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The problem of the maximum work that can be extracted from a system consisting of one finite heat reservoir and one subsystem with the
generalized radiative heat transfer law [q ∝ ∆(T n)] is investigated in this paper. Finite-time exergy is derived for a fixed duration and a
given initial state of the subsystem by applying optimal control theory. The optimal subsystem temperature configuration for the finite-time
exergy consists of three segments, including the initial and final instantaneous adiabatic branches and the intermediate heat transfer branch.
Analyses for special examples show that the optimal configuration of the heat transfer branch with Newton’s heat transfer law [q ∝ ∆(T )]
is that the temperatures of the reservoir and the subsystem change exponentially with time and the temperature ratio between them is a
constant; The optimal configuration of the heat transfer branch with the linear phenomenological heat transfer law [q ∝ ∆(T−1)] is such
that the temperatures of the reservoir and the subsystem change linearly and non-linearly with time, respectively, and the difference in
reciprocal temperature between them is a constant. The optimal configuration of the heat transfer branch with the radiative heat transfer law
[q ∝ ∆(T 4)] is significantly different from those with the former two different heat transfer laws. Numerical examples are given, effects of
changes in the reservoir’s heat capacity on the optimized results are analyzed, and the results for the cases with some special heat transfer
laws are also compared with each other. The results show that heat transfer laws have significant effects on the finite-time exergy and the
corresponding optimal thermodynamic process. The finite-time exergy tends to the classical thermodynamic exergy and the average power
tends to zero when the process duration tends to infinitely large. Some modifications are also made to the results from recent literatures.

Keywords:Finite time thermodynamics; finite-time exergy; finite heat reservoir; generalized radiative heat transfer law; optimal control.

En este trabajo se investiga el problema del máximo trabajo que es posible extraer del sistema consistente en un recipiente térmico finito
y un subsistema con la ley generalizada de transferencia de calor por radiación [q ∝ ∆(T n)]. Se obtiene la exergı́a de tiempo finito para
una duracíon fija y un estado inicial del subsistema dado aplicando la teorı́a de controĺoptimo. La configuracíon óptima de temperatura del
subsistema para la exergı́a de tiempo finito consiste en tres segmentos: la rama instantánea adiab́atica inicial y final, y la rama de transferencia
de calor intermedia. El análisis de ejemplos especiales muestra que la configuración óptima de la rama de transferencia de calor con la ley de
Newton de transferencia térmica [q ∝ ∆(T )] es aquella en la que la temperatura del recipiente y del subsistema cambian exponencialmente
con el tiempo y la raźon de temperaturas es constante. La configuración óptima de la rama de transferencia térmica con la ley lineal
fenomenoĺogica [q ∝ ∆(T−1)] es aquella en la que las temperaturas del recipiente y del subsistema cambian lineal y no linealmente con
el tiempo respectivamente y la diferencia en la temperatura recı́proca entre ellos es constante. La configuración óptima para la rama de
transferencia t́ermica con la ley radiativa de transferencia de calor [q ∝ ∆(T 4)] es significativamente diferente de las que emplean las dos
leyes anteriores. Se dan ejemplos numéricos, se analizan los efectos de los cambios en la capacidad calorı́fica del recipiente en los resultados
optimizados, y los resultados para los casos con alguna ley especial de transferencia térmica se comparan unos con otros. Los resultados
muestran que las leyes de transferencia térmica tienen efectos significativos en la exergı́a de tiempos finitos y en el proceso termodinámico
óptimo correspondiente. La exergı́a de tiempos finitos tiende a la de la termodinámica cĺasica y la potencia promedio tiende a cero cuando la
duracíon del proceso tiende a ser infinitamente largo. También se hacen algunas modificaciones a resultados recientemente publicados.

Descriptores:Termodińamica a tiempos finitos; exergı́a a tiempos finitos; recipiente térmico finito; ley generalizada de transferencia de calor
por radiacíon; controlóptimo.

PACS: 44.10.+i; 44.40.+a

1. Introduction

One of the classical problems of thermodynamics has been
the determination of the maximum work that might be ex-
tracted when a prepared system is allowed to undergo a trans-
formation from its initial state to a designated final state.
When that final state is defined by the condition of equilib-
rium between the system and some environment, the maxi-
mum extractable work is generally known as the exergy. Ex-
ergy concept and exergy analysis have been applied to perfor-

mance analysis and optimization for various thermodynamic
processes, cycles and devices [1-10]. The conventional ex-
ergy is the classical thermodynamic exergy and the solution
methodology of classical thermodynamics problems assumes
reversible thermodynamic processes,i.e., processes in which
the system preserves internal equilibrium, the total entropy
of the system and the environment does not increase; the dif-
ferences between the values of intensive variables (temper-
atures, pressures, chemical potentialset al.) of the system
and those of the environment are infinitely small, and the
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process duration is infinitely large. Performance limits ob-
tained with the aid of reversible processes are independent
of the equation of state of the system and are limiting in the
sense that they remain unattainable in all real processes. All
real thermodynamic processes are irreversible since the rate
of exchange between the system and the environment is not
infinitesimally small, the system does not maintain internal
equilibrium, and the process duration is finite.

In 1975, Curzon and Ahlborn [11] postulated a real
Carnot engine, with power output limited by the rates of heat
transfer to and from the working substance, and showed that
the hot- and cold-end temperatures of a power plant can be
optimized such that the power output is maximal. The effi-
ciency at maximum power point isηCA = 1 −

√
TL/TH .

This provided a new performance limit, which is differ-
ent from Carnot efficiency, for the heat engine character-
ized by finite rate, finite duration, and finite-size. Since
the mid 1970s, finite time thermodynamics,i.e. the re-
search into identifying the performance limits of thermody-
namic processes and optimizing thermodynamic processes
has made great progress in the fields of physics and engi-
neering [12-21]. Ondrechenet al., [22] investigated the prob-
lem of maximizing work output from a finite heat reservoir
by infinite sequential Carnot cycles. Yan [23] derived the ef-
ficiency of a sequence of Carnot cycles operating between
a finite source and an infinite sink at maximum power out-
put. Andresenet al., [24] first put forward the concept of
finite-time exergy. With the help of a conventional exergy
analysis approach, Mironovaet al.,[25] introduced the crite-
rion of thermodynamic ideality, which is defined as the ratio
of actual rate of entropy production to the minimum rate of
entropy production, and applied it to the evaluation of per-
formances of thermodynamic systems. Sieniutycz and von
Sparkovsky [26] obtained the optimal reservoir temperature
profiles of multistage endoreversible continuous CA heat en-
gine [11] systems operating between a finite source and an in-
finite sink for maximum work output (also called finite time
exergy in Ref. 25), in which the heat transfer between the
working fluid and the reservoirs obeys Newton’s heat trans-
fer law [q ∝ ∆(T )]. Sieniutycz [27] further obtained those
of multistage endoreversible discrete heat engine systems for
maximum work output. Tsirlin [15,18], Berryet al.,[16] and
Mironovaet al.,[17] investigated the problem of the maximal
work that can be extracted from a system consisting of one in-
finite heat reservoir and one subsystem with the generalized
radiative heat transfer law [q ∝ ∆(Tn)], and further investi-
gated the problem of the maximal work that can be extracted
from a system consisting of one finite heat reservoir and one
subsystem with Newton’s heat transfer law. Tsirlin and Kaza-
kov [28] investigated the maximum work problems of several
subsystems with an infinite heat reservoir and one subsystem
with an infinite mass reservoir. Sieniutycz [29,30] obtained
a finite-rate generalization of the maximum-work potential
called generalized (rate-dependent) exergy with the method
of variational calculus [29], and further investigated the ef-
fects of heat transfer laws on the rate-dependent exergy [30].

Based on Refs. 15 to 18, this paper will further investigate the
problem of the maximum work that can be extracted from a
system consisting of one finite heat reservoir and one subsys-
tem, in which heat transfer obeys the generalized radiative
heat transfer law [q ∝ (∆Tn)] [31-39], and drive the finite-
time exergy for a fixed duration and a given initial state of the
subsystem by using optimal control theory.

2. System model

The model to be considered in this paper is illustrated in
Fig. 1, which consists of one finite heat reservoir and one
subsystem. There is no mechanical interaction or mass trans-
fer between the subsystem and the reservoir and only heat
transfer between them. The heat reservoir has a finite ther-
mal capacity, and its thermal capacity, temperature, entropy,
pressure, volume, and internal energy are denoted asC1, T1,
S1, p1, V1, andE1, respectively, while the corresponding pa-
rameters of the subsystem are denoted asT2, S2, p2, V2, and
E2, respectively. The heat transfer between the reservoir and
the subsystem obeys the generalized radiative heat transfer
law q(T1, T2) = k(Tn

1 − Tn
2 ), wherek is the heat conduc-

tance, and different values of power exponentn denote dif-
ferent heat transfer laws. Both the reservoir and the subsys-
tem have fixed composition and are assumed to be in internal
equilibrium, so their states could be described by two inde-
pendent thermodynamic variables. Once these two indepen-
dent variables are chosen, the other variables are determined
by the independent variables via the equation of state. For ex-
ample, when the independent variables of internal energyE
and volumeV are chosen to describe the state of the system,
one has the following relationships:

S = S(E, V ), 1/T = ∂S/∂E, p/T = ∂S/∂V (1)

FIGURE 1. Model of one finite heat reservoir and one subsystem.
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The independent variables of entropyS and volumeV
are chosen, and so

E = E(S, V ), T = ∂E/∂S, p = −∂E/∂V (2)

If the reservoir has an infinite heat capacity, its temper-
atureT1 and pressurep1 are constants. From Eq. (1), one
obtains

1/T1 = ∂S1/∂E1, p1/T1 = ∂S1/∂V1 (3)

The right hand sides of Eq. (3) are constants; then com-
bining Eqs. (1) and (3) yields

S1 = E1/T1 + p1V1/T1, (4)

If the working fluid of the subsystem is an ideal gas, its
constant volume heat capacityCV 2 and mole numberN2 are
constants. From Eq. (1), one can obtain

S2 = CV 2 ln E2 + N2R ln V2,

T = E2/CV 2, p2 = N2RT2/V2 (5)

whereR is the universal gas constant. The reservoir’s heat
capacity and its initial temperature are given byC1 and
T1(0) = T10, respectively. The initial internal energy and
temperature of the subsystem are given byE2(0) andT2(0),
respectively. The amount of the heat transfer and the process
duration are given byQ andτ , respectively. Exergy is a rel-
ative concept, which depends on the choosing of the referee
environment. If the referee environment is considered to be a
finite heat reservoir, when the capacity of the reservoir tends
to infinity (C1 → ∞), the obtained results would reduce to
those obtained with an infinite heat reservoir (i.e. the uni-
versal environment) [15-18]. Now suppose that the duration
of the processτ is a finite value. Then the maximal work
outputA∗ of the system is smaller than the classical exergy
Arev that is achieved in a reversible process,i.e. a process in
which the parameters of the system are infinitesimally sepa-
rated from those of the environment and the process duration
is effectively infinitely large. It is natural to callA∗(τ) the
finite-time exergy or finite-time availability [24].

In terms of the first law of thermodynamics, for the reser-
voir and the subsystem, one has

Ė1 = −q(T1, T2), Ṡ1 = σ1 = −q(T1, T2)/T1,

Ė2 = q(T1, T2)− P, Ṡ2 = σ2 = q(T1, T2)/T2 (6)

whereσ1 andσ2 are the entropy change rates of the reservoir
and the subsystem, respectively, andĖ1 = dE1/dt, the dot
notation signifies the time derivative. From the second law
of thermodynamics, the total entropy generation in the heat
transfer process∆S is given by

∆S =

τ∫

0

q(T1, T2)(1/T2 − 1/T1)dt = ∆S1 + ∆S2 (7)

where

∆S1 =

τ∫

0

[−q(T1, T2)/T1]dt

and

∆S2 =

τ∫

0

[q(T1, T2)/T2]dt

are the entropy changes of the reservoir and the subsystem,
respectively. The work done by the subsystem is

A =

τ∫

0

P (t)dt

and its absorbed heat is

Q =

τ∫

0

qdt.

From Eq. (6), one obtains

A = Q−∆E2 = Q + E2(0)− E2(τ) (8)

Determining the finite-time exergyA∗ is equivalent to
minimizing the internal energy change of the subsystem∆E2

due to the fact that the amount of heat transfer is known. One
can see that∂E2/∂S2 = T2 > 0 holds from Eq. (2). Then
minimizing ∆E2 could be further equivalent to minimizing
the entropy change of the subsystem∆S2. The reservoir’s
heat capacityC1 is a finite value; then

C1Ṫ1 = −q(T1, T2), T1(0) = T10 (9)

3. Finite-time exergy

From the above analysis, for the given amount of heatQ,
determining the finite-time exergyA∗ with a finite heat reser-
voir is equivalent to minimizing the entropy change of the
subsystem∆S2. Let ∆S2 be the objective function; one has

min ∆S2 =

τ∫

0

[q(T1, T2)/T2]dt (10)

The corresponding constraints are given by

τ∫

0

q(T1, T2)dt = Q (11)

Ṫ1 =
−q(T1, T2)

C1
, T1(0) = T10 (12)

Equation (11) shows that the amount of heat transfer is
fixed, and Eq. (12) shows that the thermal capacity of the
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heat reservoir is a finite value. This is a typical average op-
timal control problem in optimal control theory. The prob-
lem could be simplified if one replaces the variable of time
t by the control variable of temperatureT1. From Eqs. (11)
and (12), for the givenQ andT10, the final temperature of
the reservoir is given byT1(τ) = T10 − Q/C. Substituting
Eq. (12) into Eq. (10) yields

min ∆S2 =

T10∫

T1(τ)

(C1/T2)dT1 (13)

Combining Eq. (11) with Eq. (12) yields

τ∫

0

dt =

T10∫

T1(τ)

[C1/q(T1, T2)]dT1 = τ (14)

Our problem now is to find the minimal value of∆S2 in
Eq. (13) and the corresponding optimal temperature config-
uration of the subsystem subject to the finite time constraint
of Eq. (14). The problem is similar to that of determining
the optimal configurations of heat engines operating between
a finite source and an infinite sink for maximum power out-
put [40-48]. The modified Lagrange function is given by

L(T2, λ) = C1[1/T2 + λ/q(T1, T2)] (15)

whereλ is a Lagrange constant. From the extreme condition
∂L/∂T2 = 0, one has

λ∂q/∂T2 = −[q(T1, T2)/T2]2 (16)

Assume that the reservoir’s heat capacityC1 does not de-
pend on its temperatureT1; then substitutingq = k(Tn

1 −Tn
2 )

into Eqs. (12) and (14), respectively, yields

Tn+1
2 =

k(Tn
1 − Tn

2 )2

(λn)
(17)

T10∫

T10−Q/C1

[1/(Tn
1 − Tn

2 )]dT1 = kτ/C1 (18)

Equations (17) and (18) determine the optimal temperature
profiles of the reservoir and the subsystem, and they can be
solved analytically for only some special heat transfer laws,
for instance, Newton’s heat transfer law(n = 1) and the lin-
ear phenomenological heat transfer law(n = −1). For other
heat transfer laws, they need to be solved numerically. Equa-
tion (17) has the same expression as that of the optimal tem-
perature profiles of the finite high-temperature source and the
hot-side working fluid of the heat engine operating between a
finite source and an infinite sink for maximum power output
with the generalized radiative heat transfer law [43, 48]. One
could obtain the optimal temperature profiles of the reservoir
T ∗1 (t) and the subsystemT ∗2 (t) from Eqs. (17) and (18). Sub-
stitutingT ∗1 (t) andT ∗2 (t) into Eq. (10) yields the minimum

entropy change∆S∗2 (τ). From Eq. (8), the finite-time exergy
A∗ is given by

A∗ = Q−∆E2(∆S∗2 (τ), V ∗
2 (τ)) (19)

Assume that the working fluid in the subsystem is an ideal
gas; from Eq. (5), one has

∆S2(τ)=CV 2 ln
[
T2(τ)
T2(0)

]
+R ln

[
V2(τ)
V2(0)

]
(20)

∆E2=CV 2[T2(τ)−T2(0)]=E2(0)
[
T2(τ)
T2(0)

−1
]

(21)

Combining Eq. (20) with Eq. (21) yields

∆E2=E2(0)
[
(
V2(τ)
V2(0)

)−(R/CV 2) exp(
∆S2(τ)

CV 2
)−1

]
(22)

Substituting Eq. (22) into Eq. (19) yields the finite-time
exergyA∗

A∗ = Q− E2(0)
[(

V ∗(τ)
V (0)

)−(R/CV 2)

× exp
(

∆S∗2 (τ)
CV 2

)
− 1

]
(23)

4. Analyses for special examples

4.1. The results for the case with Newton’s heat transfer
law

In this case,n = 1. SinceT1 > T2, from Eq. (17), one
obtains

T2 =
T1

√
k/λ

(1 +
√

k/λ)
(24)

Substituting Eq. (24) into Eq. (18) yields

ln[T10/(T10 −Q/C1)]
[1−

√
k/λ/(1 +

√
k/λ)]

= kτ/C1 (25)

Combining Eq. (24) with Eq. (25) yields the optimal relation
between the reservoir temperature and the subsystem temper-
ature:

T ∗2 (T1) = T1{1− C1 ln[T10/(T10 −Q/C1)]/kτ} (26)

Substituting Eq. (26) into Eq. (9) yields the optimal temper-
ature of the reservoir versus time:

T ∗1 (t) = T10[(T10 −Q/C1)/T10](t/τ) (27)

Substituting Eq. (27) into Eq. (26) yields the optimal tem-
perature of the subsystem versus time:

T ∗2 (t) = T10{1− C1 ln[T10/(T10 −Q/C1)]/kτ}
× [(T10 −Q/C1)/T10](t/τ) (28)
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The optimal temperature configuration of the subsystem
for the finite-time exergy consists of three segments, in-
cluding the initial and final instantaneous adiabatic branches
and the intermediate heat transfer branch, as follows: at
t = 0, the subsystem jumps instantly from the given ini-
tial T2(0) to the T ∗2 (0); then T ∗2 (t) changes according to
Eq. (28) during the time interval(0, τ); finally, at t = τ ,
the temperature of the subsystem jumps again, and its fi-
nal state is defined by the equation of state and the opti-
mal volumeV ∗(τ), which is to be found from the condi-
tion V ∗(τ) = arg minV2 E2(S∗2 (τ), V2(τ)), i.e. the volume
of the working fluid corresponding to the minimumE∗

2 (τ)
among the admissible set of volumeV2(τ). From Eq. (27)

and Eq. (28), one can see that the optimal configuration of
the heat transfer process for the finite-time exergy with New-
ton’s heat transfer law such is that the temperatures of the
reservoir and the subsystem change exponentially with time
and the temperature ratio between the reservoir and the sub-
system is a constant. They are the same as those obtained in
Refs. 41 to 44 and 48. Substituting Eq. (26) into Eq. (13)
yields the minimal entropy change∆S∗2 (τ):

∆S∗2 (τ) =
kτC1 ln[T10/(T10 −Q/C1)]

{kτ − C1 ln[T10/(T10 −Q/C1)]} (29)

Substituting Eq. (29) into Eq. (23) yields

A∗ = Q− E2(0)

{(
V ∗

2 (τ)
V2(0)

)−(R/CV 2)

exp
{

kτC1 ln[T10/(T10 −Q/C1)]
CV 2{kτ − C1 ln[T10/(T10 −Q/C1)]}

}
− 1

}
(30)

Equations (29) and (30) are the same as those obtained
in Refs. 15 to 18. It is noted that the optimal relation be-
tween the reservoir temperature and the subsystem temper-
ature and the optimal temperature of the subsystem versus
time obtained in Refs. 15 to 18 are as follows:

T ∗2 (T1) = T1
kτ − C1 ln[T10/(T10 −Q/C1)]

kτ
(31)

T ∗2 (t) = (T10 −Q/C1)

× kτ − C1 ln[T10/(T10 −Q/C1)]
kτ

exp
(

t

τ

)
(32)

Equation (31) is correct, which is the same as Eq. (26) in this
paper, while Eq. (32) is wrong. This could be proved easily.
Assume Eq. (32) is correct; then from Eqs. (31) and (32),
one obtains the optimal temperature of the reservoir versus
time, as follows:

T ∗1 (t) = (T10 −Q/C1) exp
(

t

τ

)
(33)

From Eq. (33),T ∗1 (0) = T10 − Q/C1 whent = 0, and
T ∗1 (τ) = (T10 − Q/C1)e whent = τ . It does not coincide
with the given boundary conditions of the reservoir tempera-
ture,i.e. T ∗1 (0) = T10 andT ∗1 (τ) = T10 −Q/C1.

Therefore, Eq. (5.45) on page 209 in Ref. 16 and the
same equation on page 215 in Ref. 15, page 209 in Ref. 17,
and page 78 in Ref. 18 (Eq. (32) in this paper) should be
replaced by Eq. (28) in this paper. Because the minimal en-
tropy change [∆S∗2 (τ)] of the system in Refs. 15 to 18 was
obtained based on Eq. (31) rather than Eq. (32) in this paper,
it is correct.

4.2. The results for the case with the linear phenomeno-
logical heat transfer law

In this case,n = −1, and the heat conductancek is negative.
SinceT1 > T2, from Eq. (17), one obtains

T−1
2 − T−1

1 =
√
−λ/k (34)

Substituting Eq. (34) into Eq. (18) yields
√
−k/λ = −kτ/Q (35)

Combining Eq. (34) with Eq. (35) yields the optimal re-
lation between the reservoir temperature and the subsystem
temperature,

T ∗1 (t) = T10[(T10 −Q/C1)/T10](t/τ) (36)

Substituting Eq. (36) into Eq. (9) yields the optimal tem-
perature of the reservoir versus time:

T ∗1 (t) = T10 −Qt/(C1τ) (37)

Substituting Eq. (37) into Eq. (36) yields the optimal
temperature of the subsystem versus time:

T ∗2 (t) =
kτ(C1T10τ −Qt)

[C1kτ2 −Q(C1T10τ −Qt)]
(38)

The optimal temperature configuration of the subsystem
for the finite-time exergy consists of three segments, in-
cluding the initial and final instantaneous adiabatic branches
and the intermediate heat transfer branch, as follows: at
t = 0, the subsystem jumps instantly from the given ini-
tial T2(0) to the T ∗2 (0); then T ∗2 (t) changes according to
Eq. (38) during the time interval(0, τ); finally, at t = τ ,
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the temperature of the subsystem jumps again, and its fi-
nal state is defined by the equation of state and the opti-
mal volumeV ∗(τ), which can be found from the condition
V ∗(τ) = arg minV2 E2[S∗2 (τ), V2(τ)]. From Eq. (37) and
Eq. (38), the optimal configuration of the heat transfer pro-
cess for the finite-time exergy with the linear phenomenologi-
cal heat transfer law is such that the temperatures of the reser-
voir and the subsystem change linearly and non-linearly with
time, respectively, and the difference in reciprocal tempera-
ture between the reservoir and the subsystem is a constant.
They are the same as those obtained in Refs. 42, 43, and 48.
Substituting Eq. (36) into Eq. (13) yields the minimal en-
tropy change∆S∗2 (τ), as follows:

∆S∗2 (τ) = C1 ln[T10/(T10 −Q/C1)]−Q2/(kτ) (39)

Assume that the working fluid in the subsystem is an ideal
gas; substituting Eq. (39) into Eq. (23) yields

A∗ = Q− E2(0)
[(

V ∗(τ)
V (0)

)−(R/CV 2)

× exp
(

kτC1 ln[T10/(T10−Q/C1)]−Q2

kτCV 2

)
−1

]
(40)

4.3. The results for the case with the radiative heat
transfer law

In this case,n = 4. Eqs. (9) and (17) further give

C1Ṫ1 = −k(T 4
1 − T 4

2 ), T1(0) = T10 (41)

T 5
2 = k(T 4

1 − T 4
2 )2/(4λ) (42)

respectively. There are no analytical solutions forT ∗1 (t) and
T ∗2 (t), which should be solved numerically. It is shown that
the optimal temperature configuration of the subsystem for
the finite-time exergy consists of three segments, including
the initial and final instantaneous adiabatic branches and the
intermediate heat transfer branch, as follows: att = 0, the
subsystem jumps instantly from the given initialT2(0) to the
T ∗2 (0); thenT ∗2 (t) changes according to Eq. (42) during the
time interval(0, τ); finally, at t = τ , the temperature of the
subsystem jumps again, and its final state is defined by the
equation of state and the optimal volumeV ∗(τ), which can
be found from the condition

V ∗(τ) = arg minV2E2(S∗2 (τ), V2(τ)).

The minimal entropy change∆S∗2 (τ) is also obtained numer-
ically. Assume that the working fluid in the subsystem is an
ideal gas, substituting∆S∗2 (τ) into Eq. (23) yields

A∗=Q−E2(0)

×
[(

V ∗(τ)
V (0)

)−(R/CV 2)

exp
(

∆S∗2 (τ)
CV 2

)
−1

]
(43)

FIGURE 2. Optimal temperature configurations for the finite-time
exergy during the heat transfer processes with Newton’s heat trans-
fer law.

FIGURE 3. Finite-time exergy versus process duration for the case
with Newton’s heat transfer law.

4.4. The results for the case with infinite thermal capac-
ity reservoir

In this case,C1 → ∞. Now the finite-time exergy with a
finite reservoir reduces to that with an infinite reservoir. Ac-
cording to Refs. 15 to 18, the optimal thermodynamic pro-
cesses for the finite-time exergy with Newton’s, linear phe-
nomenological, and radiative heat transfer law are those for
which the temperature of the subsystem is a constant and the
temperature difference between the reservoir and the subsys-
tem is also a constant during the heat transfer process with-
out exception. Then the temperature of the working fluid is a
constant and equal toT ∗2 ; from Eq. (13) one obtains

∆S∗2 (τ) = Q/T ∗2 (44)

Substituting Eq. (44) into Eq. (23) yields

A∗ = Q− E2(0)

×
[(

V ∗(τ)
V (0)

)−(R/CV 2)

exp
(

Q

CV 2T ∗2

)
− 1

]
(45)
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SinceT ∗2 is non-negative,A∗(τ) is defined for

τ>τmin=Q/(kTn
1 ).

5. Numerical examples and discussions

In the calculations, the initial temperature of the heat reser-
voir is T10=1000 K, the subsystem is 1mol ideal gas, the uni-
versal gas constant isR = 8.314 J/(mol · K), the mole con-
stant volume heat capacity isCV 2 = 3R/2, the initial volume
is V2 (0) = 22.4 liter, the initial temperature is T2(0)=300 K,
the amount of heat transfer isQ = 1 × 104 J, and the initial
internal energy isE2(0) = 3741.5 J. In order to analyze ef-
fects of changes of the heat capacity on the optimized results,
the heat capacity of the reservoir is set to beC1 = 20 J/K,
C1 = 80 J/K, andC1 →∞, respectively.

5.1. Numerical example for the case with Newton’s heat
transfer law

In this case, the heat conductance is set ask = 13.5 W/K.
Figure 2 shows the optimal temperature configurations for
the finite-time exergy during the heat transfer processes with
τ = 8 s. Figure 3 shows the finite-time exergy versus pro-
cess duration. From Fig. 2, one can see that the optimal
temperature configuration during the heat transfer process is
such that the temperatures of the reservoir and the subsys-
tem change exponentially with time, and the temperature ra-
tio between the reservoir and the subsystem is a constant. The
amounts of temperature changes of the reservoir and the sub-
system decrease with the increase in the heat capacity of the
reservoir. When the heat capacity of the reservoir tends to
infinitely large, the optimal configuration of the heat transfer
branch is such that the subsystem temperature is a constant,
and the temperature difference between the reservoir and the
subsystem is also a constant during the heat transfer process.
From Fig. 3, one can see that with the increase of the process
duration, the finite time exergy tends to a constant,i.e. the
classical thermodynamic exergy. For the same process du-
ration, the finite-time exergy is an increasing function of the
heat capacity of the reservoir,i.e. the finite-time exergy with
a finite thermal capacity heat reservoir is less than that with an
infinite thermal capacity heat reservoir under the same con-
dition. For a fixed process durationτ , the maximum average
power isP (τ) = A∗(τ)/τ , which is equal to the tangent of
the slope of the line segment connecting the origin with the
pointA∗(τ) in Fig. 3. Figure 4 shows the maximum average
powerP versus process durationτ . From Fig. 4, one can
see that the maximum average power attains its maximum
value at one point along the axis of process duration, and the
average power tends to zero when the process time tends to
infinitely large, i.e. the power for the reversible process is
zero. It is evident that the finite-time exergy is a more real-
istic, stronger limit compared to the classical thermodynamic
exergy.

FIGURE 4. Maximum average power versus process duration for
the case with Newton’s heat transfer law.

FIGURE 5. Optimal temperature configurations for the finite-
time exergy during the heat transfer processes with the linear phe-
nomenological heat transfer law.

FIGURE 6. Finite-time exergy versus process duration for the case
with the linear phenomenological heat transfer law.
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FIGURE 7. Maximum average power versus process duration for
the case with the linear phenomenological heat transfer law.

FIGURE 8. Optimal temperature configurations for the finite-time
exergy during the heat transfer processes with the radiative heat
transfer law.

FIGURE 9. Optimal temperature configurations for the finite-time
exergy during the heat transfer processes with different heat trans-
fer laws.

5.2. Numerical example for the case with the linear phe-
nomenological heat transfer law

In this case, the heat conductance is set ask=−4.0×106W·K.
Figure 5 shows the optimal temperature configurations for
the finite-time exergy during the heat transfer processes with
τ = 8 s. Figure 6 shows the finite-time exergy versus process
duration. From Fig. 5, one can see that the optimal tempera-
ture configuration during the heat transfer process is such that
the temperatures of the reservoir and the subsystem change
linearly and non-linearly with time, respectively, and the dif-
ference in reciprocal temperature between them is a constant.
The amounts of temperature changes in the reservoir and the
subsystem decrease with the increase in the heat capacity of
the reservoir. When the heat capacity of the reservoir tends to
infinitely large, the optimal configuration of the heat transfer
branch is such that the subsystem temperature is a constant,
and the temperature difference between the reservoir and the
subsystem is also a constant during the heat transfer process.
From Fig. 6, one can see that with the increase in process du-
ration, the finite time exergy tends to a constant,i.e. the clas-
sical thermodynamic exergy. For the same process duration,
the finite-time exergy is an increasing function of the heat ca-
pacity of the reservoir,i.e. the finite-time exergy with a finite
thermal capacity heat reservoir is less than that with an infi-
nite thermal capacity heat reservoir under the same condition.
Figure 7 shows the maximum average powerP versus pro-
cess durationτ for the case. From Fig. 7, one can see that the
maximum average power also attains its maximum value at
one point along the axis of process duration, and the average
power tends to zero when the process time tends to infinitely
large, i.e. the power for the reversible process is zero. It is
evident that the finite-time exergy is a more realistic, stronger
limit compared to the classical thermodynamic exergy.

5.3. Numerical example for the case with the radiative
heat transfer law

In this case, the heat conductance is set ask=1.0×10−8W/K4.
Figure 8 shows the optimal temperature configurations for the
finite-time exergy during the heat transfer processesτ = 8s.
From Fig. 8, one can see that the optimal temperature con-
figuration during the heat transfer process is such that the
temperatures of the reservoir and the subsystem change lin-
early with time. The amounts of temperature changes in the
reservoir and the subsystem decrease with the increase in the
heat capacity of the reservoir. When the heat capacity of the
reservoir tends to infinitely large, the optimal configuration
of the heat transfer branch is also such that the subsystem
temperature is a constant, and the temperature difference
between the reservoir and the subsystem is also a constant
during the heat transfer process. According to the calculation
results, the same conclusions as those obtained for the cases
with Newton’s and linear phenomenological heat transfer law
are obtained.
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FIGURE 10. Finite-time exergy versus process duration for the
cases with different heat transfer laws.

6. Performance comparison for different heat
transfer laws

Figure 9 shows the optimal temperature configurations for
the finite-time exergy during the heat transfer processes with
different heat transfer laws (C1 = 20 J/K andτ = 12 s). From
Fig. 9, one can see that the optimal temperature configura-
tions of the reservoir and the subsystem for the finite-time ex-
ergy with different heat transfer laws are different from each
other significantly, see detail mentioned above. Figure 10
shows the finite-time exergy versus process duration with dif-
ferent heat transfer laws andC1 →∞. For the same process
duration, the finite-time exergy for the case with the radia-
tive heat transfer law is the largest, the finite-time exergy for
the case with the linear phenomenological heat transfer law is
the smallest, and the finite-time exergy for the case with the
Newton’s heat transfer law lies between them. Heat transfer
laws have significant effects on the finite-time exergy and the
corresponding optimal thermodynamic process, so it is nec-
essary to investigate the results with different heat transfer
laws.

7. Conclusion

On the basis of Refs. 15 to 18, the problem of the maximal
work that can be extracted from a system consisting of one

finite heat reservoir and one subsystem with generalized ra-
diative heat transfer law [q ∝ ∆(Tn)] is investigated in this
paper. Finite time exergy is derived for the fixed duration
of the process and the given initial state of the subsystem
by applying optimal control theory. The optimal temperature
configuration of the subsystem for the finite-time exergy con-
sists of three segments, including the initial and final instan-
taneous adiabatic branches and the intermediate heat transfer
branch. The optimal configuration of the heat transfer branch
with Newton’s heat transfer law [q ∝ ∆(T )] is such that
the temperatures of the reservoir and the subsystem change
exponentially with time and the temperature ratio between
the reservoir and the subsystem is a constant. The optimal
configuration of the heat transfer branch with the linear phe-
nomenological heat transfer law [q ∝ ∆(T−1)] is such that
the temperatures of the reservoir and the subsystem change
linearly and non-linearly with time, respectively, and the dif-
ference in the reciprocal temperature between the reservoir
and the subsystem is a constant. The optimal configuration
of the heat transfer branch with the radiative heat transfer law
[q ∝ ∆(T 4)] is significantly different from those with the
former two different heat transfer laws. Some modifications
are made to the results in Refs. 15 to 18, and the obtained
results in this paper become those with an infinite heat reser-
voir [15-18] when the capacity of the reservoir tends to infin-
ity. The finite-time exergy in this paper is derived under the
constraint that the process duration is finite and the assump-
tion that both the reservoir and the subsystem are in internal
equilibrium. If the internal irreversibility of the subsystem
is further considered, the corresponding maximum work out-
put is lower than the finite-time exergy obtained in this paper.
The finite-time exergy tends to the classical thermodynamic
exergy and the average power tends to zero when the process
duration tends to infinitely large.
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