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Orientational relaxation for small wavevectors of rod-like Brownian particles
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We present a theorical study of the kinetic orientational relaxation of a colloidal monodispersed system of stiff and long rods, for small
wavevectors. This process is described by the dynamic structure factor. The relationship between this factor with the fluctuations of the sec-
ond order parameter is provided in the limit of wavevectors going to zero. The second order parameter is computed with the Smoluchowski
formalism, neglecting hydrodynamic interactions, and using the Maier-Saupe potential for the rods interaction. Considering suitable prop-
erties, the isothermal orientation susceptibility proposed is able to localize the isotropic and nematic concentrations in qualitative agreement
with well known computer simulations results. At relaxation our model predicts a single value for the maximum of the orientation property
proposed, which it is reached at different times, according to the concentration.
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1. Introduction to describe the isotropic nematic phase transition [12]. An-

other approach is the kinetic approach of the Smoluchowski
Many classes of soft matter microstructures exhibit a tailoregequation [13], which is able to describe the nematic isotropic
response and transport properties because of the interactiopgase transitions. In this work we focus on the calculation of
of rods [1-5]. Some soft matter materials are the well knownhe second order parameter by using the Smoluchowski for-
Tobacco Mosaic Virus and the fd VirUS, the richness of thesenaﬁsm in order to describe the nematic isotropic phase tran-

materials is due to their various ordered phases, where thgtion and its connection with a mechanical response func-
most commonly are the isotropic and nematic [6-8]. In thistign.

work we focus on the description of the nematic isotropic ) )
phase transition in stiff and long colloidal rods from a kinetic,  Because the dynamic structure factor can be monitored
point of view. One of the challenges of the description of?Y Means of atime resolved small angle depolarized dynamic
the phase transition is its relation with mechanical responsléght sgatterlng experiment [_14]’ we _fOHOW the .or|entat|0nal
functions, that are the most accessible properties in an expeigi@xation of rods by observing the time evolution of the dy-
iment. For instance the mechanical susceptibility provides u§amic structure factor [15]. Initially the rods are perfectly
with a mechanical stability condition [9]. In particular it is 2/igned by using an external field, therefore they themselves
well known that the structure factor in the limit of very small "€turn to the equilibrium state when the external field is re-

wave vectors is the isothermal compressibility, which can bénoveq. A,S will be seen the dynamic structure factor can
probed in a light scattering experiment. be written in terms of the parameters of order two and four.

The aim of this work is to describe the orientational re- 1€ Sécond order parameter is calculated from the equation
laxation by monitoring the dynamic structure factor at smaIIthevﬁlm'OE Of thz ?rlenta;;uor;al olrder: parakmeter tgrﬁ@r)a h
wavevectors in a colloid of hard, long and stiff rods initially which 1S o t{:une rqmt € Smoluchows |_equat|on an the
aligned. closure relation provided by Dhont [16], valid at equilibrium.

The idea behind it is to demonstrate what we can Iearr]I_ike this author, we extend the validity of this closure for
by applying the machinery of statistical thermodynamics to aponequmbrlum. The fourth _order_ parameter is obtal_ne_d di-
simple model: hard, long and stiff rods in suspension, whicr{eCtly from the clo_sure relation C'te.d above. Atthe Im_nt of
exhibit the nematic isotropic phase transition. There are tW(Bhe wavevector going to zera, we will show the connection of

motives in this approach. The former is simply that the stud)}rt]e flfctu?tmtns c;Lthe s_econd c:rtde.r pt?]rargeter.vxﬁth th? t.;elf
of a simple model provides insight, while the latter is the StTUCtUre factor, theé main quantity In the description ot the

close relation to experiments (or computer “experiments")nematlc isotropic phase transition.

showing the complex features of relevance in our model. The work is organized as follows. Because the second
The nematics phase in liquid crystals has been studiedrder plays an important role we start with its definition and

using different approaches; experimentally, via dispersiorevaluation; therefore in Sec. 2 the Smoluchowski formalism

of depolarized light [10], by simulation [7] or theoretically is given, using the Maier-Saupe potential together with an ap-

[11-13]. The pioneering Onsager’s work concerns itself withpropriate closure relation, the time evolution and its equilib-

a density functional approach to compute free energy in ordetium values of the second order parameter are computed. In
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Sec. 3 the dynamic structure factor for small wavevectors isn equilibrium the largest eigenvalue of the orientation order
provided; using results from the previous section, this quanparameter tensor is the well known nematic parameter. In
tity is expressed in terms of the second order parameter onlgeneral the order parameters are defined as the average of
In Sec. 4 fluctuations of the second order parameter are déegendre polynomialgp;), the importance of these quanti-
fined. Here also is shown the relationship between them witlies is that they quantify the degree of order in each particular
the dynamic structure factor. Using the statistical mechanicserdered phase as in the case of multiaxial nematics [18]. The
tools the interpretation of the self structure factor as a menematic parameter is related with the second order parameter,
chanical response is also given. In Sec. 5 results are providedhich is the average of the second Legendre polynomial and
We begin with general results using only experimental conit quantifies the axial nematic phase. In this work we will pro-
ditions and the closure relation over the description of the nepose another important feature of the second order parameter.
matic isotropic phase transition, that is, as this process can lgoing back to the calculation of the orientation order param-
monitored by the dynamic structure factor measured in a deeter tensor, operating on both sides of Eq. (1) wifiu [ut]
polarized light scattering experiment in VH geometry whichand using Eqg. (2), the effective potential, leads to the time-
considers the polarization direction of the incident liglit = dependent equation for the orientational order parameter ten-
perpendicular to that of the detected scattered lighl5], sor

in this work the dynamic structure factor is calculated using

these conditions. Connections with the mechanical response 11 - 0S(7) +S(7)

on the predictions of the isotropic nematic concentration val- 3 or

ues are given with the inclusion of the Maier-Saupe poten- 9 [ . ol .

tial. The orientational relaxation is also provided for small 4¢ S(r) - 8(r) =8(r) : 8(r)}, “)

wavevectors as function of the concentration. At the end of | ) i
the section, results for the isothermal orientation susceptibil?ith the reduced time defined as= 60,1, and¢ = L/Dyp
ity with respect to the nematic isotropic phase transition ardS & dimensionless “concentration” and the volume fraction

provided. Finally in the last Section, concluding remarks aref the cylindrical rods reads gs = (w/4)D*Lp andS* =
given. (uuuw) is the fourth orientational order tensor. In order to

obtain an equation of motion f&§(7), we used the closure
relation provided by Dhont [16], where the symmetric matrix
2. Second order parameter involved for our case iS(7). Under this consideration the

. . . closure is expressed as,
Consider a colloidal suspension formed &yhard, long and P

stiff rods embedded in a solvent. Very long and thin rods are

considered, with and D their length and thickness respec- S*(r):S(r) = % S(r) - S(7)
tively, whose volume fraction scales as D/L, the posi- 3
tion and orientation of the rod areandu, respectively. The + =S(7)S(7) : S(7), (%)
orientation is the unit vector along the long axis of the rod. 5
To find the temporal evolution of the orientational one bodythen, the Eq. (4) becomes
probability density function (PDF) in the overdamped limit
one starts from the N-particle Smoluchowski equation. In- 1 0S(7)
tegration of this equation for hard, very long and thin rigid §I = T or +5(7)
rods, neglecting hydrodynamic interactions, leads to the fol- 3
lowing equation of motion foiP(, ¢), the orientational one = 4% [8(r)-8(7) = S(7)S(7) : S(T)] (6)
body PDF of one rod [13],
OP(a, t) For homogeneous phaséX;r) is expressed as a diago-

— —DrR [RP(@ t) — BP@,t)RV"(@,t)| . (1)  nal tensor, in case of an isotropic phase all the components
are equal td /3, whereas for nematics the two small coeffi-
cients are equal and the highest is known as the nematic or-
der parameter\(= (cos? 6)). As a result the time-dependent
equation for) is written as

Here, D,. is the rotational diffusion coefficient of a single
non-interacting rod$ = 1/kpT is the inverse of the ther-
mal energyR(...) = u x Vz(...) is the rotation operator and
Vefi(@,t) is the Maier-Saupe effective interaction potential
for rods, equal to [17]

? + (1 + Z¢) A — gm? + %(;5/\3 = % 7
vel(a, 1) = DL?py ( - au: S(t)) ) 4

wherep is the density of rods arfl(¢) is the orientation order
parameter tensor, given by

S(t) = () = 7( dii [a] P(a, 1). 3)

In equilibrium, the variation of\ with respect to time is
equal to zero, and solving Eq. (7), one obtains,

36 &+ \/—326 + 992
A= 65 : (8)
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These two solutions are positive by varying the valuesof to an equilibrium, isotropic or nematic state depending on the
However, only the solution that has the square root with thevalue of its concentration. The advantage for the orientational
positive sign is that which has physical meaning, becausdescription in this analysis is the separation of the time scales
it satisfies the condition that the second order parametefor orientationalr,) and positional relaxatiofr,), thus dur-
(p2) = (1/2)(3X\ — 1), is positive. ing reorientation of the rods their position coordinates adapt
Finally in nonequilibrium Eq. (7) is solved numerically relatively fast to the new orientation configuration; this is be-
obtaining the time dependent evolution of the nematic parameause, the ration between these time scales is given by [15].
eter. In equilibrium, the nematic order parameter is the quan-
tity of central importance in describing the isotropic nematic T (Lp)Q
phase transition as we will see below. For nonequilibrium To L
we will express all the properties in terms of the second or-

der parameter, which can be written in terms of the nemati®NOW. since, for there to be hard rod interactigy(a typical
parameter, as relative displacement necessary so that the centers of mass

of the rods to reach their isotropic equilibrium state) has to
1 be much smaller thah (the size of a rod), it is concluded
=—BA(r)-1). 9 ’
(p2(7)) = 5 (BA() = 1) © hat (r,/7,) < 1. With this aim in mind, in this section the

As in the equilibrium state, our proposal is to show the rele_dynam|c structure factor is defined as well as its relationship

vance of the second order parameter also in nonequilibriurWith the second order parameter fluctuations. The importance

states. Because of the use of the Maier-Saupe potentia(?,f these quantities is that they can be measured by means of

Eq. (2), in order to close our model in terms only of the secN appropriate experiment as well as with computer simula-
ond order parameter it is needed a closure relation betwediP"S:

fourth and second order parameters. The four order parame- [N order to observe the orientational properties in homo-

ter is given by: geneous phases, the dynamic structure factor is monitored, as
we mention it can be probed in a depolarized light scattering
1 experiment in VH geometry. In the case of rods, the dynamic
= —(35(cos* 0) — 30(cos2 0) + 3). 10 P " Y »nedy
(pa(r)) 8( {cos™6) {cos™0) +3) (10) structure factor is expressed as
Where(py (7)) satisfies that Pl r) 1 1
)= —
L TN (B(ALk)
(cos® 0) = §(2<p2(7')> +1). (11) N
It is necessary to expresgsos* ) in terms of{cos? #). This X Z«ﬁs ) (B - Uy ) (B, - )
is achieved, using the Dhont closure relation [16], where the bn
symmetrical matrix involved in this case is such that all its Y2 T 2
elements are equal to zero, excépf)ss3 = 1, so X (1, - Wn)jo §Lk'ul Jo §Lk'“"
2 3 ik-(r;—ry)
(cos* 0)=(S*() : M)33:§<COSQ 0) + 3<c052 0)? (12) x et (14)

Replacing Eq. (11) and Eq. (12) in Eq. (10), we obtain thaﬁ{vhere theA average involyes a time-dep(_endent PDF.
the fourth order parameter can be expressed in terms of thie((1/2)Lk-u) is the spherical Bessel function of zero

second order parameter as order, n, and n, are the unit vectors for the detected
and the incident polarization directions, respectively and
! 7 2 (j3((1/2)Lk-u)) is the form factor.
=—= — . 13 Jo
Palr)) 6 (pa(m)) + 6 (p2(7)) (13) For simplicity the spherical Bessel function of zero order will

Thus we have the input necessary for the description of ou® denoted ag without its argument. By convenience, the
colloid in equilibrium and during the relaxation process, thatdynamic structure factor is divided into its self and distinct
al

is the second order parameter.

F(k,7) = F**(k,7) + F¥"(k, 7). (15)
3. Dynamic structure factor at small wavevec- \nere self dynamic structure factor is given by
tors
o - . . 1
Because our main aim is describing the orientational relax- Fself(kj) I Z <(ﬁs .ai)2(ﬁo . ﬁi)2
ation of the colloid by monitoring the dynamic structure fac- N i=1
tor measured in a depolarized light scattering experiment in 91 e~
VH . . . Jo (7Lkul)
geometry. Initially consider rods perfectly aligned and 2217A>, (16)
in 7 = 0 the constriction is removed and the colloid evolves {Jo (3 Lk1))
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and the distinct part is written as Therefore, thddynamic Structure Factor for small wavevec-
N tors of a colloidal system of stiff and long rods is given by
i 1
F(k, 1) = N Z((ﬁs ) (oo - 1) (s - 1hg) (R - 1)
7 Fla.) = F*¥¥(q,7) + 6 (53) (F*"(q.7)".  (23)
Jo 3 ki) o (3L i) !
(8 (3Lk-0))

We note thatF'(g, 7) is only a function of 75, To obtain
% exp{ﬂ-;g. (7 — 75)}). (17)  the quantities involved in this factor, we need to do a Taylor

series development gf
From Eqg. (14), to compute the self and distinct part of the

dynamic structure factor is necessary to know the one body 1 1
PDF P(1, 7) and the two body PDP(r — ¢/, G, @/, 7) only, Jo(x) =1— —a? + —2* + O(a"). (24)

. . | |
the latter is approached as, in homogeneous phases, 3 J
SN 1. ~
P(r—r' 4,0',7) = WP(UJ)P(U',T) Considering terms up to fourth power in the dimension-
., less wavevector inj, and up to the fourth order parame-
x g(r—r',u, ), (18)  ter contributions in the self structure factor, the averages in-

where g(r — r/,u, ') is the pair correlation function as- volved in Eg. (19) are expressed

sumed in equilibrium, for which the Boltzmann approach is

used andV is the volume of the colloid. The validity of <2> i L 17 4
the approximation for the pair correlation function is in the Jo) = 367 11520(5)q
isotropic and nematic states, which are homogeneous phases.
In E i _ i 2 LM) 4
g. (18) we neglect the temporal dependence for the pair T + 1520074 (p2)
correlation function, because no attempt has been made to 8 520(7)
incorporate it in the analysis of the Smoluchowski equation. 17(8) 25
By choosing the directions for the polarization vectors in N 11520(35)q (pa) - (25)
a convenient way [20], the self structure factor is rewritten as 99 17
-2 _ 4 2 4
self 5 (jap2) 12 (j3pa) {ope) = (p2) = 5510° + {15550
F (ka T) =1+ o T~ o\ (19)
7 (j5) 7 (o) N <1q2 q4> (pa)
On the other hand, to compute the distinct part of the dy- 36 40320 ?
namic structure factor, we require the Fourier transform of the 1, 17,
total correlation functioh(7—7, @, @) = g(F—7, 4, ' )—1, + | —5d + q ) (pa) (26)
R 35 100800
which is given by [15],
1
h(k,4,0) = —2DL? [d x ﬁ’|j0<§Dk~ (@i x a')) and
N PSS _ 28 17
x 30(§Lk'“)30(§Lk'“ ) (20) (6pa) = (pa) = 520" ~ Tm3605¢"
~In last equations the time dependency it is also considered N a 68 (p2)
in the one body PDF. 55447 T 2150472 ) \P2

The natural dimensionless units of the above expres-
sion are consideringlk = q then Dk = (D/L)q be- _ < 109 2+ 136 q4> (pa) 27)
causeL/D is large, then a good approximation is taking 1540 1075235 4
Jo((1/2)(D/L)q - (u x 0’)) ~ 1, then the total correlation
function becomes

Therefore by the way of the dynamic structure factor and
h(q,4,d) = —2DL? | x a/UU(lq.ﬁ) the equilibrium, the relaxation process can be studied for
2 small wavevectors using this simple approximation.
X jg(%qﬁ’). (22) _ _ .
Nevertheless in the next section the relevance of the limit
The consequence of this aproximation is that the distinctor wavevector going to zero is analyzed with its physical

part can be expressed in terms of the self one interpretation, that is the relationship between the dynamic
it 1, . 9 structure factor and the dynamic fluctuations of the second
F®(q,7) = 19 (jo) (F**"(q,7))". (22)  order parameter.
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4. Relationship between dynamic structure can be expressed in terms of the second order parameter
factor and the second order parameter dy- only, taking into account homogeneous phases and the Maier-
namic fluctuations Saupe potential. When the closure relation Eq. (5) is used,

the expression for the self nonequilibrium fluctuations of the

In this section the limit of wavevector going to zero is stud-second order parameter is exactly the same as that for the

ied, the advantage of this limit is the connection between thélynamic self structure factor the limit of wavevector going

self dynamic structure factor and the nonequilibrium suscepto zero, Eq. (30). Therefore the quantity probed in the de-
tibility, which is the self correlation of the second order pa-polarized light scattering experiment is the nonequilibrium
rameter, therefore is more convenient to refer to the self paorrelations of the second order parameter in this limit and as
as isothermal orientation susceptibility as can be see belowonsequence the same expressions for the self part of these

One reason for the identification with only the self part is dueproperties. It is important to observe that this equivalence in

to the fact that the susceptibility concept is related with thethe expressions is also valid when the average is in equilib-

fluctuations of a one body microscopic property with its cor-rium. The relevance of this correlation is that it can be probed
responding measurable macroscopic quantity. Here we wilh a well defined experiment, in the results section the predic-
see that the microscopic property is the second order parartions of this relationship will be provided for nonequilibrium
eter and the macroscopic the self structure factor. and equilibrium orientational fluctuations. We will see below
By considering the limit of the dimensionless wavevec-the importance of the self correlation of the second order pa-
tors as going to zero, the spherical Bessel function of zersameter in the description of the orientational relaxation and
order is equal to one, therefore the dynamic structure factoihe values of the concentration at which the isotropic nematic
can be written as phase transition occurs.
& 9 Now we focus on its physical interpretation. From its
F(qg=0,7)=F*"(q= 0a7)+1 (F**(q=0,7))". (28) role played the self structure factor, with the limit of di-
mensionless wavevector going to zero, could be identified
where as an isothermal orientation susceptibility in the sense that
5 12 this quantity is the second order parameter fluctuation. To
Felg=0,1) =1+ ?<p2(7)> B 7<p4(7)>' (29) obseqrve thi}s/ identification we are F:aLbIe to make a gedanken
experiment in which an external forde is applied, which

Now, by using the closure relation in Eq. (5), the self dy- ™’ . . o .
namic structure factor can be written in terms of the second‘”” be an orientational force, the Hamiltonian of the colloid
Is

order parameter only, that is - N
) , H=K+)Y V(r,t,,&)+ME
F*¥q=0,7) = 1+ (pa(7)) — 2(pa(7))*.  (30) £l

It is important to mention that this quantity is hold for col- where K is the kinetic energy, the second term is the poten-
loids in a homogeneous phases, as the isotropic and nemattil energy and in the lasi/ is the conjugated mechanical
independent of any model used for the description of the colresponse to the external forée Because the susceptibility
loid. In the former only the experimental condition was usedconcept is at the limit of zero external force it is not neces-
whereas the second has in addition the closure relation b&ary to provide information about it, playing only a role in
tween second and fourth order parameter. the limiting process. The average of the mechanical response

Now in order to go into the concept of fluctuations, we is computed, using an appropriate equilibrium ensemble, as
start defining the nonequilibrium fluctuations of the second L
order parameter as Tr [Me‘ﬂH}

o ryer = —L— L
o = ph— (ph) Tr {e‘ﬁH}

where(- - -) indicates a nonequilibrium average. Therefore

I . . ) after some usual algebraic steps [9], one arrives at
the nonequilibrium fluctuations correlations are given by

W . (6<M>W>
C(r) = 5 2 {enoum). (31) TN 0E ) rps
l,m
—~— .\ eq 1\ €eqn 2
In Eq. (31) the temporal dependency is again assumed =5 {<M2> - (<M> ) ] : (32)

through thelV-body probability density function as in the dy-

namic structure factor. In this last equation it is clear that thewvhere x 3 is a mechanical response function due to orien-

correlation between the nonequilibrium fluctuations is a twotation. Thus, identifying(M*)? = (p2)“!, we can asso-

body property, such as the dynamic structure factor. ciate, the self structure factor in the limit of wavevector going
In the same way as was previously done for the dynamid¢o zero with this mechanical response function, hereafter re-

structure factor, the nonequilibrium fluctuations correlationsferred to agsothermal orientation susceptibilitys derived,
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where(M*)“! means dimensionless. Nevertheles the asocia- The analysis starts considering the most general ex-
tion is in equilibrium; in our model this interpretation is done pression for the self structure factor dependent on time,
also during the relaxation process. Fs¢f(q=0,7), Eq. (29). This property takes the value 1
when the colloid suspension is in an isotropic phase, where
(p2(1)) = (pa(1)) = 0, or when the following relationship

5. Results is satisfied

5
This section starts with nonequilibrium and equilibrium gen- (pa(7)) = E<p2(7)>- (33)
eral results from the properties measured in a depolarizeglow by replacina Ed. (13) in Eq. (33) we find that
light scattering experiment together with those derived by the yrep 9Eq. (13) a- 33)
use of the colloidal model proposed in this work. Also nu- (pa(7)) = 1 (34)
merical results will be analyzed, in all of them we separate b2 2

2
our analysis according to the concentration values of the Cobvhich is satisfied in the isotropic or in the nematic phase
loid in equilibrium, that is for isotropic and nematic phases. ’

S ; ! depending to the concentration. We must mention that the
Thus for simplicity we only use and denat®otropic when

) expression given in Eg. (33) has already been reported for
we refer to the former andematicfor the latter. We con- P 9 g. (33) y P

i q ibing the behavi f th q ord the equilibrium case [20].
inue describing the behaviour of the second order parame- ~ - v o important situation is when tHes*"(g — 0, 7)

:ﬁr t;)gether ;N'th ;tst_relaﬁa}[tr!ondtlme a_nd Ln tr;e safmet magﬂefeaches its maximum, that is where the slope of this property
e temporal evolution of the dynamic structure factor. (js equal to zero. From Eq. (30) we find,

second subsection will describe the relaxation of the colloi

by means of the dynamic struc'_[ure factor for smaI.I wavevec- dFsef(q =0, 7) 14 d(p2) 35
tors. Finally in the last subsection results for the limit of the g = (= 4p2)) =~ (35)
wavevector going to zero will be described, focusing on the <o ) .
isothermal orientation susceptibility. SoF*¥(g = 0, 7) is maximum when

1
5.1. General properties {p2(m)) = 7. (36)

The nematic isotropic phase transition in a colloid suspentt is easy to see that the second derivative with respect to the
sion of stiff and long rods is well known. From our colloidal dimensionless time is negative, so the value one quarter for
model, equation Eqg. (8) predicts the value of the concentrathe second order parameter corresponds to a maximum, as we
tion at which this transition occurs, that i8;=32/9=3.56.  will corroborate with the numerical results below. It is im-
Comparing our result fop; = 3.56 with those obtained by portant to mention that Egs. (34) and (36) are independent of
computer simulationg; = 3.29 [7], and the one obtained any colloidal model, the only important assumptions are with
by Frenkel using the Onsager’'s modél™ = 3.45[19], our  respect to the homogeneity of the phase, the experiment pro-
model is in qualitative agreement. posed and the closure relation between the second and fourth
On the other hand, the isotropic to nematic spinodalorder parameters. We must mention that these features are
concentrationgy is obtained following the Dhont's pro- only held forisotropic that is for concentrations lower than
posal [13], which consists of making a small perturbationg; = 32/9, as will see below in our numerical analysis.
05 (7) around the isotropic equilibrium state. The nematic  We use our colloidal model in order to find predictions
tensorS(7) = 1/3 I + §S(r) is substituted for Eq. (7) and for the nematic isotropic phase transition. Thus, in equilib-
is considered up to linear order &(7), identifying in this  rium using our model Eq. (8) in the general predictions, the
way an effective orientational coefficief®™, given by the second order parameter equal to one half corresponds to a
expressionD¢" = (1 — 1/4 ¢). The isotropic nematic spin- concentrationy = 4, whereas its value is equal to one quar-
odal point is obtained whe®" = 0, that ispy = 4 which  ter at a concentratiop = 32/9. Therefore the two impor-
coincides with the exact value given by Onsager [12]. Let ugant values from our general results together with our model
comment that our result differs from that obtained by Dhont,predict that the maximum of the self structure factor corre-
Rt = 5, due to the Maier-Saupe effective potential usedsponds to nematic concentration, whereas its value is equal
by this author [13]. one to isotropic concentration. According to our identifica-
As was already mention in this section the results are sepion of the self structure factor as a mechanical susceptibility,
arated in two regions depending on whether the concentratioour model predicts that this property is able to localize the
of the colloid is in isotropic or nematic phase when it is in isotropic and nematic concentrations.
equilibrium. From our kinetic model, Eq. (8), it is only possi- Focusing on the nonequilibrium behaviour, during the re-
ble to move from nematic isotropic phase transition, thus witHaxation the self structure factor has a maximum onlydor
this restriction the separation will be for lower than isotropic smaller thatp,, that is inisotropic. For nematicit does not
concentration and larger than it, which we datttropicand  have a maximum but it goes to a plateau which corresponds
nematicfor simplicity, as was already mentioned, that which to its nematic concentration value in equilibrium. For each
is lower tharny; = 32/9 is isotropicand if larger isnematic ~ concentration the time spends of the second order parameter
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for taking the value equal one quarter is different, neverthe- ' T T T

less in all of them the isothermal orientation susceptibility 0‘6_‘ = lIsotropic Phase . 1
will have the maximum valué’s®f = 1.125. On the other ] ® Nematic Phase L |
hand this value corresponds to an angle= w/2. In this 054 . .
time the rods have an orientation abeyt2 relative to the . 1

polarization directions as was observed previously [15]. For <p >°‘4“ i
2

the another value of the second order parameter, it looks like " *, |
that of an isotropic phase due to the value of the self struc-

ture factor equal one. Below using numerical results we have 0.2 1
opportunity to say more about the consequences of the sell
structure factor. For the moment these are the meanings o | |
the values for the second order parameter in the relaxation o4 u u u u y s s s s g e e wwy |
process, one corresponds to a maximum value and the othe 25 3.0 35 40 45 5.0
to the similitude with the isotropic phase. In the next sub- ¢

sections the relaxation times are computed for the importanf!GURE 2. Second order parameter at equilibrium as function of
features predicted by this model. the concentrations. We find that = 3.56 and¢x = 4 that are
consistent with the literature data.

0.1+ 4

5.2. Second order parameter Here we clearly see, nematics is derived from Eq. (8)
\évhereas the isotropic region with the help of a perturbation
) . . . nalysis is derived, as was already mention in the previous
Lunc_non.of tt')me fo(rj ?r']ﬁetr)e?]t c_once;tratloc?s. erri] trt]ﬁ b(tar']subsection. From Fig. 2 we observe three different regions:
aviour IS observed the behaviour depending of Whether I, o, 1he concentration is lower than any isochoric pro-

colloid is isotropic or nematic For the former at long times %ess has only one stable point, for concentrations between

The second order parameter, Eq. (9), is plotted in Fig. 1 a

it goes to zero wherea_s for the latter goes to values differen , ande. will have two stable points, finally for concentra-
from zero. The relaxation process predicts a second order pa-

rameter equal to one half for the nematic concentration as
was corroborated from our model in the previous subsect|or|h isotropic phase and the second in nematics. In this man-

Another observation in Fig. 1 is that the second Orderner this model predicts different behaviour depending of the
parameter takes the value of one quarter only for coNncentraz, | e of the concentration

tions inisotropic. Taking only the equilibrium values for the Defining the relaxation timey as the value at which the

second order parameter as function of the concentration th(t;rder parameter reaches its equilibrium value, the dynamic

results are reported in Fig. 2. We can appreciate that for CO%tructure factor increase isotropicand decrease inematic

centra_tmni greate_zr than or _qu_aﬁl to 3'? the systefm IS 1n th&s function of the concentration. The different values of the
nematic phase, sinos(7)) is different from zero for any relaxation times irisotropic and nematicobey the different

ons larger tharpy has only one point stable again. In the
iddle region any isochoric line will have two points, one

time. concentrations and the equilibrium value for the second order
parameter in the nematic phase. kwtropicthe increment
tod ' ' ' 7}‘;:3 '_ of the relaxation time obeys the effect of the direct interac-
—o—¢=34 tions between rods, whereas the reduction of the relaxation
N Sy 1 time is due to the closing value of the initial alignment with
8 T::js 1 respect to itmmematicvalue, that for higher concentrations
4=44 smaller relaxation times, because it is closer to its asymtotic
08} ] value as the concentration is increased. Similar behaviour is
<P,(1)> si‘::«‘ found when it is used the self structure factor.
044 \Q -
\m\\\%::""‘"“‘"""'““"“""“'"“‘"“". 5.3. Orientational relaxation for small wavevectors
°* \ NO%%M i The dynamic structure factor for small dimensionless
EQDDDD:%ACO? - ] wavevectors is analyzed in this section. An experiment is as-
0T i sumed in which a colloid of stiff and long rods are perfectly
T aligned by means of an external field;7at 0 the field is re-

FIGURE 1. Second order parameter as function time for different moved .and the rods evolve tp an isotropic Or. nematlc phase,
concentrations as indicated in the figure. Far < 3.5 we have depending on the conce_ntratlon. The relaxation is m_onltored
an isotropic phase, whereas fr> 3.6 the system presents a ne- by means of the dynamic structure factor, the quantity mea-
matic phase since the order parameter takes an asymptotic value &/red in a depolarized light scattering experiment in the VH
shown in the figure. So between 3.5 and 3.6 we have the isotropiggeometry, given by Eq. (14). The time dependent behaviour
to nematic phase transition. for the order parameter is provided by the Smoluchowski
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lent behaviour for small dimensionless wavevectors is sim-
ilar, which is the important detail.

204 : In Fig. 4 the dynamic structure factor is reported as a
R Seltsenso00ens, ] function of the concentration, the plot shows the evolution
w84 LT $essussssssnnoosooooc] of the dynamic structure function for different times and two
Fg) 1~ 1 values of the dimensionless waveveajor 0 andg = 0.75,

16 ° 8 whose equilibrium value at long times corresponds to the

: 1 static structure factor.

20y In this Figure each symbol corresponds to a different
) | time, forr = 9,30 and 120. The Figure clearly describes

v ] how the phase transition occurs, that is, at the beginning a

T continuous curve is predicted and around- 90, point no
0 5 10 15 20 25 30 reported, the breaking of the continuous curve is observed
T and the discontinuity appears, indicating the first order char-
FIGURE 3. Dynamic structure factor as function of the reduced acter of the phase transition. As in the Fig. 3 here also the
time for different dimensionless wavevectors, as indicated in thequalitative behaviour is independent of the value of the di-

figure.For any value of, F(¢,7 = 0) = 0. In the insetis ob-  mensionless wavevectors considered.

served the maximum and the differences with respect to different In a previous subsection was predict that the self struc-

dimen_sionless wavevectors. All curves follow the same qualitativeture factor in the limit of dimensionless wavevector going to
behavior. -
zero has a maximum when the second order parameter takes
the value equal to one quarter, independent of the concen-
tration, withinisotropiconly. Therefore from Eq. (29), this
maximum corresponds 85 ~ 1.125 andd ~ 45°. This
angle is valid for the dynamic structure factor also, that is,
it presents a maximum at the same value of the second or-
4 der paramenter, the difference is that this maximum value
depends on the concentration, that it does not have a single
1 value as in the case of the self structure factor. This means
1 that the maximum value of the dynamic structure factor, in
isotropic, is taken when in average the rods are alignetbto
respect to the initial alignment, as was already previously pre-
dicted [15]. In Fig. 5 is reported the self structure factor for
12 . . ' . . . . q = 0 as function of the concentration for different times in-
25 30 35 40 45 50 55 60 dicated in the Figure. In equilibrium it clearly shows the val-
¢ ues for the isotropic and nematic concentrations as reported
FIGURE 4. Dynamic structure factor as function of the concentra- in a previous subsection, the maximum value and when it
tion for two dimensionless wavevetors for different reduced times takes the value equal to one.
as indicated in the figure. When the system are in the equilibrium
state there is discontinuity, we have a jumpie= 3.56. : T . : T r
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equation, Eqg. (7), solved with the initial condition of a full I . o =2 _
alignment of the rods and using Egs. (15), (19) and (22). 1 ° “a A

In Fig. 3 is reported results for different values fpand 100 * . * R = =20 ]
¢ = 3 as function of the reduced time for the dynamic struc- E* (o T;»OO- - v T
ture factor. The results do not show difference o= 0 " 0,054 ¢ . x ]
and 0.25, whereas for higher values of the dimensionless 1 . _
wavevectors a small quantitative difference is predicted. In 0507 . _ ]
the case of the self structure factor the relaxation observed 0.85 1 * : . ]
has the same features as the dynamic structure factor, the' 0.80 o o
are not reported explicitly. °

. . . . 0.75 T T T T T T

The important feature is that for small dimensionless 25 3.0 35 40 45 5.0

wavevectors all the plots have similar qualitative behaviour. ¢

Results for a concentration irematicis not reported because Figyure 5. Self structure factor as function of the concentration

these present similar characteristics, the only important .diffor different reduced times, indicated in the figure o= 0. When
ference is that they do not have a maximum but they go intahe system are in the equilibrium state, the Self Structure Factor
a plateau according to their concentration, but the equivapresent the first order transition.
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23 L second in the nematic phase, whereas for lower than one the
2o . o =2 colloid has only one stable point. From Eqgs. (29) and (33)
- we can express these conditions in terms of the second and
219 L A oa, \ = =120 fourth order parameters, that ¢ ~ 1 corresponds to
204 . L. | (pa) < (5/12) (p2) and F*&f < 1 with (ps) = (5/12) (p2).
N It is important to note that these last conditions are indepen-
Flor)1oq  * o« o " : T dent of the model used and is only a consequence of the ex-
18d ¢ * - Peo R 7 4 perimental conditions for rods gt= 0. Also in figure 6 is
. ° . I predicted the isotropic concentratiah= 32/9, at the max-
17 . . 2 T imum of the isothermal orientation susceptibility. The rele-
164 " * .8 - vance of this novel property is mainly the ability to predict
. the isotropic and nematic values of the concentration.
1o 25 30 35 40 45 50 With respect of the relaxation process the isothermal ori-
o entation susceptibility is able to predict when the rods have
FIGURE 6. Dynamic structure factor as function of the concentra- fan e.1I|gan-1ent.t(15°. W'th regpec.t tothe (;Jlrect|on of th_e polqr—
tion, for different reduced times indicated in the figure fos= 0. ization direction, in this situation the isothermal orientation
The discontinuity in the structure factor shows that the phase tranSusceptibility has a maximum, isotropic, depending of the
sition occurs by varying the concentration. value of the concentration of the colloid, time is necesary to

get this maximum, imematicthe maximum ofF'¢'f is sub-
stituted by a plateau reached in equilibrium whose value de-
TABLE |. Behavior of F*®"in the phase transition using Eq. (32) in pends on the concentration. We must mention that this max-
equilibrium for different values of the concentrationgat 0. imum is reached insotropic during the relaxation process
whereas fonematicit is reached in equilibrium. Finally be-

Concentration Self Structure Factor i ) ; ) ; L
T cause in the relaxation the isothermal orientation susceptibil-
¢ < 3.56 =1 ity starts the value of zero it then reachs its value one at initial
3.56 <9 <4 P> times, at this time the colloid presents a similar condition as
p=4 Feet =1 that of the isotropic phase in equilibrium.
¢ >4 et

Now, in Fig. 6 is reported results for the dynamic struc—6' Conclusions

ture factor for the same values as Fig. 5. Curves for inter-

mediate times looks like a continuos phase transition as i|:1n this work l\)/ve propr?se a|13|m.ple theoretlcafl mOdI?I.Lhalu al-
a dipolar colloid [20]. This behaviour is a remanent of the ows Us to observe the relaxation process of a colloidal sys-

external field used for the initial alignment. The main infor- €M formed by stiff and long rods, via the dynamic structure

mation of the phase transition comes from the self dynamiéacmr’ which has as input the o.rder parameter tWO.' The study
is based on the Smoluchowski formalism neglecting the hy-

structure factor at the limit of dimensionless wavevector go- . . ) )
ing to zero, showing the relevance of this limit. dronnamlc interactions together with the Maier-Saupe po-
tential for the interaction between them.
5.4. Isothermal orientation susceptibility The_ advantage of ha\_/ing_ an explic_it expressio_n for t_he
dynamic structure factor lies in its possible comparison with
As was shown in a previous section, it is reasonable to idersimulation and experimental data that allow us to test our the-
tify the self structure factor of the dimensionless wavevectopretical results.
equal to zero as a mechanical susceptibility, which we called At wavevector equal to zero was shown that the dynamic
isothermal orientation susceptibility. structure factor is the collective correlations to the fluctua-
From Fig. 5 is observed that during the relaxation proces§ions of the second order parameter. Its self part was also
for times larger thaf the isothermal orientation susceptibil- identified with an isothermal orientation susceptibility. The
ity takes values lower, higher or equal to one, only at 0it  relevance of this quantity is that is able to predict the isotropic
is equal to zero. At equilibrium in Table | is reported resultsand nematic concentrations in which the colloid has the ne-
for the different situations found for this response function. matic isotropic phase transition through the second order pa-
In the isotropic and for¢ = 4, nematic concentration, rameter in equilibrium, we find that; = 3.56 and¢y = 4,
Fs¢f — 1 when it takes values higher than one the colloidthat is, we improve the results of Frenkel using of Onsager’s
has a concentration between the isotropic and nematic corrodel [19] and itis closer to that reported in simulation given
centrations, that i®; < ¢ < ¢y. Finally whenFsef < 1 in[7].
the colloid is innematic This says that for values higher The results were supported with the assumption of the
than one of the isothermal orientation susceptibility the col-Maier-Saupe potential for a colloid with a nematic isotropic
loid has two stable points, one in the isotropic phase and thphase transition, thus one would expect that these predictions
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could be valid for different colloids which hold the same con- Acknowlegments
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