of temperature changes in the reservoir and the
subsystem decrease with the increase in the heat capacity of
the reservoir. When the heat capacity of the reservoir tends to

FIGURE 7. Maximum average power versus process duration for infinitely large, the optimal configuration of the heat transfer
the case with the linear phenomenological heat transfer law.

r=8s '~
—=- 0 =20//K Y-
— (=80J/K

---(ow

0 1 2 3

FIGURE 8. Optimal temperature configurations for the finite-time

4 5 5 6 7

branch is such that the subsystem temperature is a constant,
and the temperature difference between the reservoir and the
subsystem is also a constant during the heat transfer process.
From Fig. 6, one can see that with the increase in process du-
ration, the finite time exergy tends to a constast,the clas-

sical thermodynamic exergy. For the same process duration,
the finite-time exergy is an increasing function of the heat ca-
pacity of the reservoii,e. the finite-time exergy with a finite
thermal capacity heat reservoir is less than that with an infi-
nite thermal capacity heat reservoir under the same condition.
Figure 7 shows the maximum average poufeversus pro-
cess duration for the case. From Fig. 7, one can see that the
maximum average power also attains its maximum value at
one point along the axis of process duration, and the average
power tends to zero when the process time tends to infinitely
large,i.e. the power for the reversible process is zero. lItis
evident that the finite-time exergy is a more realistic, stronger
limit compared to the classical thermodynamic exergy.

exergy during the heat transfer processes with the radiative heat

transfer law.

1000 ——

900 R

2800 | Y,
700 |
600 |-
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=125

500

400 b

----- linear phenomenological
—— Newton's

— . —- radiative

0 2 4

6 f(s) 8 10

5.3. Numerical example for the case with the radiative

heat transfer law

In this case, the heat conductance is sétab.0x 10~ 3W/K*,
Figure 8 shows the optimal temperature configurations for the
finite-time exergy during the heat transfer processes8s.

From Fig. 8, one can see that the optimal temperature con-
figuration during the heat transfer process is such that the
temperatures of the reservoir and the subsystem change lin-
early with time. The amounts of temperature changes in the
reservoir and the subsystem decrease with the increase in the
heat capacity of the reservoir. When the heat capacity of the
reservoir tends to infinitely large, the optimal configuration
of the heat transfer branch is also such that the subsystem
temperature is a constant, and the temperature difference
between the reservoir and the subsystem is also a constant
during the heat transfer process. According to the calculation

FIGURE 9. Optimal temperature configurations for the finite-time results, the same conclusions as those obtained for the cases
exergy during the heat transfer processes with different heat transwith Newton’s and linear phenomenological heat transfer law

fer laws.

are obtained.
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8400 A T A R B finite heat reservoir and one subsystem with generalized ra-

7000 ,,,{i;fgi,_,__,_,:_,_,_,;,_, | diative heat transfer lawy[oc A(T™)] is investigated in this

) paper. Finite time exergy is derived for the fixed duration

. of the process and the given initial state of the subsystem

l by applying optimal control theory. The optimal temperature

; ] configuration of the subsystem for the finite-time exergy con-

4000 Hi S e linear phenomenological 4 sists of three segments, including the initial and final instan-

i __‘;{‘j‘"’j:’j 1 taneous adiabatic branches and the intermediate heat transfer

] branch. The optimal configuration of the heat transfer branch

] with Newton’s heat transfer lawg[ < A(T)] is such that

] the temperatures of the reservoir and the subsystem change

i . exponentially with time and the temperature ratio between

0 L ] the reservoir and the subsystem is a constant. The optimal

10" 10" ) 10 10° configuration of the heat transfer branch with the linear phe-

nomenological heat transfer law fx A(7T~1)] is such that

the temperatures of the reservoir and the subsystem change

linearly and non-linearly with time, respectively, and the dif-

) . ference in the reciprocal temperature between the reservoir

6. Performance comparison for different heat  and the subsystem is a constant. The optimal configuration
transfer laws of the heat transfer branch with the radiative heat transfer law

) ) . ) q < A(T*)] is significantly different from those with the

Figure 9 shows the optimal temperature configurations foformer two different heat transfer laws. Some modifications

the finite-time exergy during the heat transfer processes withre made to the results in Refs. 15 to 18, and the obtained

different heat transfer laws (G- 20 J/K andr = 12's). From  regyjts in this paper become those with an infinite heat reser-

Fig. 9, one can see that the optimal temperature configurgyir [15-18] when the capacity of the reservoir tends to infin-

tions of the reservoir and the subsystem for the finite-time &Xity. The finite-time exergy in this paper is derived under the

ergy with different heat transfer laws are different from eachconstraint that the process duration is finite and the assump-

other significantly, see detail mentioned above. Figure 1Qion that both the reservoir and the subsystem are in internal

shows the finite-time exergy versus process duration with difgqyiliprium. If the internal irreversibility of the subsystem

ferent heat transfer laws afd — oo. For the same process g fyrther considered, the corresponding maximum work out-

duration, the finite-time exergy for the case with the radia-, js |ower than the finite-time exergy obtained in this paper.

tive heat transfer law is the largest, the finite-time exergy forpe finite-time exergy tends to the classical thermodynamic

the case with the linear phenomenological heat transfer law iéxergy and the average power tends to zero when the process
the smallest, and the finite-time exergy for the case with theyration tends to infinitely large.

Newton’s heat transfer law lies between them. Heat transfer

laws have significant effects on the finite-time exergy and the

corresponding optimal thermodynamic process, so it is necAcknowledgements

essary to investigate the results with different heat transfer
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