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In this work, a dual illumination beam system is used to obtain the stress intensity factor in modes one (modeI) to mechanical elements
during tension testing. The displacement field is obtained by means of electronic speckle pattern interferometry and phase stepping technique.
Deformations are calculated by the Stokes differentiation method. Results are compared with a numerical simulation using a finite element
analysis technique.
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En este trabajo un sistema de iluminación dual es utilizado para la obtención del factor de concentración de esfuerzos en el primer modo
(modoI) en un elemento mecánico durante la prueba de tensión, los campos de desplazamiento son obtenidos por Interferometrı́a Electŕonica
del Moteado y la t́ecnica de corrimiento de fase. Las deformaciones son calculadas mediante el método de diferenciación de Stokes. Los
resultados obtenidos son comparados mediante una simulación usando el ańalisis de elemento finito.

Descriptores:Factor de intensidad de esfuerzo; interferometrı́a electŕonica de patŕon de moteado; ḿetodo de Stokes; corrimiento de fase.

PACS: 42.30.Ms; 02.60.Jh; 81.40.Jj; 81.40.Np

1. Introduction

T.J. Dolan [1]et al. state that all materials display defects
in their internal structures that in one way or another modify
their mechanical properties. This is the reason why it is com-
plicated to obtain accurate results concerning the mechanical
resistance of a material. The main theories that predict static
failure are based on statistical analyses [2]. Two of these the-
ories are the Von Mises-Hencky and Tresca’s maximum shear
stress theory, and are used as criterion of failure if material
stresses over the yielding point [3]. However, many measure-
ments under different stress conditions were observed with
the aim to explain the fail process under a static load. There-
fore, some degree of uncertainty is always present in the ma-
jority of such mathematical models; for example, Thomas J.
Dolanet al. and Mischke, compared both the limit tensional
fatigue and the flexing fatigue in independent works obtain-
ing but not identical results [4]. In recent years, computer
technical breakthroughs in finite element analysis (FEA) for
the prediction of failure in mechanical elements have been
developed [5]. The disadvantage of FEA techniques is that
they are developed in a virtual environment, and often the
structural model of one material is not exactly faithful to
reality. For example, the stress intensity factor is obtained
through a standard material with a well known elasticity mod-
ulus or stress-strain relationship, but inadequate constrains or
boundary conditions which can be far for real ones causes
wrong results. In the design and manufacturing processes,
direct measurements are necessary to meet quality and safety
standards [6]. Optical methods offer direct whole-field mea-
surement of deformation processes. This is an advantage in
comparison with other methods capable to measure deforma-

tions“in one-point” like strain gauges. However, digital im-
age processing needs to be computed with special care be-
cause important data can be modify.

Electronic speckle pattern interferometry (ESPI), as a
non-destructive technique, is capable of measuring directly
whole-field displacements on the surface where the obser-
vation is made and stored in the computer memory [7,8].
Whole-field deformations are obtained from interferograms

FIGURE 1. Test specimen geometry with a FEA mesh. The dotted
line highlights the observation and analysis area.
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in a computational post process means both any technique for
interference phase extraction and the sensibility vector com-
putation [9]. A high accuracy can be obtained with ESPI
technique [10], however, the noisy characteristic of speckles
induce errors when interferogram images are processed. Dig-
ital low band filtering needs to be applied to interferograms
in aiming to reduce the speckle effect.

To measure the stress intensity factor (SIF) in modeI
around a crack, we use a post-processing image analysis of
the whole-field deformation images. Figure 1 shows the ge-
ometry of the test specimen used. The displacement whole-
field is obtained through the electronic speckle pattern inter-
ferometry and phase stepping technique [11], and deforma-
tions are calculated by means of the Stokes differentiation
method. In this paper, we present a comparison of results
obtained through a finite element analysis technique and the
measurements obtained by means of electronic speckle pat-
tern interferometry.

2. Stress analysis for stress intensity factor es-
timation

Structural failure of mechanical elements can be a submis-
sive state of stress, which always begins with a fracture in the

molecular structure of the material. These conditions lead
to an excessive increase in the stress levels at the end of a
crack [12]. However, since homogenous materials can dis-
play imperfections in their molecular structure, crack size
and distribution depend on the manufacturing process and
the quality of the material crafted. Furthermore, a simple
scratch or a little superficial defect can be the beginning
of a structural failure inasmuch as localized fractures and
cracks create high levels of stress whose theoretical magni-
tude tends to infinity. No elastic material can be subjected
to high levels of stress without experiencing local flow [13]
and stress concentration around a crack. Another principle
of stress concentration deals with the mechanical element’s
geometric shape [14]. Unsuitable geometric contours can
modify stresses whole-field, while mechanical resistance is
also modified by stress concentration; then, failure happens
at load levels that are below what had originally been calcu-
lated. However, both the theory of linear-elastic mechanics
of fractures and Hooke’s law are totally applicable [15]. In
this case, the mathematical model for displacements and the
stress fields around a crack tip in Eqs. (1) and (2) are related
to plane strain fields [16] through the Hooke’s law in the elas-
tic regimen and can be expressed as Eq. (3)
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The variablesAIn are unknown coefficients related with
the strain functions, whenn = 1 it is the stress intensity fac-
tor in modeI. The mathematical models of displacement are
Iu(r, θ) andIv(r, θ) in thex andy directions respectively.E,
G andµ are elasticity constants: the Young’s modulus, the
shear modulus and the Poisson’s ratio respectively. The co-
ordinates(r, θ) are polar coordinates with their origin at the
crack ends. Equations (1) and (2) can be used for determin-
ing the stress intensity factor by a comparison of multiples
measurements in the reference points coordinates of displace-
ments obtained by ESPI and the displacement mathematical
model. (See Fig. 2).

In order to find the unknowns coefficientsAIn a linear
equation system is obtained from Eqs. (1) or (2). To solve

the n number of unknowns, for example, using Eq. (1), an
over-determinate data points near the crack tip is required
with a least square procedure to minimize the error due to
noisy data obtained from the speckle interferometry [17]. Let
SuandSvbe defined by

Su =
N∑

k=1

(uk(r, θ)− Iuk(r, θ))2 (4)

Sv =
N∑

k=1

(vk(r, θ)− Ivk(r, θ))2 (5)

Whereu, v are thek point data measurement by ESPI in
the specimen test,N is the total of points data measurement
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FIGURE 2. Reference data points used to obtain displacement mea-
surements for SIF estimation.

and Iu, Iv are described in Eq. (1). Differentiating equa-
tions (4) and (5) with respect toAIn and equalizing to zero,
we find a linear system of equations in terms ofAIn. We can
rewrite this in the form:

[S] [A] = [C] . (6)

Where then × 1 matrices [C] and [A] are the constants and
the unknowns related to the stress intensity factor respec-
tively, [S] is a n × n matrix of coefficients ofAIn. The
solution of Eq. (6) is given by:

[A] = [S]−1 [C] . (7)

The stress intensity factor is determinate by the relation-
ship [18]:

KI = AI12
√

2π (8)

On the other hand, theoretic results can be obtained by
considering the specimen configuration. The theoretic stress
intensity factor in modeI in the end of the crack tip is given
by [19]:
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wheref (a/W ) depends on the geometric and load configu-
ration of the specimen test,B is the thickness,W the length
anda is the crack length of the specimen.F is the applied
load. A compact specimen as shown in Fig. 1 is defined
as [19]:
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FIGURE 3. Schematic diagram of the optical setup forx and y

in-plane sensitivity.

3. Optical setup

In a deformation process, each pointP of the surface is dis-
placed in itsx, y andz coordinates. The displacement whole-
fields on the surface can be represented by means of the dis-
placement vector~d (P ) = u(p) · î + v(p) · ĵ + w(p) · k̂. To
observe the displacement fields, an optical system with dual
illumination is used to carry out a correlation of images be-
fore and after the undergoing of a deformation. Levels of
image intensityI (x, y) of interferograms can be related to the
deformations in the shape of fringes by means of the follow-
ing equation:

I(x, y) = A(x, y) + B(x, y) cos [∆ϕ(P )] , (11)

where interference phase∆ϕ (P ) is related to the displace-
ments on the surface,A(x, y) represents a constant term of
intensity, andB(x, y) is a fringe modulation term of the in-
terferogram. The displacement ofP on the surface can be
related to the phase by [20,21]:

∆ϕ (P ) = ~e (P ) · ~d (P ) (12)

Sensitivity vector~e (P ) depends both on the optical
setup configuration and the wave length of the light sources.
The deformed surface is simultaneously illuminated by two
sources,Si

1 and Si
2. The coordinates of the sources are

(xi
1, y

i
1, z

i
1) and (xi

2, y
i
2, z

i
2) respectively;i = 1, 2 depends

of in-plane sensitivity direction,x or y. The optical setup is
shown in Fig. 3.

Divergent illumination is used in our optical system. A.
Martinezet al. [17], have demonstrated that one component
of the in-plane sensitivity vector can be favored in some given
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direction, while the sensitivity contribution in the orthogo-
nal component is minimal. The component in directionz
can be ignored since its sensitivity contribution is not greater
than 0.1%. Then, Eq. (12) can be rewritten as a function of
the displacement vector components~d (P ) [22] by:

[
∆ϕx (P )
∆ϕy (P )

]
=

[
ex 0
0 ey

]
·
[

u(P )
v(P )

]
. (13)

Notice that the unitary deformationε in their orthogonal
components can be obtained by direct measurement of dis-
placement fieldsu(P ) andv(P ) by:

εx =
∂u

∂x
and εy =

∂v

∂y
(14)

To evaluate interference phase∆φ, a relatively simple
mathematical process is used. By addingn2π/N modulus
displacement in the interference phase by means of a piezo-
electric device, whereN is the total number of steps, an im-
age of each step (I1, I2, I3,. . . In) is taken and archived in the
computer memory, n=1,2,3,. . . N. This technique is known as
the phase stepping method. Equation (11) can be rewritten as:

In(x, y) = A(x, y) + B(x, y) cos
[
∆ϕ(P ) +

n2π

N

]
(15)

Then, a linear system of three equations is created. For
N = 3, and solving the linear system, a solution for the in-
terference phase is [23]:

∆ϕ(x, y)= arctan

( √
3 (I3(x, y)−I2(x, y))

2I1(x, y)−I2(x, y)−I3(x, y)

)
. (16)

The interference phases∆ϕx and∆ϕy are obtained from
Eq. (16) switching illumination sources in thex andy direc-
tion of the optical setup respectively.

FIGURE 4. 3×3 matrix used in the Stokes differentiation method
aroundP (i, j).

FIGURE 5. Experimental setup.

4. Evaluation of strain by the Stokes method

In ESPI interferograms is common to obtain random noise
due to the nature of the speckle phenomenon. It is known that
the numerical differentiation of displacements whole-field
produces unacceptable errors due to the computer calcula-
tions applied [24]. Some solutions to this problem involve the
use of smooth interpolating functions, or the use of numerical
methods to differentiate functions with low uncertainty. In
this case, the derivatives are calculated by the Stokes method
applied to a finite element of a surface in the planex, y, as it is
shown in Fig. 4, in such a way that dS=∆x∆y. Generally, we
take∆x and∆y as the pixel-spatial resolution in the interfer-
ogram images; therefore, a matrix of 3×3 pixels represents
a surface of 4∆x∆y. The displacement vector components
u(P ) and v(P ) can be expressed by Stokes law at a point
P (i, j) by [25]:
∮

L

~d · −→dL=
∫

S

(
∇× ~d

)
· −→dS=

(
∂v

∂x
−∂u

∂y

)
· 4∆x∆y (17)

Where the displacements and partial derivatives ofw(P ) are
zero in thez direction. The term

(
∂v

∂x
− ∂u

∂y

)
· 4∆x∆y

represents the rotational displacement vector at a point
P (i, j) of the surface within a closed line and it is related
to the shearing strainγxy in this differential area. Then, us-
ing the trapezoidal rule for the standard integration of the
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first term of Eq. (17), and eliminating orthogonal terms, we
find [26]:∮

L

~d · d~L = [ui−1,j−1 + 2ui−1,j + ui−1,j+1] · ∆x

2
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2

+ [vi−1,j+1 + 2vi,j+1 + vi+1,j+1] · ∆y

2
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2
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Theu andv terms are the weights of each pixel in a 3×3
matrix. Notice that the scalar terms in Eqs. (17) and (18) can
be used to find orthogonal components of strain by properly
replacing the∆x and∆y terms. Using the previous equa-
tions, we obtain the following relationships:
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5. Finite element analysis simulation

The finite element analysis in mechanical analysis is a nu-
merical technique for finding approximate solutions of strain,
stress and deformations. Many techniques to simulated
stress-strain and deformations are reported, for example,
A.A. Kotlyarenko et al. [23] present a simulation near a
crack tip in a compact tensile specimen as shown in Fig. 1.
Our model is based on eight-node finite element in two di-
mensions. This configuration of finite element provides more
accurate results for mixed quadrilateral-triangular automatic
meshes and can tolerate irregular shapes without as much loss
of accuracy [27]. The 8-node elements have compatible dis-
placement shapes and are well suited to model curved bound-
aries. The freedom degree of this is imitated in theu andv
directions only. The numerical simulation was preformatted
using the commercial software package ANSYS. Figures 7
and 8 show a comparison between ESPI and FEA simulation,
they will be commented with more detail in the next chapter.

6. Experimental procedure and result analysis

A 6 mm thick test specimen was made out of alu-
minum 1050 A. Its mechanical properties were as follows:
Young’s modulusE = 71 GPa, Poisson’s ratioµ = 0.334, and
yield pointSyp 152 MPa. The test specimen was mounted on
an INSTROMR© machine for tension tests (Fig. 5), an 8 bits
CCD camera recorded images at 255 gray levels, the im-
age dimensions were 432×326 pixels, and the capture rate
was 30 fps. The source of illumination was a He-Cd laser
with a wavelength of 442 nm, located at coordinates (in mil-
limeters):S1

1 (-450,0,490),S1
2 (452,0,490);S2

1 (0,270,690),
S2

2 (0,-270,690). Notice the increased sensitivity in thex-
direction to compensate the deformation rate ( due to Pois-
son’s ratio betweenu andv). The maximum sensitivity vec-
tor component in the x-direction was 19.7×103 rad/mm,
while for they−direction it was 10.4×103 rad/mm.

The parameters of the universal machine were pro-
grammed at 0.125 mm/min; this is a minimum deforma-
tion speed between the ends of the test specimen. A pre-
load of 0.5 kN was applied. Measurements were taken
at every 20 N up to 2 kN. A low load was applied to
avoid damage to the molecular structure of the test speci-
men. In order to verify the repetitive process, the relations of
load-deformation for each test measurement were compared
through the multiple measurements obtained. These data can
be observed in Fig. 6. The processing time required for the
phase stepping evaluation was almost 0.1 s, which represents
a displacement in the observation area of about 0.1µm in the
y direction. We can assume that the specimen deformation
speed with respect to the speed of the image processing is
sufficiently low to consider that the technique of phase step-
ping is executed in quasi-static conditions. Then, the rigid
body translation that could be observed in interferograms is
neglected. The image

FIGURE 6. Relations of load-deformation obtained from multiple
measurements.
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FIGURE 7. Fringe pattern, wrapped phase and FEA simulation to
a) u displacements field, b)v displacement field; the applied load
was 1.2 kN.

FIGURE 8. Strain whole-fields comparison obtained by ESPI after
the Stokes method application and FEA simulation.εx Deforma-
tion obtained by: a) ESPI, b) FEA;εydeformation obtained by:
c) ESPI, d) FEA; the applied load was 1.2 kN.

FIGURE 9. Displacements in theu andv directions atθ = 0.

FIGURE 10. Strain obtained by ESPI and FEA techniques.

TABLE I. Stress intensity factor KI obtained for the compact test
specimen.

Stress Intensity factorKI

(MPa m0.5)

Applied Load Experimental Numerical Finite element

(KN) ESPI Eq. (6) analysis

1.20 15.42 11.254 9.872

1.80 18.32 18.288 16.146

acquisition process was repeated at every load increment of
20 N, from the beginning until the end of the test. Each pair of
illumination sources was switched during the test to obtainx
andy sensitivity directions. The interferograms chosen for
analysis were those that were between 1200 N and 1800 N.

Ignacio Liraet.al. [21] refers to unacceptable errors in the
direct application of numerical differentiation in noisy inter-
ferogram. Filtering of noisy data is necessary, but useful data
are also to be inevitably lost in the edge of the specimen im-
age. A convolution filtering process with a Gaussian kernel
was applied on each interferogram like a low-pass frequency
filter. The Gaussian kernel reduces considerably the noise
with an acceptable lost of useful data in the specimen edge
image. However, edge data’s are not taken for SIF estima-
tion. Then, a three step technique of phase stepping was used
to get a whole-field phase associated withu andv displace-
ment fields, (see Fig. 7). By using Stokes method, Eq. (20),
we can find the strain whole-field. Figure 8 shows the results
obtained for strain field.

We can see thatu and v displacements measured with
ESPI technique and strain whole-fields obtained through
Stokes method agree with FEA analysis. However, we can
see a little asymmetry in theu displacement of experimen-
tal fringes caused probably by a rigid rotation due to some
alignment when a load was applied. In contrast, experimen-
tal fringes on thev displacement are symmetrical. Then, rigid
body displacement can be dismissed. Figure 9 shows dis-
placement results to FEA simulation, numerical computation
and ESPI measurement along thex axis,θ = 0◦. As we can
see, displacements in they directions is close to be a con-
stant, but not in thex direction. This fact can be attributed
to the constant movement of the tension test machine. The
x displacements increase alongθ = 0◦ due to the induced
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momentum in the specimen. Figure 10 shows strain mea-
surements alongθ = 0◦ too. Near of the crack tip, FEA and
ESPI strain measurements are similar. Table I shows results
of the stress intensity factorKI for loads of 1200 and 1800 N.
Estimations of the maximum stress intensity factor gives
9.87 [MPa·mm0.5] to FEA at 1.2 kN and 18.32 [MPa·mm0.5]
to ESPI measurement at 1.8 kN.

7. Conclusions

Electronic speckle pattern interferometry is a useful tech-
nique for strain analysis in machined elements. We can use
both deformations and strain fields to compute the stress in-
tensity factor. Complications can be associated with the pres-
ence of the speckle noise and the image resolution. The de-
sign of an appropriate low band pass filter is necessary to be
applied to interferograms. However, important data can be af-
fected, especially in the derivative process. The Stokes equa-
tions, usually associated to fluid mechanics, can be used for

a mechanical theory of elasticity if the deformation process
is considered as a flow of very low velocity. Stokes method
is an alternative method to get the derivative, since it takes at
least eight elements around the analyzed data, in comparison
to three or five data taken by traditional derivative methods.
If the specimen deformation process is very slow, the phase
stepping technique can be used with a tolerable error. Then,
rigid body translation can be dismissed. Stress intensity fac-
tors obtained through FEA and ESPI techniques show similar
results, once the speckle effect is reduced by a low band filter-
ing. ESPI technique is useful to corroborate FEA predictions.
Efficient mechanical design procedures can be attained using
both techniques.
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