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Multivariate analysis of Raman spectra applied to microbiology:
Discrimination of microorganisms at the species level
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In this work, multivariate methods such as: principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA),
were applied for the analysis and interpretation of Raman spectra, collected from microorganisms of different species. The main objective
was to develop a methodology for a rapid and free of chemical-reagents discrimination and classification of microorganism at the species
level. The raw Raman spectra of microorganisms were recorded in the spectral range of 2000 to 200 cm−1. However, a detailed analysis of the
results obtained by means of PCA, showed that the spectral region from 1700 to 1500 cm−1, provides chemical and biochemical information
highly correlated with the species of the microorganisms analyzed in this study, allowing a clear discrimination among species. Also, in
order to evaluate the capability of multivariate methods to develop a classification rule, PLS-DA in a leave-one-out-cross-validation method
(LOOCV) was used for the calibration and validation of a classification model, as a first approach. The results obtained for this method,
showed an acceptable classification among the strains under study. On the other hand, taken into account the complexity of microorganisms’
communities and the experimental procedures for their identification, discrimination and classification, the non-destructive and versatility of
Raman spectroscopy and the capability of the multivariate methods for the analysis of spectral data, result useful tools for the classification
and discrimination of this kind of samples.
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En el presente trabajo, se describe el uso de los métodos multivariantes tales como: análisis de componentes principales (PCA) y de análisis
discriminante por ḿınimos cuadrados parciales (PLS-DA), para el análisis e interpretación de espectros Raman, colectados de un grupo de
microorganismos pertenecientes a diferentes especies. El principal objetivo de este estudio fue, sentar las bases para el desarrollo de una
metodoloǵıa experimental y de análisis, que permitan la discriminación y clasificacíon de microorganismos a nivel de especie de una forma
rápida y libre de agentes reactivos. Los espectros Raman de los microorganismos, fueron colectados para su análisis en el rango de los 2000
a los 200 cm−1. Sin embargo, los resultados obtenidos mediante PCA, mostraron que la región comprendida de los 1700 a los 1500 cm−1,
provee informacíon qúımica, bioqúımica y estructural, estrechamente relacionada con la especie de los microorganismos analizados en este
estudio, lo cual permite su discriminación. Adicionalmente, como una primera aproximación y para evaluar la capacidad de los métodos
multivariantes en la clasificación taxońomica de microorganismos, la información contenida en los espectros Raman fue utilizada para
calibrar un modelo mediante PLS-DA, posteriormente validado mediante el método (LOOCV). Los resultados obtenidos por la metodologı́a
empleada, muestran una clasificación aceptable en términos de la especie para las cepas analizadas en este estudio. Por otro lado, tomando en
cuenta la complejidad de las comunidades de microorganismos y los métodos experimentales actuales para su identificación, discriminacíon y
clasificacíon, la versatilidad y caracterı́sticas no-destructivas de la espectroscopia Raman, ası́ como la capacidad de los métodos multivariantes
para el ańalisis de datos espectrales, podemos concluir que la conjunción de ambas técnicas, representa una herramienta con un gran potencial
para la discriminación y clasificacíon de este tipo de muestras biológicas.

Descriptores: Espectroscopia Raman; análisis multivariante; microorganismos.

PACS: 87.64.K; 78.30.Er; 02.50.Sk

1. Introduction

Microbial contamination is not only a medical problem but
also plays a large role in pharmaceutical clean-room produc-
tion and food-processing technology. For all these fields, a
fast and nonambiguous identification of pathogenic microor-
ganisms is required. Standard bacterial identification and
classification methods are generally based on their morphol-

ogy, biochemical reactions and their ability to grow in vari-
ous media under different conditions [1-8]. However, these
methods are time consuming, and require training and exper-
tise. For this reason, the search for alternative techniques for
a quick and reliable identification, discrimination or classi-
fication of microorganisms is therefore an intensively active
research field [9].
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In the last decades, the use of Raman spectroscopy for
biological purposes has been increased because of its great
benefits such as its high sensitivity to subtle molecular (bio-
chemical) changes, as well as its capability for non-invasive
sensing. In addition, the Raman technique offers generally
narrow bandwidths, minimal sample preparation and is eas-
ily interfaced to fiber-optics for remote analysis; therefore,
interfacing to separation techniques or remote sensing is usu-
ally straightforward. Furthermore, the spatial resolution of
Raman microspectroscopy in the low micrometer scale and
its ability to probe samples underin-vivo conditions, allow
new insights into living single cells without the necessity of
using fixatives, markers or stains [10-16].

In addition, Raman spectroscopy is claiming an important
position in the identification of microorganisms, particularly
in the past few years. The main reasons for this aweaken-
ing are the capacity to register spectra directly from micro-
colonies growing on the culture plate, and the ability to mea-
sure in hydrated samples without water interference.

Furthermore, the use of chemometric methods for the
analysis and interpretation of spectra, have allowed for dis-
crimination of microorganisms at the specie level, providing
clustering patterns congruent with the phylogenetic trees con-
structed from rDNA sequence analysis [17].

Depending on the purpose of the data analysis, and the
previous knowledge of the samples under study, the chemo-
metric methods are usually classified as: unsupervised and
supervised. The unsupervised methods such as Principal
component analysis (PCA), factor analysis (FA), and clusters
analysis (CA), as its name suggests, does not require any pre-
vious knowledge of the samples under study, and can provide
patterns, groupings, detection of outliers, etc. On the other
side, the supervised methods such as multiple linear regres-
sion (MLR), principal component regression (PCR), Partial
least square regression (PLS) and linear discriminant analy-
sis (LDA) among others, require a set of well-characterized
samples, and are used for pattern recognition purposes. The
supervised methods always comprise a two-stage process:
a) calibration and b) validation. In the calibration stage, each
sample or object is identified as a member or not of a deter-
mined class or group, according to the previous characteriza-
tion of the samples or objects (reference method). The goal
is to calibrate a prediction/classification model (training set),
which will be used to classify or predict the class or value of
a set of new and non-characterized samples or objects. In the
validation stage, the model calibrated is tested and validated.
There are several methods to validate a model, but the most
commons are:

1) those where a set of new, independent and
well-characterized samples or objects are classi-
fied/predicted using the model to be tested (validation
set). According to the experts, this is the best way
to validate a model, and is used when there exists a
sufficient quantity of samples or measures [18,19],

2) using the leave-one-cross-validation method
(LOOCV). This validation method is used when the
number of samples or measurements is not enough to
have an independent training and validation set. In this
validation method, the training set, itself, is used to
validate de model, taken into account certain consider-
ations. We will return to this point latter. [18,19].

The aim of this paper is to describe how these methods
can be applied for the classification of microorganisms, in
particular those with probiotic properties, which are gener-
ally associated with health benefits [20-22]. Taking into ac-
count that some probiotic products are composed by com-
plex microbiotas containing lactobacilli, lactococci and also
yeasts, the development of a method allowing a clear differ-
entiation of potentially probiotic species results a valuable
tool for quick identification of unknown strains isolated from
these complex environments [23-27].

2. Materials and methods

2.1. Bacterial strains and growth conditions

Twelve strains of lactobacilli of the same species (CIDCA
83111; CIDCA 83113; CIDCA 83115; CIDCA 8321;
CIDCA 8325; CIDCA 8335; CIDCA 8344; CIDCA 8345;
CIDCA 8347; CIDCA 8348; ATCC 8007; JCM 5818), and
four belonging to two close related species (ATCC 8287;
JCM 1059; CIDCA 8322 and CIDCA 8328), were cultured
in MRS broth [28] (Biokar Diagnostics, Beauvais, France) at
30◦C for 48 hr.

The microorganisms were harvested in the stationary
phase, collected by centrifugation (10000g at 10◦C for
10 min), washed twice with phosphate buffered saline (PBS,
pH 7), lyophilized in a FD4 Heto freeze drier (Lab Equip-
ment, Denmark) and conserved at room temperature.

2.2. Spectroscopic instrumentation and data acquisition

The Raman Spectra of the lyophilized samples were collected
by placing them onto an aluminum substrate and then under a
Leica microscope (DMLM) integrated to the Raman system
(Renishaw 1000B). Multiple scans were conducted in differ-
ent points of the sample by moving the substrate on an X-Y
stage. The Raman system was calibrated using the first-order
phonon of Si at 520 cm−1, and further improved by use of
samples of chloroform (CHCl3) with bands at 261, 364 and
667 cm−1 and cyclohexane (C6H12) with bands at 383, 426,
801, 1028, 1157, 1265, 1347, 1443 cm−1. The wavelength of
excitation was 830 nm and the laser beam was focused (spot
size of approximately 2.0µm at high magnification) on the
surface of the sample with a 50X objective. The laser power
irradiation over the samples was 45 mW. Each spectrum was
registered with an exposure of 30 seconds, two accumula-
tions, and collected in the 2000-200 cm−1 range with 2 cm−1

spectral resolution.
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Raman spectra were acquired via GRAMS software (ver-
sion 3.04, Thermo Galactic, USA). Multivariate data anal-
ysis and pre-processing of data were performed on the Ra-
man spectra, using Origin (version 6.0, MicrocalTM , USA)
and The UnscramblerTM software (version 8.0, CAMO, Nor-
way).

2.3. Multivariate methods

Principal component analysis (PCA) and partial least square-
discriminant analysis (PLS-DA) were performed over the
pre-processed Raman spectra in order to evaluate

(a) the spectral differences among species of microorgan-
isms in the PC space and

(b) to develop models allowing discrimination and classi-
fication among species.

2.3.1. Principal component analysis (PCA)

PCA is a multivariate technique that operates in an unsuper-
vised manner and is used to analyze the inherent structure of
the data. PCA reduces the dimensionality of the data set by
finding an alternative set of coordinates, the principal com-
ponents (PC’s) [18,19]. The general form of PCA model is:

X = TPT + E (1)

whereX matrix is decomposed by PCA into two smaller ma-
trices, one of scores (T ) and other of loadings (P ).

PC’s correspond to a linear combination of the original
variables, which are orthogonal to each other and designed in
such a way that each one successively accounts for the maxi-
mum variability of the data set.

In other words, PCA involves a mathematical procedure
that transforms a large number of correlated variables (i.e.
Raman shifts) into a smaller number of uncorrelated variables
called principal components. Numerically this means that

I∑

i=1

tiatib = 0 (2)

whereta and tb are theath and bth columns ofT matrix,
respectively, and

I∑

i=1

piapib = 0 (3)

wherepa andpb are theath andbth rows ofP matrix, respec-
tively.

The first principal component (PC1) accounts for as much
of the variability in the data as possible, and each succeeding
component accounts for as much of the remaining variability
as possible.

When PC-Scores are plotted, for example PC1vsPC2 or
any combination of the PC’s, they can reveal relationships be-
tween samples (grouping). It is important to remember that

PCA does not act in a supervised manner, meaning that each
number of the groups under study is not knowna priori. PCA
provides insight into the percentage of variance explained by
each PC and how many PCs should be kept to maintain the
maximum information from the original data without adding
noise to the current information [18,19]. In addition, when
the PC-loadings are plotted as a function of the variables,
the plot reveals the most important diagnostic variables or
regions related with the differences founded in the data set.

2.3.2. Partial least square-discriminant analysis (PLS-DA)

PLS-DA is a version of PLS in which one or several Y-
variables are modeled simultaneously, thus taking advantage
of possible correlations or colinearity between Y-variables.

In PLS, the response matrixX is decomposed in a fashion
similar to PCA, generating a matrix of scores,T, and load-
ings factors,P. (these vectors can also be referred to as basis
vectors)

X = TPT + E (4)

A similar analysis is performed forY, producing a matrix
of scores,U, and loadings,Q.

Y = UQT + F (5)

The goal of PLS is to model all the constituents forming
X andY so that the residuals forX block, E, and the residu-
als forY block,F, are approximately equal to zero. An inner
relationship is also constructed that relates the scores ofX
block to the scores of theY block.

U = TW (6)

The above model is improved by developing the so-called
inner relationship. Because latent (basis) vectors are calcu-
lated for both blocks independently, they may have only a
weak relation to each other. The inner relation is improved
by exchanging the scores,T andU, in an iterative calculation.
This allows information from one block to be used to adjust
the orientation of the latent vectors in the other block, and
vice versa. An explanation of the iterative method is avail-
able in the literature [29-31]. Once the complete model is
calculated, the above equations can be combined to give a
matrix of regression vectors, one for each component inY:

B̂ = P (PT P )−1WQT (7)

Ŷ = XB̂ (8)

For a discriminant analysis approach, it is assumed that a
sample has to be a member of one of the classes included in
the analysis. Each class is represented by an indicator vari-
able, that is, a binary variable with a value of 1 for members
of the class and 0 for nonmembers. This way, by building
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FIGURE 1. Raman spectra corresponding to all the strains of mi-
croorganisms under study (targetstrains andintruder strains). The
gray frame shows the spectral regions where the main differences
among spectra are located. A zoom view of rectangles A and B is
also shown in the bottom.

a PLS model with indicator variables (Y), it is possible to
directly predict the class membership from theX-variables
describing any given sample. The model output corresponds
to the predicted value for an unknown sample. A correct pre-
diction should have ideally, aY value equal to 1 for the mem-
bers of the class and 0 for the non-members. In practice,
values of≥ 0.5 are interpreted as indicating membership to
the group being modeled, whereas values of≤0.5, as indicat-
ing non-membership. All predicted values are accompanied
by a deviation that is an estimation of how reliable the pre-
diction is.

2.3.3. Leave-one-out-cross-validation (LOOCV)

Full-cross-validation or leave-one-out-cross-validation
method consists in making as many sub-models as there
are objects, each time leaving out just one of the objects and
only using this for the testing. If there aren objects, each
sub-model will thus be made onn-1 samples. The square
difference between the predicted and theY-value for each
omitted sample is summed and averaged, giving the usual
validationY-variance apparently in the exact same sense as
for test set prediction.

LOOCV is the best one, and indeed the only alternative
when there are not enough samples for a separate test set. For
these reasons many text books and experts recommend full
cross validation as a general approach to prediction testing,

FIGURE 2. (a)Two-dimensional PCA-Scores plot of component 1
and component 2, obtained from the analysis conducted over the
Raman spectra oftargetandintruder strains in the range from 2000
to 200 cm−1. N corresponds totarget strains,©, to intruder 1
strains and⊗, to intruder 2 strains. (b) One-dimensional PCA-
loadings plot performed on the 2000-200 cm−1 range of the Raman
spectra for thetargetandintruder samples under study. The most
important diagnostic variables related with the spectral differences
among lactobacilli species are shown.

TABLE I. X-explained variance values obtained from PCA scores
analysis for raw Raman spectra in the selected ranges.

X-explained

Range/ cm−1 PC-number variance (%)

2000-200
PC1 52

PC2 9

1700-1500
PC1 72

PC2 10

1500-1170
PC1 61

PC2 16
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claiming that this should give the most comprehensive testing
of the model [18,19].

3. Results and discussion

3.1. Raman spectral features

Our first analysis was addressed in to identify the spectral
features which characterize the twelve potentially probiotic
strains of lactobacilli, described in the Sec. 2.1, belonging
to the same species (from here and thereafter denominated in
the text astargetspecies), from the other four strains belong-
ing to two close related species (denominated from here and
thereafter asintruder species), also described in the Sec. 2.1.

Figure 1 shows the pre-processed average raw Raman
spectra in the 2000-200 cm−1 region, of the sixteen strains
belonging to thetarget and intruder species. The fluores-
cence contribution was removed from the Raman spectra by
approximating a polynomial function to the spectra. This
function was hand-made adjusted for a best fitting and then
subtracted from the spectra. The spectral features in Raman
spectra, shows clear differences among thetarget and in-
truder species in the whole range analyzed. These differ-
ences were related with the presence or absence of some
bands and with the relative intensity of others.

In Fig. 1, the framed regions correspond to the main dif-
ferences observed in the Raman spectra (Scripts A, B and C).
Features corresponding totarget strains were clearly differ-
ent from the others strains belonging to theintruder species.
These differences involved mainly the following bands: nu-
cleic acid bases ring stretchings and amide I (script A), CH2

and CH deformations (script B) and, amide III and the various
oligo- and polysaccharides of the cell wall (script C) [32,33].

Some minor differences were also observed among the
target strains, especially in the regions A and C of Fig. 1,
which were assigned to the amide III (ca. 1250 cm−1) and
amide I (ca. 1660 cm−1) bands of proteins, respective-
ly [32,33].

The differences betweenintruder species were less evi-
dent and were mainly related with the shape and relative in-
tensities of the bands belonging to the three regions indicated
in Fig. 1.

As explained in previous section, Raman spectra are also
a source of abundant chemical and structural information. In
order to take advantage of this information, a multivariate
analysis was carried out over the raw Raman spectra.

3.2. Principal component analysis (PCA)

PCA was performed over the Raman data sets, with the aim
of comparing in an unsupervised manner the inherent struc-
ture of the spectral data in terms of similarities and differ-
ences.

PCA was conducted over the raw Raman spectra on the
range (2000-200 cm−1). Figure 2a depicts the PCA-scores
plot of PC2vsPC1 obtained from this analysis. A separation
amongtargetandintruder species can be observed along the
PC1-axis, which explains the 52% of the total variance in
the data set. In spite of that, some overlap of samples was
also observed. In Fig. 2b are plotted the PC1-loadings val-
ues, which represent the regions of the Raman spectra where
the differences among species are more evident. According
to Fig. 2b, the main differences among the microorganisms’
species analyzed, are in agreement with those observed and
depicted in Fig. 1, localized in the 1500-1170 and 1700-
1500 cm−1 regions.

TABLE II. Data set preparation and results of performance of PLS-DA.

Parameter Raman data /cm−1

Range 2000-200 1500-1170 1700-1500

NoSamples (target/intruder) 16 (12/4) 16 (12/4) 16 (12/4)

NoSpectra collected 119 119 119

NoSpectra removed of the analysis. 4 4 4

Mathematical treatment Raw Raw Raw

Pre-processing BLRa, MSCb, BLRa, MSCb, BLRa, MSCb,

VNc VNc VNc

PLS-factors 2 4 2
aBLR: Base line remove.bMSC: Multiplicative scatter correction.cVN: Vector normalization.

TABLE III. Results obtained from PLS-DA over the different Raman ranges analyzed.

Range 2000-200 cm−1 1700-1500 cm−1 1500-1170 cm−1

Calibration Validation Calibration Validation Calibration Validation

r2 0.77 0.72 0.88 0.87 0.87 0.85

RMSEC/RMSEP 0.26 0.29 0.19 0.20 0.20 0.22

SEC/SEP 0.26 0.29 0.19 0.20 0.20 0.22
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FIGURE 3. Two-dimensional PCA-Scores plots performed on the
Raman spectra of the lactobacilli samples under study:(a) in the
1500-1170 cm−1region. (b) in the 1700-1500 cm−1 region.N cor-
responds totarget strains,©, to intruder 1 strains and⊗, to in-
truder 2strains.

In order to evaluate if these differences were specific to
the microorganisms’ species, PCA was conducted indepen-
dently in both ranges (1500-1170 and 1700-1500 cm−1).
Fig. 3a depicts the PCA-scores in the 1500-1170 cm−1 re-
gion and Fig. 3b, the ones in the 1700-1500 cm−1 region.
In Fig. 3a, an evident separation between one of theintruder
species (identified with the hollow circle) andtarget strains,
can be observed along the PC1-axis, which explains 61% of
total variance. However, the otherintruder species (iden-
tified with the cross-circle), cluster together with thetarget
strains. This behavior can be explained taking into account
the spectral similarities between thetarget strains and one
of the intruder species in the amide II and amide III regions
(1500-1170 cm−1 region) depicted more clearly in the zoom
in Fig. 1 [32,33].

FIGURE 4. (a) Discriminant scores plot of PC2vsPC1 in the 1700-
1500 cm−1 range. (b) Leave-one-out-cross-validation, for the clas-
sification model calibrated with the Raman spectra in the range of
1700-1500 cm−1. N corresponds totarget strains,©, to intruder
strains.

In Fig. 3b, discrimination betweentarget strains andin-
truder species can be observed along PC1-axis, which ex-
plains 72% of variance. Taking into consideration the per-
centage of explained variance in the X-data set for PC1 (Ta-
ble I) and the PCA-scores for each region analyzed, it is evi-
dent that the best region to build a model aiming to discrimi-
nate amongtargetandintruder samples, is the one of 1700-
1500 cm−1. In this range, the main differences were observed
in the bands at 1580 cm−1 (arising from the adenine and gua-
nine ring stretching) and at 1660 cm−1 (arising from amide I
vibrations) [32,33].

In addition, the results obtained, also suggest that PC1
in the 1700-1500 cm−1 range, is the component containing
species specific information. Since the Amide I band (arising
from the C=O stretching vibrations) is the predominant band
in this region, these results indicate that the discrimination
betweentarget and intruder strains is somehow influenced
by the protein structure. Further studies should investigate

Rev. Mex. F́ıs. 56 (5) (2010) 378–385



384 P. MOBILI et al.

in which way the secondary structure of proteins determine
these species differences.

3.3. Partial least square-discriminant analysis (PLS-
DA)

PLS-discriminant analysis was used to develop the classifica-
tion rules for unknown samples in real applications.

As it was explained before, this method operates in a su-
pervised manner, meaning that a prior knowledge of the class
membership is required. In this study, two classes:targetand
intruder species, were defined. A correct prediction should
have ideally, a Y value equal to 1 for the samples belonging
to thetargetsamples and 0, for theintruder samples.

The PLS-DA analysis was carried out over the pre-
processed raw Raman spectra in a full cross validation
method (leave-one-out-cross validation) due to the limited
number of samples [18,19].

The analysis was performed using the raw Raman data
set. The spectral range used to calibrate the classification
model was that among 1700-1500 cm−1, which according
with the PCA-scores, is the best region to discriminate among
targetandintruder species. On the other hand, according to
the PCA results, the 2000-200 cm−1 and 1500-1170 cm−1

regions, contains an excess of non-species specific informa-
tion that does not allow a clear discrimination between both
groups, however two classification models were calibrated
for these two regions, in order to compare the classification
ability of each model calibrated in these three regions. The
number of samples, number of spectra collected, number of
spectra removed from the analysis, range, mathematical treat-
ment, data pre-processing and PLS- factors are shown in the
Table II.

Figure 4a depicts the discriminant scores plot of PC2vs
PC1 in the 1700-1500 cm−1 range, which revealed a clear
separation betweentarget and intruder samples. The values
obtained using the prediction model calibrated for this range
in a full-cross-validation, are shown in Fig. 4b In spite of the
occurrence of 4 sample mismatches (threeintruder strains
were classified as uncertain and one, astargetstrain), a good
discrimination betweentarget and intruder groups was ob-
served. The results obtained from PLS-DA over all the Ra-
man ranges analyzed are summarized in the Table III.

4. Conclusion

In this work, an approach based on Raman spectroscopy in
combination with PCA and PLS-DA was developed for rapid
differentiation of microorganisms with probiotic properties.
In this sense, the development of a supervised multivariate
method allowing the discrimination of microorganisms at a
species level is certainly the main achievement of this work.
This approach can be considered as a very promising tool for
the discrimination and classification of unknown samples.

The predictive ability of the method used in this work al-
lowed the classification of lactobacilli strains with the only
requirement of being a pure strain.

Taking into account the complexity of certain microor-
ganisms’ communities and the influence of the culture condi-
tions in the microorganisms’ composition, the identification
of a given species (targetspecies) in such a complex environ-
ment definitely saves time and efforts.

Finally, the use of Raman spectroscopy and chemomet-
rics shows great potentiality for the identification and clas-
sification of any bacterial species in the food industry and
those isolated from different environments. This way, the use
of this successful approach on complex system would exploit
the advantages of using Raman spectroscopy to detect and
differentiate microorganisms.
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