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We present a theorical study of the kinetic orientational relaxation of a colloidal monodispersed system of stiff and long rods, for small
wavevectors. This process is described by the dynamic structure factor. The relationship between this factor with the fluctuations of the sec-
ond order parameter is provided in the limit of wavevectors going to zero. The second order parameter is computed with the Smoluchowski
formalism, neglecting hydrodynamic interactions, and using the Maier-Saupe potential for the rods interaction. Considering suitable prop-
erties, the isothermal orientation susceptibility proposed is able to localize the isotropic and nematic concentrations in qualitative agreement
with well known computer simulations results. At relaxation our model predicts a single value for the maximum of the orientation property
proposed, which it is reached at different times, according to the concentration.
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1. Introduction

Many classes of soft matter microstructures exhibit a tailored
response and transport properties because of the interactions
of rods [1–5]. Some soft matter materials are the well known
Tobacco Mosaic Virus and the fd virus, the richness of these
materials is due to their various ordered phases, where the
most commonly are the isotropic and nematic [6–8]. In this
work we focus on the description of the nematic isotropic
phase transition in stiff and long colloidal rods from a kinetic
point of view. One of the challenges of the description of
the phase transition is its relation with mechanical response
functions, that are the most accessible properties in an exper-
iment. For instance the mechanical susceptibility provides us
with a mechanical stability condition [9]. In particular it is
well known that the structure factor in the limit of very small
wave vectors is the isothermal compressibility, which can be
probed in a light scattering experiment.

The aim of this work is to describe the orientational re-
laxation by monitoring the dynamic structure factor at small
wavevectors in a colloid of hard, long and stiff rods initially
aligned.

The idea behind it is to demonstrate what we can learn
by applying the machinery of statistical thermodynamics to a
simple model: hard, long and stiff rods in suspension, which
exhibit the nematic isotropic phase transition. There are two
motives in this approach. The former is simply that the study
of a simple model provides insight, while the latter is the
close relation to experiments (or computer ”experiments”)
showing the complex features of relevance in our model.

The nematics phase in liquid crystals has been studied
using different approaches; experimentally, via dispersion
of depolarized light [10], by simulation [7] or theoretically
[11–13]. The pioneering Onsager’s work concerns itself with
a density functional approach to compute free energy in order

to describe the isotropic nematic phase transition [12]. An-
other approach is the kinetic approach of the Smoluchowski
equation [13], which is able to describe the nematic isotropic
phase transitions. In this work we focus on the calculation of
the second order parameter by using the Smoluchowski for-
malism in order to describe the nematic isotropic phase tran-
sition and its connection with a mechanical response func-
tion.

Because the dynamic structure factor can be monitored
by means of a time resolved small angle depolarized dynamic
light scattering experiment [14], we follow the orientational
relaxation of rods by observing the time evolution of the dy-
namic structure factor [15]. Initially the rods are perfectly
aligned by using an external field, therefore they themselves
return to the equilibrium state when the external field is re-
moved. As will be seen the dynamic structure factor can
be written in terms of the parameters of order two and four.
The second order parameter is calculated from the equation
of evolution of the orientational order parameter tensorS(τ),
which is obtained from the Smoluchowski equation and the
closure relation provided by Dhont [16], valid at equilibrium.
Like this author, we extend the validity of this closure for
nonequilibrium. The fourth order parameter is obtained di-
rectly from the closure relation cited above. At the limit of
the wavevector going to zero, we will show the connection of
the fluctuations of the second order parameter with the self
structure factor, the main quantity in the description of the
nematic isotropic phase transition.

The work is organized as follows. Because the second
order plays an important role we start with its definition and
evaluation; therefore in Sec. 2 the Smoluchowski formalism
is given, using the Maier-Saupe potential together with an ap-
propriate closure relation, the time evolution and its equilib-
rium values of the second order parameter are computed. In
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Sec. 3 the dynamic structure factor for small wavevectors is
provided; using results from the previous section, this quan-
tity is expressed in terms of the second order parameter only.
In Sec. 4 fluctuations of the second order parameter are de-
fined. Here also is shown the relationship between them with
the dynamic structure factor. Using the statistical mechanics
tools the interpretation of the self structure factor as a me-
chanical response is also given. In Sec. 5 results are provided.
We begin with general results using only experimental con-
ditions and the closure relation over the description of the ne-
matic isotropic phase transition, that is, as this process can be
monitored by the dynamic structure factor measured in a de-
polarized light scattering experiment in VH geometry which
considers the polarization direction of the incident lightn0

perpendicular to that of the detected scattered lighni [15],
in this work the dynamic structure factor is calculated using
these conditions. Connections with the mechanical response
on the predictions of the isotropic nematic concentration val-
ues are given with the inclusion of the Maier-Saupe poten-
tial. The orientational relaxation is also provided for small
wavevectors as function of the concentration. At the end of
the section, results for the isothermal orientation susceptibil-
ity with respect to the nematic isotropic phase transition are
provided. Finally in the last Section, concluding remarks are
given.

2. Second order parameter

Consider a colloidal suspension formed byN hard, long and
stiff rods embedded in a solvent. Very long and thin rods are
considered, withL andD their length and thickness respec-
tively, whose volume fraction scales as∼ D/L, the posi-
tion and orientation of the rod arer andû, respectively. The
orientation is the unit vector along the long axis of the rod.
To find the temporal evolution of the orientational one body
probability density function (PDF) in the overdamped limit
one starts from the N-particle Smoluchowski equation. In-
tegration of this equation for hard, very long and thin rigid
rods, neglecting hydrodynamic interactions, leads to the fol-
lowing equation of motion forP (û, t), the orientational one
body PDF of one rod [13],

∂P (û, t)
∂t

=DrR̃
[
R̃P (û, t)− βP (û, t)R̃V eff(û, t)

]
. (1)

Here, Dr is the rotational diffusion coefficient of a single
non-interacting rod,β = 1/kBT is the inverse of the ther-
mal energy,R̃(...) = û×∇û(...) is the rotation operator and
V eff(û, t) is the Maier-Saupe effective interaction potential
for rods, equal to [17]

V eff(û, t) = DL2ρ
π

4

(
21
8
− 15

8
ûû : S(t)

)
, (2)

whereρ is the density of rods andS(t) is the orientation order
parameter tensor, given by

S(t) = 〈ûû〉 =
∮

dû [ûû]P (û, t). (3)

In equilibrium the largest eigenvalue of the orientation order
parameter tensor is the well known nematic parameter. In
general the order parameters are defined as the average of
Legendre polynomials,〈pl〉, the importance of these quanti-
ties is that they quantify the degree of order in each particular
ordered phase as in the case of multiaxial nematics [18]. The
nematic parameter is related with the second order parameter,
which is the average of the second Legendre polynomial and
it quantifies the axial nematic phase. In this work we will pro-
pose another important feature of the second order parameter.
Going back to the calculation of the orientation order param-
eter tensor, operating on both sides of Eq. (1) with

∮
dû [ûû]

and using Eq. (2), the effective potential, leads to the time-
dependent equation for the orientational order parameter ten-
sor

1
3
I =

∂S(τ)
∂τ

+ S(τ)

− 5
4
φ

[
S(τ) · S(τ)− S4(τ) : S(τ)

]
, (4)

with the reduced time defined asτ = 6Drt, andφ = L/Dϕ
is a dimensionless “concentration” and the volume fraction
of the cylindrical rods reads asϕ = (π/4)D2Lρ andS4 =
〈ûûûû〉 is the fourth orientational order tensor. In order to
obtain an equation of motion forS(τ), we used the closure
relation provided by Dhont [16], where the symmetric matrix
involved for our case isS(τ). Under this consideration the
closure is expressed as,

S4(τ) : S(τ) =
2
5

S(τ) · S(τ)

+
3
5
S(τ)S(τ) : S(τ), (5)

then, the Eq. (4) becomes

1
3
I =

∂S(τ)
∂τ

+ S(τ)

− 3
4
φ

[
S(τ) · S(τ)− S(τ)S(τ) : S(τ)

]
. (6)

For homogeneous phases,S(τ) is expressed as a diago-
nal tensor, in case of an isotropic phase all the components
are equal to1/3, whereas for nematics the two small coeffi-
cients are equal and the highest is known as the nematic or-
der parameter,λ(= 〈cos2 θ〉). As a result the time-dependent
equation forλ is written as

∂λ

∂τ
+

(
1 +

3
8
φ

)
λ− 3

2
φλ2 +

9
8
φλ3 =

1
3
. (7)

In equilibrium, the variation ofλ with respect to time is
equal to zero, and solving Eq. (7), one obtains,

λ =
3φ±

√
−32φ + 9φ2

6φ
, (8)
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These two solutions are positive by varying the value ofφ.
However, only the solution that has the square root with the
positive sign is that which has physical meaning, because
it satisfies the condition that the second order parameter,
〈p2〉 = (1/2)(3λ− 1), is positive.

Finally in nonequilibrium Eq. (7) is solved numerically
obtaining the time dependent evolution of the nematic param-
eter. In equilibrium, the nematic order parameter is the quan-
tity of central importance in describing the isotropic nematic
phase transition as we will see below. For nonequilibrium
we will express all the properties in terms of the second or-
der parameter, which can be written in terms of the nematic
parameter, as

〈p2(τ)〉 =
1
2

(3λ(τ)− 1) . (9)

As in the equilibrium state, our proposal is to show the rele-
vance of the second order parameter also in nonequilibrium
states. Because of the use of the Maier-Saupe potential,
Eq. (2), in order to close our model in terms only of the sec-
ond order parameter it is needed a closure relation between
fourth and second order parameters. The four order parame-
ter is given by:

〈p4(τ)〉 =
1
8
(
35〈cos4 θ〉 − 30〈cos2 θ〉+ 3

)
. (10)

Where〈p2(τ)〉 satisfies that

〈cos2 θ〉 =
1
3
(
2〈p2(τ)〉+ 1

)
. (11)

It is necessary to express〈cos4 θ〉 in terms of〈cos2 θ〉. This
is achieved, using the Dhont closure relation [16], where the
symmetrical matrix involved in this case is such that all its
elements are equal to zero, except(M)33 = 1, so

〈cos4 θ〉=(
S4(τ) : M

)
33

=
2
5
〈cos2 θ〉+

3
5
〈cos2 θ〉2 (12)

Replacing Eq. (11) and Eq. (12) in Eq. (10), we obtain that
the fourth order parameter can be expressed in terms of the
second order parameter as

〈p4(τ)〉 = −1
6
〈p2(τ)〉+

7
6
〈p2(τ)〉2 . (13)

Thus we have the input necessary for the description of our
colloid in equilibrium and during the relaxation process, that
is the second order parameter.

3. Dynamic structure factor at small wavevec-
tors

Because our main aim is describing the orientational relax-
ation of the colloid by monitoring the dynamic structure fac-
tor measured in a depolarized light scattering experiment in
VH geometry. Initially consider rods perfectly aligned and
in τ = 0 the constriction is removed and the colloid evolves

to an equilibrium, isotropic or nematic state depending on the
value of its concentration. The advantage for the orientational
description in this analysis is the separation of the time scales
for orientational(τo) and positional relaxation(τp), thus dur-
ing reorientation of the rods their position coordinates adapt
relatively fast to the new orientation configuration; this is be-
cause, the ration between these time scales is given by [15].

τp

τo
≈

( lp
L

)2

Now, since, for there to be hard rod interaction,lp(a typical
relative displacement necessary so that the centers of mass
of the rods to reach their isotropic equilibrium state) has to
be much smaller thanL (the size of a rod), it is concluded
that (τp/τo) ¿ 1. With this aim in mind, in this section the
dynamic structure factor is defined as well as its relationship
with the second order parameter fluctuations. The importance
of these quantities is that they can be measured by means of
an appropriate experiment as well as with computer simula-
tions.

In order to observe the orientational properties in homo-
geneous phases, the dynamic structure factor is monitored, as
we mention it can be probed in a depolarized light scattering
experiment in VH geometry. In the case of rods, the dynamic
structure factor is expressed as

F (k, τ) =
1
N

1〈
j2
0( 1

2Lk·û)
〉

×
N∑

l,n

〈(n̂s · ûl)(n̂s · ûn)(n̂o · ûl)

× (n̂o · ûn)j0

(
1
2
Lk·ûl

)
j0

(
1
2
Lk·ûn

)

× eik·(rl−rn)〉. (14)

where the average involves a time-dependent PDF.
j0((1/2)Lk·û) is the spherical Bessel function of zero
order, n̂s and n̂o are the unit vectors for the detected
and the incident polarization directions, respectively and〈
j2
0((1/2)Lk·û)

〉
is the form factor.

For simplicity the spherical Bessel function of zero order will
be denoted asj0 without its argument. By convenience, the
dynamic structure factor is divided into its self and distinct
part

F (k, τ) = F self(k, τ) + F dist(k, τ). (15)

where self dynamic structure factor is given by

F self(k, τ) =
1
N

N∑

i=1

〈
(n̂s · ûi)2(n̂o · ûi)2

× j2
0( 1

2Lk·ûi)
〈j2

0( 1
2Lk·û)〉

〉
, (16)
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and the distinct part is written as

F dist(k, τ) =
1
N

N∑

i6=j

〈(n̂s · ûi)(n̂o · ûi)(n̂s · ûj)(n̂o · ûj)

× j0( 1
2Lk·ûi)j0( 1

2Lk·ûj)
〈j2

0( 1
2Lk·û)〉

× exp{−i~k · (~ri − ~rj)}〉. (17)

From Eq. (14), to compute the self and distinct part of the
dynamic structure factor is necessary to know the one body
PDFP (û, τ) and the two body PDFP (r− r′, û, û′, τ) only,
the latter is approached as, in homogeneous phases,

P (r− r′, û, û′, τ) =
1

V 2
P (û, τ)P (û′, τ)

× g(r− r′, û, û′), (18)

where g(r− r′, û, û′) is the pair correlation function as-
sumed in equilibrium, for which the Boltzmann approach is
used andV is the volume of the colloid. The validity of
the approximation for the pair correlation function is in the
isotropic and nematic states, which are homogeneous phases.
In Eq. (18) we neglect the temporal dependence for the pair
correlation function, because no attempt has been made to
incorporate it in the analysis of the Smoluchowski equation.

By choosing the directions for the polarization vectors in
a convenient way [20], the self structure factor is rewritten as

F self(k, τ) = 1 +
5
7
〈j2

0p2〉
〈j2

0〉
− 12

7
〈j2

0p4〉
〈j2

0〉
, (19)

On the other hand, to compute the distinct part of the dy-
namic structure factor, we require the Fourier transform of the
total correlation functionh(~r−~r′, û, û′) = g(~r−~r′, û, û′)−1,
which is given by [15],

h(k,û, û′) = −2DL2 |û× û′| j0
(1

2
Dk · (û× û′)

)

× j0

(1
2
Lk·û

)
j0

(1
2
Lk·û′

)
. (20)

In last equations the time dependency it is also considered
in the one body PDF.

The natural dimensionless units of the above expres-
sion are consideringLk ≡ q then Dk = (D/L)q be-
causeL/D is large, then a good approximation is taking
j0((1/2)(D/L)q · (û× û′)) ' 1, then the total correlation
function becomes

h(q,û, û′) = −2DL2 |û× û′| j0
(1

2
q·û

)

× j0

(1
2
q·û′

)
. (21)

The consequence of this aproximation is that the distinct
part can be expressed in terms of the self one

F dist(q, τ) =
1
4
φ

〈
j2
0

〉 (
F self(q, τ)

)2
. (22)

Therefore, theDynamic Structure Factor for small wavevec-
torsof a colloidal system of stiff and long rods is given by

F (q, τ) = F self(q, τ) +
1
4
φ

〈
j2
0

〉 (
F self(q, τ)

)2
. (23)

We note thatF (q, τ) is only a function ofF self. To obtain
the quantities involved in this factor, we need to do a Taylor
series development ofj0

j0(x) = 1− 1
3!

x2 +
1
5!

x4 + O(x6). (24)

Considering terms up to fourth power in the dimension-
less wavevector inj0 and up to the fourth order parame-
ter contributions in the self structure factor, the averages in-
volved in Eq. (19) are expressed

〈
j2
0

〉
= 1− 1

36
q2 − 17

11520(5)
q4

−
(

1
18

q2 +
17(4)

11520(7)
q4

)
〈p2〉

− 17(8)
11520(35)

q4 〈p4〉 . (25)

〈
j2
0p2

〉
= 〈p2〉 − 29

504
q2 +

17
115200

q4

+
(

1
36

q2 +
17

40320
q4

)
〈p2〉

+
(
− 1

35
q2 +

17
100800

q4

)
〈p4〉 . (26)

and

〈
j2
0p4

〉
= 〈p4〉 − 28

495
q2 − 17

153605
q4

+
(

41
5544

q2 − 68
215047

q4

)
〈p2〉

−
(

109
1540

q2 +
136

1075235
q4

)
〈p4〉 . (27)

Therefore by the way of the dynamic structure factor and
the equilibrium, the relaxation process can be studied for
small wavevectors using this simple approximation.

Nevertheless in the next section the relevance of the limit
for wavevector going to zero is analyzed with its physical
interpretation, that is the relationship between the dynamic
structure factor and the dynamic fluctuations of the second
order parameter.
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4. Relationship between dynamic structure
factor and the second order parameter dy-
namic fluctuations

In this section the limit of wavevector going to zero is stud-
ied, the advantage of this limit is the connection between the
self dynamic structure factor and the nonequilibrium suscep-
tibility, which is the self correlation of the second order pa-
rameter, therefore is more convenient to refer to the self part
as isothermal orientation susceptibility as can be see below.
One reason for the identification with only the self part is due
to the fact that the susceptibility concept is related with the
fluctuations of a one body microscopic property with its cor-
responding measurable macroscopic quantity. Here we will
see that the microscopic property is the second order param-
eter and the macroscopic the self structure factor.

By considering the limit of the dimensionless wavevec-
tors as going to zero, the spherical Bessel function of zero
order is equal to one, therefore the dynamic structure factor
can be written as

F (q = 0, τ)=F self(q = 0, τ)+
φ

4
(
F self(q = 0, τ)

)2
. (28)

where

F self(q = 0, τ) = 1 +
5
7
〈p2(τ)〉 − 12

7
〈p4(τ)〉. (29)

Now, by using the closure relation in Eq. (5), the self dy-
namic structure factor can be written in terms of the second
order parameter only, that is

F self(q = 0, τ) = 1 + 〈p2(τ)〉 − 2〈p2(τ)〉2. (30)

It is important to mention that this quantity is hold for col-
loids in a homogeneous phases, as the isotropic and nematic,
independent of any model used for the description of the col-
loid. In the former only the experimental condition was used
whereas the second has in addition the closure relation be-
tween second and fourth order parameter.

Now in order to go into the concept of fluctuations, we
start defining the nonequilibrium fluctuations of the second
order parameter as

αl ≡ pl
2 −

〈
pl
2

〉

where〈· · · 〉 indicates a nonequilibrium average. Therefore
the nonequilibrium fluctuations correlations are given by

C(τ) =
1
N

N∑

l,m

〈αlαm〉 . (31)

In Eq. (31) the temporal dependency is again assumed
through theN -body probability density function as in the dy-
namic structure factor. In this last equation it is clear that the
correlation between the nonequilibrium fluctuations is a two
body property, such as the dynamic structure factor.

In the same way as was previously done for the dynamic
structure factor, the nonequilibrium fluctuations correlations

can be expressed in terms of the second order parameter
only, taking into account homogeneous phases and the Maier-
Saupe potential. When the closure relation Eq. (5) is used,
the expression for the self nonequilibrium fluctuations of the
second order parameter is exactly the same as that for the
dynamic self structure factor the limit of wavevector going
to zero, Eq. (30). Therefore the quantity probed in the de-
polarized light scattering experiment is the nonequilibrium
correlations of the second order parameter in this limit and as
consequence the same expressions for the self part of these
properties. It is important to observe that this equivalence in
the expressions is also valid when the average is in equilib-
rium. The relevance of this correlation is that it can be probed
in a well defined experiment, in the results section the predic-
tions of this relationship will be provided for nonequilibrium
and equilibrium orientational fluctuations. We will see below
the importance of the self correlation of the second order pa-
rameter in the description of the orientational relaxation and
the values of the concentration at which the isotropic nematic
phase transition occurs.

Now we focus on its physical interpretation. From its
role played the self structure factor, with the limit of di-
mensionless wavevector going to zero, could be identified
as an isothermal orientation susceptibility in the sense that
this quantity is the second order parameter fluctuation. To
observe this identification we are able to make a gedanken
experiment in which an external forceE is applied, which
will be an orientational force, the Hamiltonian of the colloid
is

H̃ = K +
∑

j 6=l

V (rjl, ûj , ûl) + M̃E

whereK is the kinetic energy, the second term is the poten-
tial energy and in the last̃M is the conjugated mechanical
response to the external forceE. Because the susceptibility
concept is at the limit of zero external force it is not neces-
sary to provide information about it, playing only a role in
the limiting process. The average of the mechanical response
is computed, using an appropriate equilibrium ensemble, as

〈M〉eq =
Tr

[
M̃e−βH̃

]

Tr
[
e−βH̃

] ,

after some usual algebraic steps [9], one arrives at

χβ =
(

∂ 〈M〉eq

∂E

)

T,E=0

= β

[〈
M̃2

〉eq

−
(〈

M̃
〉eq)2

]
. (32)

whereχβ is a mechanical response function due to orien-
tation. Thus, identifying〈M∗〉eq = 〈p2〉eq, we can asso-
ciate, the self structure factor in the limit of wavevector going
to zero with this mechanical response function, hereafter re-
ferred to asisothermal orientation susceptibility, is derived,
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where〈M∗〉eq means dimensionless. Nevertheles the asocia-
tion is in equilibrium; in our model this interpretation is done
also during the relaxation process.

5. Results

This section starts with nonequilibrium and equilibrium gen-
eral results from the properties measured in a depolarized
light scattering experiment together with those derived by the
use of the colloidal model proposed in this work. Also nu-
merical results will be analyzed, in all of them we separate
our analysis according to the concentration values of the col-
loid in equilibrium, that is for isotropic and nematic phases.
Thus for simplicity we only use and denoteisotropic when
we refer to the former andnematicfor the latter. We con-
tinue describing the behaviour of the second order parame-
ter together with its relaxation time and in the same manner
the temporal evolution of the dynamic structure factor. The
second subsection will describe the relaxation of the colloid
by means of the dynamic structure factor for small wavevec-
tors. Finally in the last subsection results for the limit of the
wavevector going to zero will be described, focusing on the
isothermal orientation susceptibility.

5.1. General properties

The nematic isotropic phase transition in a colloid suspen-
sion of stiff and long rods is well known. From our colloidal
model, equation Eq. (8) predicts the value of the concentra-
tion at which this transition occurs, that is,φI=32/9=3.56.
Comparing our result forφI = 3.56 with those obtained by
computer simulationsφS

I = 3.29 [7], and the one obtained
by Frenkel using the Onsager’s modelφOM

I = 3.45 [19], our
model is in qualitative agreement.

On the other hand, the isotropic to nematic spinodal
concentrationφN is obtained following the Dhont’s pro-
posal [13], which consists of making a small perturbation
δS(τ) around the isotropic equilibrium state. The nematic
tensorS(τ) = 1/3 I + δS(τ) is substituted for Eq. (7) and
is considered up to linear order inδS(τ), identifying in this
way an effective orientational coefficientDeff

r , given by the
expressionDeff

r = (1 − 1/4 φ). The isotropic nematic spin-
odal point is obtained whenDeff

r = 0, that isφN = 4 which
coincides with the exact value given by Onsager [12]. Let us
comment that our result differs from that obtained by Dhont,
φDhont

N = 5, due to the Maier-Saupe effective potential used
by this author [13].

As was already mention in this section the results are sep-
arated in two regions depending on whether the concentration
of the colloid is in isotropic or nematic phase when it is in
equilibrium. From our kinetic model, Eq. (8), it is only possi-
ble to move from nematic isotropic phase transition, thus with
this restriction the separation will be for lower than isotropic
concentration and larger than it, which we callisotropicand
nematicfor simplicity, as was already mentioned, that which
is lower thanφI = 32/9 is isotropicand if larger isnematic.

The analysis starts considering the most general ex-
pression for the self structure factor dependent on time,
F self(q=0, τ), Eq. (29). This property takes the value 1
when the colloid suspension is in an isotropic phase, where
〈p2(τ)〉 = 〈p4(τ)〉 = 0, or when the following relationship
is satisfied

〈p4(τ)〉 =
5
12
〈p2(τ)〉. (33)

Now, by replacing Eq. (13) in Eq. (33) we find that

〈p2(τ)〉 =
1
2
. (34)

which is satisfied in the isotropic or in the nematic phase,
depending to the concentration. We must mention that the
expression given in Eq. (33) has already been reported for
the equilibrium case [20].

Another important situation is when theF self(q = 0, τ)
reaches its maximum, that is where the slope of this property
is equal to zero. From Eq. (30) we find,

dF self(q = 0, τ)
dτ

= (1− 4〈p2〉) d〈p2〉
dτ

(35)

SoF self(q = 0, τ) is maximum when

〈p2(τ)〉 =
1
4
. (36)

It is easy to see that the second derivative with respect to the
dimensionless time is negative, so the value one quarter for
the second order parameter corresponds to a maximum, as we
will corroborate with the numerical results below. It is im-
portant to mention that Eqs. (34) and (36) are independent of
any colloidal model, the only important assumptions are with
respect to the homogeneity of the phase, the experiment pro-
posed and the closure relation between the second and fourth
order parameters. We must mention that these features are
only held for isotropic, that is for concentrations lower than
φI = 32/9, as will see below in our numerical analysis.

We use our colloidal model in order to find predictions
for the nematic isotropic phase transition. Thus, in equilib-
rium using our model Eq. (8) in the general predictions, the
second order parameter equal to one half corresponds to a
concentrationφ = 4, whereas its value is equal to one quar-
ter at a concentrationφ = 32/9. Therefore the two impor-
tant values from our general results together with our model
predict that the maximum of the self structure factor corre-
sponds to nematic concentration, whereas its value is equal
one to isotropic concentration. According to our identifica-
tion of the self structure factor as a mechanical susceptibility,
our model predicts that this property is able to localize the
isotropic and nematic concentrations.

Focusing on the nonequilibrium behaviour, during the re-
laxation the self structure factor has a maximum only forφ
smaller thatφI , that is inisotropic. For nematicit does not
have a maximum but it goes to a plateau which corresponds
to its nematic concentration value in equilibrium. For each
concentration the time spends of the second order parameter
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for taking the value equal one quarter is different, neverthe-
less in all of them the isothermal orientation susceptibility
will have the maximum valueF self

max = 1.125. On the other
hand this value corresponds to an angleθ = π/2. In this
time the rods have an orientation aboutπ/2 relative to the
polarization directions as was observed previously [15]. For
the another value of the second order parameter, it looks like
that of an isotropic phase due to the value of the self struc-
ture factor equal one. Below using numerical results we have
opportunity to say more about the consequences of the self
structure factor. For the moment these are the meanings of
the values for the second order parameter in the relaxation
process, one corresponds to a maximum value and the other
to the similitude with the isotropic phase. In the next sub-
sections the relaxation times are computed for the important
features predicted by this model.

5.2. Second order parameter

The second order parameter, Eq. (9), is plotted in Fig. 1 as
function of time for different concentrations. Here the be-
haviour is observed the behaviour depending of whether the
colloid is isotropicor nematic. For the former at long times
it goes to zero whereas for the latter goes to values different
from zero. The relaxation process predicts a second order pa-
rameter equal to one half for the nematic concentration as it
was corroborated from our model in the previous subsection.

Another observation in Fig. 1 is that the second order
parameter takes the value of one quarter only for concentra-
tions in isotropic. Taking only the equilibrium values for the
second order parameter as function of the concentration the
results are reported in Fig. 2. We can appreciate that for co-
centrations greater than or equal to 3.6 the system is in the
nematic phase, since〈p2(τ)〉 is different from zero for any
time.

FIGURE 1. Second order parameter as function time for different
concentrationsφ as indicated in the figure. Forφ < 3.5 we have
an isotropic phase, whereas forφ ≥ 3.6 the system presents a ne-
matic phase since the order parameter takes an asymptotic value as
shown in the figure. So between 3.5 and 3.6 we have the isotropic
to nematic phase transition.

FIGURE 2. Second order parameter at equilibrium as function of
the concentrations. We find thatφI = 3.56 andφN = 4 that are
consistent with the literature data.

Here we clearly see, nematics is derived from Eq. (8)
whereas the isotropic region with the help of a perturbation
analysis is derived, as was already mention in the previous
subsection. From Fig. 2 we observe three different regions:
when the concentration is lower thanφI any isochoric pro-
cess has only one stable point, for concentrations between
φI andφN will have two stable points, finally for concentra-
tions larger thanφN has only one point stable again. In the
middle region any isochoric line will have two points, one
in isotropic phase and the second in nematics. In this man-
ner this model predicts different behaviour depending of the
value of the concentration.

Defining the relaxation timeτrel as the value at which the
order parameter reaches its equilibrium value, the dynamic
structure factor increase inisotropicand decrease innematic
as function of the concentration. The different values of the
relaxation times inisotropic andnematicobey the different
concentrations and the equilibrium value for the second order
parameter in the nematic phase. Forisotropic the increment
of the relaxation time obeys the effect of the direct interac-
tions between rods, whereas the reduction of the relaxation
time is due to the closing value of the initial alignment with
respect to itsnematicvalue, that for higher concentrations
smaller relaxation times, because it is closer to its asymtotic
value as the concentration is increased. Similar behaviour is
found when it is used the self structure factor.

5.3. Orientational relaxation for small wavevectors

The dynamic structure factor for small dimensionless
wavevectors is analyzed in this section. An experiment is as-
sumed in which a colloid of stiff and long rods are perfectly
aligned by means of an external field; atτ = 0 the field is re-
moved and the rods evolve to an isotropic or nematic phase,
depending on the concentration. The relaxation is monitored
by means of the dynamic structure factor, the quantity mea-
sured in a depolarized light scattering experiment in the VH
geometry, given by Eq. (14). The time dependent behaviour
for the order parameter is provided by the Smoluchowski
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FIGURE 3. Dynamic structure factor as function of the reduced
time for different dimensionless wavevectors, as indicated in the
figure.For any value ofq, F (q, τ = 0) = 0. In the inset is ob-
served the maximum and the differences with respect to different
dimensionless wavevectors. All curves follow the same qualitative
behavior.

FIGURE 4. Dynamic structure factor as function of the concentra-
tion for two dimensionless wavevetors for different reduced times
as indicated in the figure. When the system are in the equilibrium
state there is discontinuity, we have a jump inφ = 3.56.

equation, Eq. (7), solved with the initial condition of a full
alignment of the rods and using Eqs. (15), (19) and (22).

In Fig. 3 is reported results for different values forq and
φ = 3 as function of the reduced time for the dynamic struc-
ture factor. The results do not show difference forq = 0
and 0.25, whereas for higher values of the dimensionless
wavevectors a small quantitative difference is predicted. In
the case of the self structure factor the relaxation observed
has the same features as the dynamic structure factor, they
are not reported explicitly.

The important feature is that for small dimensionless
wavevectors all the plots have similar qualitative behaviour.
Results for a concentration innematicis not reported because
these present similar characteristics, the only important dif-
ference is that they do not have a maximum but they go into
a plateau according to their concentration, but the equiva-

lent behaviour for small dimensionless wavevectors is sim-
ilar, which is the important detail.

In Fig. 4 the dynamic structure factor is reported as a
function of the concentration, the plot shows the evolution
of the dynamic structure function for different times and two
values of the dimensionless wavevectorq = 0 andq = 0.75,
whose equilibrium value at long times corresponds to the
static structure factor.

In this Figure each symbol corresponds to a different
time, for τ = 9, 30 and 120. The Figure clearly describes
how the phase transition occurs, that is, at the beginning a
continuous curve is predicted and aroundτ ≈ 90, point no
reported, the breaking of the continuous curve is observed
and the discontinuity appears, indicating the first order char-
acter of the phase transition. As in the Fig. 3 here also the
qualitative behaviour is independent of the value of the di-
mensionless wavevectors considered.

In a previous subsection was predict that the self struc-
ture factor in the limit of dimensionless wavevector going to
zero has a maximum when the second order parameter takes
the value equal to one quarter, independent of the concen-
tration, within isotropiconly. Therefore from Eq. (29), this
maximum corresponds toF self

max ' 1.125 andθ ' 45◦. This
angle is valid for the dynamic structure factor also, that is,
it presents a maximum at the same value of the second or-
der paramenter, the difference is that this maximum value
depends on the concentration, that it does not have a single
value as in the case of the self structure factor. This means
that the maximum value of the dynamic structure factor, in
isotropic, is taken when in average the rods are aligned to45◦

respect to the initial alignment, as was already previously pre-
dicted [15]. In Fig. 5 is reported the self structure factor for
q = 0 as function of the concentration for different times in-
dicated in the Figure. In equilibrium it clearly shows the val-
ues for the isotropic and nematic concentrations as reported
in a previous subsection, the maximum value and when it
takes the value equal to one.

FIGURE 5. Self structure factor as function of the concentration
for different reduced times, indicated in the figure forq = 0. When
the system are in the equilibrium state, the Self Structure Factor
present the first order transition.
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FIGURE 6. Dynamic structure factor as function of the concentra-
tion, for different reduced times indicated in the figure forq = 0.
The discontinuity in the structure factor shows that the phase tran-
sition occurs by varying the concentration.

TABLE I. Behavior ofF self in the phase transition using Eq. (32) in
equilibrium for different values of the concentration atq = 0.

Concentration Self Structure Factor

φ < 3.56 F self = 1

3.56 < φ < 4 F self > 1

φ = 4 F self = 1

φ > 4 F self < 1

Now, in Fig. 6 is reported results for the dynamic struc-
ture factor for the same values as Fig. 5. Curves for inter-
mediate times looks like a continuos phase transition as in
a dipolar colloid [20]. This behaviour is a remanent of the
external field used for the initial alignment. The main infor-
mation of the phase transition comes from the self dynamic
structure factor at the limit of dimensionless wavevector go-
ing to zero, showing the relevance of this limit.

5.4. Isothermal orientation susceptibility

As was shown in a previous section, it is reasonable to iden-
tify the self structure factor of the dimensionless wavevector
equal to zero as a mechanical susceptibility, which we called
isothermal orientation susceptibility.

From Fig. 5 is observed that during the relaxation process
for times larger than0 the isothermal orientation susceptibil-
ity takes values lower, higher or equal to one, only atτ = 0 it
is equal to zero. At equilibrium in Table I is reported results
for the different situations found for this response function.

In the isotropic and forφ = 4, nematic concentration,
F self = 1, when it takes values higher than one the colloid
has a concentration between the isotropic and nematic con-
centrations, that isφI ≺ φ ≺ φN . Finally whenF self ≺ 1
the colloid is innematic. This says that for values higher
than one of the isothermal orientation susceptibility the col-
loid has two stable points, one in the isotropic phase and the

second in the nematic phase, whereas for lower than one the
colloid has only one stable point. From Eqs. (29) and (33)
we can express these conditions in terms of the second and
fourth order parameters, that isF self Â 1 corresponds to
〈p4〉 ≺ (5/12) 〈p2〉 andF self ≺ 1 with 〈p4〉 Â (5/12) 〈p2〉.
It is important to note that these last conditions are indepen-
dent of the model used and is only a consequence of the ex-
perimental conditions for rods atq = 0. Also in figure 6 is
predicted the isotropic concentration,φ = 32/9, at the max-
imum of the isothermal orientation susceptibility. The rele-
vance of this novel property is mainly the ability to predict
the isotropic and nematic values of the concentration.

With respect of the relaxation process the isothermal ori-
entation susceptibility is able to predict when the rods have
an alignment to45◦ with respect to the direction of the polar-
ization direction, in this situation the isothermal orientation
susceptibility has a maximum, inisotropic, depending of the
value of the concentration of the colloid, time is necesary to
get this maximum, innematicthe maximum ofF self is sub-
stituted by a plateau reached in equilibrium whose value de-
pends on the concentration. We must mention that this max-
imum is reached inisotropic during the relaxation process
whereas fornematicit is reached in equilibrium. Finally be-
cause in the relaxation the isothermal orientation susceptibil-
ity starts the value of zero it then reachs its value one at initial
times, at this time the colloid presents a similar condition as
that of the isotropic phase in equilibrium.

6. Conclusions

In this work we propose a simple theoretical model that al-
lows us to observe the relaxation process of a colloidal sys-
tem formed by stiff and long rods, via the dynamic structure
factor, which has as input the order parameter two. The study
is based on the Smoluchowski formalism neglecting the hy-
drodynamic interactions together with the Maier-Saupe po-
tential for the interaction between them.

The advantage of having an explicit expression for the
dynamic structure factor lies in its possible comparison with
simulation and experimental data that allow us to test our the-
oretical results.

At wavevector equal to zero was shown that the dynamic
structure factor is the collective correlations to the fluctua-
tions of the second order parameter. Its self part was also
identified with an isothermal orientation susceptibility. The
relevance of this quantity is that is able to predict the isotropic
and nematic concentrations in which the colloid has the ne-
matic isotropic phase transition through the second order pa-
rameter in equilibrium, we find thatφI = 3.56 andφN = 4,
that is, we improve the results of Frenkel using of Onsager’s
model [19] and it is closer to that reported in simulation given
in [7].

The results were supported with the assumption of the
Maier-Saupe potential for a colloid with a nematic isotropic
phase transition, thus one would expect that these predictions
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could be valid for different colloids which hold the same con-
ditions.
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