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Influence of the absorption grating on the diffraction efficiency in thick
photovoltaic media in transmission geometry under non linear regimes
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cInstituto de F́ısica, Universidad Nacional Autónoma de Ḿexico,
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With simultaneous phase and absorption gratings, we calculated the contribution of the absorption grating to the total diffraction efficiency
in thick samples (≈ 1 cm) of iron doped LiNbO3. We considered transmission geometry, with an applied field of 5 kV/cm. First we solved
numerically the set of partial, non linear, material rate differential equations. These solutions were used to calculate the energy exchange in
two wave mixing. We solved numerically the beam coupling equations along sample thickness, for different values of grating period. For
the used value of iron doping, we found that the contribution of the absorption grating is less than 0.02% of the total value of the diffraction
efficiency.
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Con rejillas simult́aneas de fase y de absorción, calculamos la contribución de la rejilla de absorción a la eficiencia total de difracción en
muestras gruesas (≈1 centimetro) de LiNbO3 dopado con hierro. Consideramos la geometrı́a de transmisión, con un campo aplicado de
5 kV/cm. Primero resolvimos nuḿericamente el sistema de ecuaciones diferenciales parciales, no lineales del material. Estas soluciones
fueron utilizadas luego para calcular el intercambio de energı́a en la mezcla de dos ondas. Resolvimos numéricamente las ecuaciones del
acoplamiento de los haces a lo largo del grosor de la muestra, para diversos valores del perı́odo de la rejilla. Para el valor usado del dopaje
de hierro, encontramos que la contribución de la rejilla de absorción es menos de 0.02% del valor total de la eficiencia de difracción.

Descriptores:Rejillas fotorrefractivas; rejillas de absorción; eficiencia de difracción; óptica no lineal.

PACS: 42.65.-k; 42.70-a; 42.70.Nq

1. Introduction

Ferroelectric lithium niobate is a photorefractive material that
has attracted a great deal of research interest. This mate-
rial is a photovoltaic medium that has a great optical quality
and excellent photorefractive properties. It is widely used for
electro-optic modulators and frequency doublers. It has been
used in a large variety of optical devices [1-5]; for this reason
this material’s properties are of special interest. In this work,
we are interested on the relevance of the absorption grating
on the value of the total diffraction efficiency for transmission
gratings of iron doped lithium niobate.

The absorption grating appears because of the redistribu-
tion of electrons between the ionized and un-ionized donors.
The absorption coefficient is proportional to the non ionized
donors, which are available for ionization [6,7]. From this
and from the numerical solution to the material rate equa-
tions, we have obtained an expression for the absorption
modulation and its phase.

For strong beam coupling there is a spatial redistribu-
tion of the light intensity pattern. In this way, the grating
is spatially non-uniform and its amplitude and phase become
a function of crystal thickness. The uniform grating approxi-

mation is reasonable for weak coupling or thin-enough crys-
tals. It is not adequate for fiber like crystals [8], or for strong
coupling and high modulation depth [9].

We considered thick samples and high modulation
depths. Under these conditions, we have strong beam cou-
pling effects. We also considered the grating vector,KG,
of the recorded spatial grating directed along the crystal axis
and parallel to the external fieldE0, as shown in Fig. 1. We
started by solving numerically the set of non-linear material
rate differential equations for LiNbO3 to find the full overall
space charge field, fromt = 0 seconds up to the station-
ary state. After that, we used these solutions to calculate
the absorption modulation and phase and the diffraction ef-
ficiency for two wave mixing, including the non uniformity
of the grating, and of the magnitude and phase of the light
modulation along sample thickness.

2. Theoretical framework

We restrict our consideration to the band-transport model.
We consider only one type of charge carriers (electrons) and
one photoactive impurity level [10]. The differential equa-
tions in this model are the following.
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TABLE I. Experimental parameters [4,11-12] for LiNbO3 taken for
our calculations.

Iron doped LiNbO3 Ref.

ε Dielectric constant 30 [11]

n Average refractive index 2.34 [11]

reff Electro optic coefficient (mV−1) 8.6×10−12 [11]

Λ Fringe spacing (nm) 105

µ Mobility lifetime product (cm2 V−1) 810−5 [11]

γ Recombination constant (m3s−1) 5.0×10−14 [11]

β Thermal-excitation rate 0

s Photo ionization cross

section (m2J−1) 9.7×10−5 [12]

sκ Photovoltaic coefficient (cm3 V−1) 1.56817×10−26 [12]

Eph Photovoltaic field (V/cm) 1.0×104 [11]

ND Donor density (m−3) 1026 [4]

NA Acceptor density (m−3) 1024 [4]

α0 Absorption coefficient (cm−1)

λ = 488 nm 3.0 [4]

FIGURE 1. Transmission geometry;θ is the angle of incidence.
Iinc is the incident beam;It and Id are the transmitted and
diffracted beams respectively; In a) the incident beam comes from
the right; in b) the incident beam comes from the left; the sample
thickness isd. The applied field isE0.
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WhereNA, ND, N+
D and n are respectively the densities

of compensating acceptors centers, donors, ionized donors
and free electrons;s is the light-excitation cross section,γ
is the two-body recombination coefficient;β is the thermal-
excitation rate;ε is the static dielectric constant,µ is the

electron mobility;kB is the Boltzmann’s constant;T is the
absolute temperature;E0 is the external homogeneous elec-
tric field; ESC is the space-charge field;e is the elementary
charge andp is the photovoltaic coefficient. The experimen-
tal parameters [11-12] used for LiNbO3 are shown in Table I.

The light excites electrons to the conduction band. These
electrons migrate due to diffusion, drift and photovoltaic ef-
fect. This migration is from the bright to the dark parts of the
crystal where they are captured by the compensating centers.
In this manner a space charge field appears.

The illumination on the sample is the following.
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(
1 +

m

2
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+
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2

exp(−i( ~KG •→r −δ))
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Whereδ refers to the phase difference between the incident
waves,m is the complex light modulation.
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→
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2A1(
→
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→
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→
r )
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→
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→
r )), (7)

And; ~KG = ~k1 − ~k2; ~k1, ~k2 are the incident wave vectors.
When a sinusoidal illumination pattern is recorded on the

crystal, the optical properties of the medium vary in a har-
monic way.

n = n0 + n1 cos( ~KG • ~r + ΦG + ψm). (8)

The absorption coefficient is

α(~r) = α0 + |α1| cos( ~KG • ~r + ϕa). (9)

Where
→

KG is the grating vector, which is perpendicular to
the fringes recorded in the medium;n is the refractive index
of the medium at the point~r; n0 is the average refractive in-
dex andn1 is the refractive modulation,ψm is the phase of
the complex light modulation,m(z); ΦG is the phase of the
photorefractive grating;α(~r) is the absorption at the point~r;
α0 is the average absorption;α1 is the absorption modulation
andϕa is the phase of the absorption grating.

We solved numerically the set of non-linear material
rate differential equations (1)-(5), for a fringe spacing
Λ = 0.250 microns. We obtained the overall space charge
field. We followed the method described elsewhere [13,14].
We then obtained the numerical solutions for several values
of m0 = |m(z = 0)|, that is the absolute value of the com-
plex light modulation at the surface of the sample, between 0
and 1, when recording. Then we performed the Fourier de-
composition for the calculated overall space charge field. In
this way, we obtained the amplitudeE1 , of its fundamental
component and its phase,ΦG, with regard to the light in-
terference pattern. We did this for every one of the consid-
ered cases. We performed these calculations for an applied
d.c. field of 5 kV/cm. It is necessary to mention that this
method does not rely on a Fourier expansion so its validity
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is not limited to using a truncated harmonic basis. In this
way we have obtained the grating strength and its phase as
functions of light modulation. These are necessary to solve,
self-consistently, the beam coupling equations.

3. Coupled beam equations

Let the complex electric fields of the two beams interacting
in the crystal be the following.

ψ1 = A1 exp i(ωt−
→
k1 •

→
r) (10)

ψ2 = A2 exp i(ωt−
→
k2 •→r −δ). (11)

WhereA1 and A2 are the complex amplitudes of the two
beams;ω is the angular frequency. Equation (6) gives the
intensity of the interference pattern inside the crystal.

We have also considered the absorption as given in Ref. 6,

α(z) = S(ND −N+
D (z)). (12)

Where N+
D is the ionized donor density [6]. We performed

the Fourier decomposition ofα(z) to obtain the amplitude of
the absorption grating,|α1|, and its phase,ϕa. Then, we used
these values in Eq. (9).

In the transmission geometry, the coupled beam equa-
tions are the following [15].

dA1

dz
= −i

(
κ∗ − i

b∗

2

)
A2 − α0

2
A1, (13)

dA2

dz
= −i

(
κ− i

b

2

)
A1 − α0

2
A2. (14)

Where the coupling factor,κ is due to the space charge field;
we calculated this factor from the solution of the material rate
equations; it is complex, and changes along sample thick-
ness,z.

κ =
π∆n1(z)
λ cos θ

=
π

λ cos θ

n3reff |E1(z)|
2

exp i(ΦG + ψm). (15)

Whereλ, θ, α and reff are the wavelength, the incidence
angle, the absorption coefficient and the electro-optic coef-
ficient, respectively. The coupling factor b is due to the ab-
sorption grating. It is:

b = i |α1| exp(iϕa) (16)

The amplitude of the modulation of the absorption coef-
ficient is:

|α1| = α0
N+

D1

(ND −NA)
. (17)

WhereN+
D1 is the magnitude of the first Fourier coefficient

of N+
D . We obtained Eq. (17) using first the spatial average

of α(z) over a grating period; then, we used the magnitude
of the first Fourier coefficient ofα(z). Notice that the spatial
average ofα(z) is α0 and that the spatial average ofN+

D (z)
is NA.

The solutions to the beam coupling Eqs. (13) to (14) must
be self-consistent. This is because the changes in the inten-
sities and phases of the waves cause changes on the light
modulation and on the refraction index. These changes, in
turn, induce new changes in the intensity and phases of the
waves. We solved this set of equations in a self-consistent
way. We considered no restrictions on the magnitude of the
coupling factors given in Eqs. (15) and (16). We divided the
sample in thin layers of thickness∆z [13] in such a way that
within each layerκ(z) is practically constant. This means
that we did not allowκ(z) to change more that 0.1% within
each layer. In this way, within each layer we have analytical
solutions

A1 =
iβ

2κ− ib

[
C1 exp(

1
2
βz)−C2 exp(−1

2
βz)

]

× exp(−1
2
α0z), (18)

A2 =
[
C1 exp(

1
2
βz) + C2 exp(−1

2
βz)

]

× exp(−1
2
α0z), (19)

Where

β =
√

2i (b∗κ + κ∗b) + |b|2 − 4 |κ|2,

C1 andC2 are constants calculated from the initial values of
A1 andA2.

When a change ofκ(z) larger than 0.1% occurred, we
chose a smaller layer and calculated the new corresponding
set of values of constants for the corresponding layer∆z. We
started evaluating the initial set of constants for the first layer
at the surface of the sample by usingκ(z = 0) = κ0. Next,
for the following layers, the values of the complex amplitudes
of the beams at the end of each interval were used to evaluate
m and therefore we obtain a new value ofκ at z where the
following layer starts.

From the complex amplitudes, obtained from the self-
consistent solutions of the set of equations, we calculated the
intensities and phases of each wave. From these we calcu-
lated the corresponding light modulationm(z) as a function
of z, for each sample of thicknessd.

Then, with the previously recorded∆n1(z), we calcu-
lated the diffraction efficiency

η =
Idiff

Itrans + Idiff
. (20)

WhereItrans andIdiff are the transmitted and diffracted in-
tensities respectively. The grating can be read from the left
or from the right side (see Fig. 1). The values for the diffrac-
tion efficiency for these two Bragg-matched conditions can
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be different when phase and amplitude gratings are simulta-
neously present [16]. We calculated the diffraction efficiency
reading from the left (ηL) and from the right side (ηR). This
was done exchanging the solutions for A1 and A2 given in
Eqs. (18) and (19), and applying Eq. (20).

4. Results and discussion

Our calculations were performed for the Bragg condition,
with a wavelengthλ = 488 nm. We used several values for
the fringe spacing,Λ = 1.0; 0.420 and 0.250 microns, and an
applied d.c. field of 5 Kv/cm.

FIGURE 2. Difference of the values for the diffraction efficiency
amplified 100 times. The fringe spacing isΛ = 0.105 microns. The
applied field is 5 Kv/cm.

FIGURE 3. Difference of the values for the diffraction efficiency
amplified 100 times. The fringe spacing isΛ = 0.250 microns. The
applied field is 5 Kv/cm.

FIGURE 4. Difference of the values for the diffraction efficiency
amplified 100 times. The fringe spacing isΛ = 0.420 microns. The
applied field is 5 Kv/cm.

FIGURE 5. Total diffraction efficiency as a function of sample
thickness. We show the value ofη for Λ = 0.250 micron and si-
multaneous phase and absorption gratings.

FIGURE 6. Calculation of the diffraction efficiency due to the ab-
sorption grating alone.

FIGURE 7. The coupling parameter due to the absorption grating,
b, as a function of sample thickness. We show the variation of the
real part, of the imaginary part and of the magnitude of b. From this
figure, we see clearly that the phase,ϕa, of the absorption coeffi-
cient is different from zero. The fringe spacing isΛ=0.250 microns.
The applied field is 5 Kv/cm, andm0= 0.8.

In Figs. 2 to 4 we show the difference of the values for
the diffraction efficiency amplified 100 times. We did this
for several values of the incident light modulation and grat-
ing period. We can see that this difference is very small for
all cases. The largest values for this difference occur for a
grating of 0.250 microns (see Figs. 3).

In Fig. 5 we show the value of the diffraction efficiency,
for Λ = 0.250 microns and simultaneous phase and absorption
gratings. For this case, the largest difference between the two
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values of the diffraction efficiency is around 5×10−3. This
difference cannot be seen on this figure.

In Fig. 6 we show the diffraction efficiency for the ab-
sorption grating alone, withΛ = 0.250 microns and m0=0.8.
The largest value is around 10−4 and occurs for a sample
thickness of about 0.8 cm.

Finally, in Fig. 7 we show the real, the imaginary part
and the magnitude of the complex absorption coefficient [see
Eqs. (16) and (17)]. From this figure, we can see clearly that
the phase of the absorption modulation is not zero.

5. Summary and conclusions

For the transmission geometry, we have considered the si-
multaneous presence of phase and absorption gratings of iron
doped lithium niobate. In order to assess the importance of
the absorption grating on the total value of the diffraction ef-
ficiency, we followed several steps. The first was to solve
numerically the set of nonlinear differential equation for the
material using the band transport model from 0 seconds up
to the stationary state. We included the photovoltaic effect.
From the solution, we obtained the full space charge field
and the final donor density. Then we performed the Fourier
decomposition for each of the calculated overall space charge
fields. In this way, we obtained the amplitudeE1 of its fun-
damental component and its phase,ΦG, with regard to the
light interference pattern. We did this for several values ofm

between 0 and 1. In all cases, we included an applied field
of 5 kV/cm. The modulation of the absorption coefficient de-
pends on the magnitude of the first Fourier coefficient of the
concentration of ionized donors. The corresponding phase is
not zero. These solutions were used to include the non unifor-
mity of the gratings to calculate the beam energy exchange.

Then, we solved the beam coupling equations for record-
ing and for reading in a self-consistent way to include the
variation of light modulation along the sample thickness.
From these solutions, we calculated the beam intensities, the
light modulation and diffraction efficiency when both grat-
ings are present, and with only the phase grating. We found
that the contribution of the absorption grating to the value of
the diffraction efficiency, for the given set of values for phys-
ical parameters of LiNbO3 is negligible. The contribution of
the absorption grating is less than 0.5% of the total value of
the diffraction efficiency. The value of the modulation of the
absorption coefficient depends on the magnitude of the first
Fourier coefficient of the concentration of ionized donors in
the material for the stationary state. The phase of the absorp-
tion coefficient modulation is not zero.
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