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We calculate exactly the QNF of the vector type and scalar type electromagnetic fields propagating on a family of five-dimensional topological
black holes. To get a discrete spectrum of quasinormal frequencies for the scalar type electromagnetic field we find that it is necessary tc
change the boundary condition usually imposed at the asymptotic region. Furthermore for the vector type electromagnetic field we impose
the usual boundary condition at the asymptotic region and we discuss the existence of unstable quasinormal modes in the five-dimensiong
topological black holes.
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1. Introduction Based on the results by Kodama and Ishibashi on the sim-
plification of the Maxwell equations in static spacetimes [32],

The quasinormal modes (QNM) are the characteristic oscilla¢see also [33]) here we generalize previous results on the
tions of a test field or of the metric perturbations that satisnyNM of the Klein-Gordon field [25] in the five-dimensional
the appropriate boundary conditions near the event horizogypological black holes of Refs. 26 to 28 and calculate exactly
and at the asymptotic region of the black hole [1,2]. Thusthe spectrum of QNF for the electromagnetic field. Using
the QNM appear when the black hole is perturbed from itshese results we study the stability of the topological black
equilibrium state and they depend on the physical propetholes of Refs. 26 to 28 under perturbations. At this point it is
ties of the black hole and the field. Recently the QNM haveconyenient to mention that we discuss the possible existence

found many applications in different studies about the claspf ynstable QNM for the electromagnetic field for some val-
sical stability of the black holes [1,2], the area spectrum ofyes of the parameters.

the event horizon [3,4], and motivated by the AdS-CFT cor-
respondence [5], the QNM spectra of asymptotically anti—dq h
Sitter black holes are extensively studied since they are usefk}

in the calculation of the decay rates in dual theories [5-24). _equations in static spacetimes to two differential equations,
Furthermore the exactly solvable systems are relevant i q for the vector type electromagnetic field and another for
physics, since in these systems we can explore in detail thejf,o scajar type electromagnetic field. In Sec. 3 we enumerate
physical properties. Thus we think that in the research line ofy, ro|evant features of the five-dimensional topological black
black hole perturbations is useful the search and study of eX;,as of Refs. 26 to 28 that we study in this work. In Sec. 4
actly .solvable systemg. I_n partigular for asymptotically anti-We calculate exactly the QNF of the vector type electromag-
de Sitter black holes it is possible to calculate exactly the,eic fie|q propagating on these five-dimensional topological

quasinormal frequencies (QNF) of several fields [18-25]. W, 5oy holes and discuss the stability of the QNM. We make
know that this is the case for the BTZ black holes [18-20], 5 gimilar calculation for the scalar type electromagnetic field

the massless topological black holes [21-24], and the fivey, Sec. 5, but in this case we need to make a careful study

dimensional topological black holes [25] of Refs. 26 10 28. ¢ yhe poundary condition at the asymptotic region since the
See also [29-31] for related examples of exact determinatiofyg 4 boundary condition leads to a continuum of QNF and

of QNF. o we modify the boundary condition to get a discrete set of
The QNF spectrum of the electromagnetic field in aSYMPONF that depends on the parameters of the black hole and

totically anti-de Sitter black holes has been explored previzq fielq. Finally we discuss the main results in Sec. 6.
ously [8-12], [14-17]. Among the motivations we find that

the electromagnetic field behaves in a different way than

other classical fields and its analysis is physically more rel- .

evant than the study of the Klein-Gordon field. Addition- 2. Maxwell equations

ally in the AdS-CFT correspondence the QNF of the elec-

tromagnetic field in asymptotically anti-de Sitter spacetimed?s is well known, we can write the line element of a
are related to the poles of the retarded Green functions of th&-dimensional generalization of the spherically symmetric
R-symmetry currents. Thus for the electromagnetic field wespacetime in the form [32]

believe that it is convenient to determine its spectrum of QNF

in asymptotically anti-de Sitter black holes. ds? = gap(2)dz®dzb + 72(2)dQ% _,, (1)

We organize this work as follows. Following Kodama and
ibashi [32] (see also [33]) in Sec. 2 we recall some rele-
nt results about the simplification of the vacuum Maxwell
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wherea, b = 1,2,d0%_, =4;;d9°dy?,i,5 =1,2,...,D— 3. Five dimensional topological black holes

2, is the line element of theD — 2)-dimensional maximally

symmetric base manifold with metrig;; and whose Ricci The five-dimensional topological black holes that we study
tensor fulfills R;; = (D — 3)K#;;, that is, the base mani- in this work have the line element

folds are of Einstein type. HerK is a constant determined 2

by the scalar curvature of the base manifold and can be nor- ds® = —fdt? + — + r2d0%, (8)
malized to the value& = 0,+1 [32]. In what follows we f

assume that the bidimensional line element that appears {j,qre €22 is the line element of the three-dimensional max-

the metric (1) is given by imally symmetric base manifold and the functigiakes the
42 form [26—28]
ds2 = gap(2)dadzb = — Fdt* + 5 @)
with F andg functions of the radial coordinate

If we denote the Maxwell tensor b, then the Maxwell ~ whereA is a negative constank’ = 0,41, andc, is a non

et KEa, ©)

equations in vacuum are negative constant. We notice that for the three-dimensional
base manifold the scalar curvature is equabo. The so-
VieFu) =0, V' =0. (3)  lution with positive sign of,/cy is usually called the plus

branch, whereas the solution with negative sign,af is
Itis well known that if we make a harmonic sum on the scalarusually known as the minus branch [28]. The topologi-
and vector eigenfunctions of the Laplacian on the base mareal black holes (8) are solutions of several gravity theo-
ifold d2%,_,, the Maxwell equations in a spacetime of the ries as the five-dimensional Chern-Simmons theory [26], the

form (1) simplify to [32,33]. five-dimensional Gauss-Bonnet gravity with special Gauss-
Bonnet coefficient [27], and the five-dimensional= 4
D.Ddy, D449 (DD -6)G Horava-Lifshitz gravity [28].
4r dr 4r2 The event horizon of the topological black holes (8) is
D—4 2 D - 3K determined b
— gdj@v — M@V =0, 4 y
4r F dr r2 3
o == - K). 10
for the vector type electromagnetic field and T+ A (Fveo ) (10)
(D-2)(D—-4)G dG D — 4 Since we impose that the radius of the event horizon is posi-
D,D®g — fﬁ@s + T 2s tive, we need that the parametessand K fulfill
2
gdigq)sfkiq)szo (5) Feo— K > 0. (11)
rF dr 4 r2 ’

Notice that depending on the value Bfwe have one or two

for the scalar type electromagnetic field. Here the synihpl é)ositive values of the event horizon according to the follow-

denotes the covariant derivative for the bidimensional metri

gap(2), the functionsby, and®¢ depend on the coordinates fng list.
x® of the two-dimensional space with metrg, and they 1. ForK — 0 andK = 1 the black hole exists in the
contain the relevant information about the dynamics of the minus branch.
vector type and scalar type electromagnetic fields in space-
times of the form (1). In the previous formulag (k%) are 2. ForK = —1 to have a black hole in the plus branch
the eigenvalues of the vector harmoni¢s(scalar harmon- we require that/c < 1.
ics S) on the maximally symmetric base manifold with line
element @2, ., that is, they satisfy [32] 3. For K = —1 in the minus branch we always have a
black hole.
(D; D' + k3)V; =0, D'V, =0,
o Thus for K = —1 we have black holes in the two branches
((DiD" + k3)S = 0), (6)  of the solution (8) [28].

. In the following sections it is useful to define the quantity
whereD; is the covariant derivative on the maximally sym-
metric base manifold. FaF = G = f we point out that in p =K +./c, (12)
Egs. (4) and (5) the operatdr, D* takes the form
and if the black hole exists, then< 0. We also notice that
D, D" — _153 +0,(0,). (7) for K = —1 the parametep satisfiesp| > 1 in the minus
f branch andp| < 1 in the plus branch.
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4. Quasinormal frequencies of the vector type we find that the functior,y is a solution of the differential

electromagnetic field equation
To extend the previous results of [25] on the QNM spectrum d’Ray
of the five-dimensional topological black holes (8) in what v =)=z T @By +1-(@2Bv +24y
follows we calculate exactly the QNF of the electromagnetic dRoy
field moving on these black holes. Following Refs. 18 to 25 +3/2)v) — (2Ay By + By /2
for the topological black holes (8) we define their QNM as
the oscillations that satisfy the boundary conditions + Ay +3/16 — F — G)Ray = 0. (20)

i) The electromagnetic field is purely ingoing This equation is of hypergeometric type [34-36]
near the black hole horizon.

y I d*n dn

ii) The electromagnetic field goes to zero as v(1—v)5— + (v — (a+ f+ 1)v)— —aBh =0, (21)
r — +o0. dv dv

We notice that the line elements of the five-dimensionalVith parameters.y, Sy, v equal to
topological black holes (8) are of the form (1) with=G=f,

therefore we can use Egs. (4) and (5) to study the propagation ay = Ay + By + i + %\/ i + 4G,
of the electromagnetic fields on these backgrounds. Here we
begin with the vector type electromagnetic field. Bv = Av + By + 1 — 31/ 1 + 4G,
Since the topological black holes (8) are static and taking
into account the expression (7) for the operalpyD®, we v = 2By + 1. (22)

propose that the functiofy takes the form
In what follows we choose

Dy =e " Ry(r), (13)
3 wq
and therefore from Eq. (4) we obtain that the radial function Ay = 1’ By = B (23)
Ry must be a solution of the differential equation
d*Ry  dfdR 2 1df where
g W8y v A /3
/ dr? +dr dr +(f 2r dr 9= N (24)
A ki + QK)RV _o. (14)  Notice thatg > 0. For these values ofly, By we get that
47“2 7“2 YW — Qay — ﬂ\/ = —1.
To solve exactly the previous differential equation, as in _From these results we find that the functily is equal
Ref. 25, it is convenient to define the variable to [34-36]
3 w
v:l—A—f;, (15) Ry = (1 — ) "W™92 (K 5 Fi (av, Bviyv;v)
with p already given in the formula (12). Using the variable + Kv' TV Fi(ay — v + 1,
v we find that Eq. (14) transforms into By — vy +1:2 =y U)% (25)
d*Ry 1 1/2 \ dRy
a2 v 1-v) @ where K, K> are constants angdF («, 8;v;v) denotes the
hypergeometric function [34]- [36]. Taking into account that
F+G-3/16 F  3/16 \, _, (16) U~ 0 nearthe horizon of the black hole, from the expression
v(l —w) v2 (1-w)? Voo (25) for Ry, we observe that near the horizon this function
where we define the constarftsandG by behaves as
= 37012 G = k%/ + 2K i i (17) RV%Kli)iwq/2+K2U7iwq/2 ~ Kle“”* +K2€7iwr*, (26)
4pA’ 4p 16°

where r, denotes the tortoise coordinate of the five-

Taking the functi in the fi
aking the functionfty in the form dimensional topological black hole (8)

Ry = (1 —v)"V 0" Ryy, (18)
q Vi—-v—-1
with the parameterd,, and By being solutions to the alge- T =gln il (27)
braic equations
Ay 3 Notice thatr, — —oco near the horizon and, — 0 as
A%/_T_TG:O’ By + F =0, (19) 7 — 4oo.
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Since we take a time dependence of the fesp(—iwt)
(see the expression (13)) we find that the first term of the ex-
pression (26) is an outgoing wave near the horizon, whereas

_ o \3/4, —iwg/2 I'(Av) 1
Ry = Ks(1 —v)*%v (F(dv)F(ﬂAv)l—v

the second term is an ingoing wave near the horizon. Thus to I'(3v) i (dV)s(BV)s .
satisfy the boundary condition i) of the QNM we must take + ey — MGy — 1) > s+ 1)! (I-v)
K7 = 0and therefore the functioRy fulfilling the boundary s=0
condition near the horizon takes the form x [In(1—v) —¢(s+1) — (s +2)
Ry = K2<1 . v)3/4,Ufiwq/22F1(av — v+ 1, + l/J(OAéV + 8) + ’l/J(BV + S)]) . (31)
Bv = +1L2=viv) From this expression we obtain that the second factor goes to
= Ky(1 — v) % /2, F (6, By;Av;v), (28)  Z8roasm — +oo, but in this limit the first factor behaves in
R the form )
() 1
: - = T (32)
with T(av)T(By) (1 =v)/

and therefore diverges as— 1. In a similar way to previous
works [18-25,33], to cancel this term we like to impose the

ay =ay — v +1, By = Py — v + 1, conditions

W=2-v 29) ay = —n, By = —n, (33)

withn = 0,1,2,... But if we impose the conditions (33),

To study the behavior of the field as— +oco (v — 1)the  then we contradict the assumptions under which the prop-
usual procedure for many exactly solvable problems [18-25prty (30) is true. Thus if we use the property (30) then we
is to use the Kummer property of the hypergeometric funccannot impose the conditions (33) because we contradict the
tion [34-36], but for the vector type field, since the param-assumptions under which this property is valid.
eters of the hypergeometric function that appears in the so- Another path is to impose the conditions (33) on the pa-
lution (28) fulfill 4y — By — av = —1 and the Kummer rameters of the solution (28) and see whether the radial func-
property is not valid when the values of the parameters sation Ry satisfies the boundary condition ii) of the QNM [33].
isfy this condition [34-36], we cannot employ the usual pro-Thus assuming that, = —n, we find that
cedure. Neverthelessfor—a— = -m,m=0,1,2,...,

the hypergeometric function satisfies Ry = Ka(1 —v)* %0~ 92, Fy (—n, By; Av; v)
—i 1-— ﬁV)n
= Kol — v 3/4,U zwq/2(
TG, =) E= )
2F1(a,8;7;0) W(l )
@ X oFi(=n, By —v + LBy —m1—v),  (34)
m—1
(a—m)s(B—m)s . where we use that the hypergeometric function fulfills [36]
X Z si(1—m) (1=v)
s=0 s 2F1(—TL ﬂ ~; ’U) _ ('Y - ﬂ)n
(=)™ T (v) T (7)n
+
[(a —m)I'(8 —m) X oF(=n,B;8—v—n+1;1—v). (35)
% i (@)s(B)s (1—v)* In a straightforward way we obtain that neat 1 the func-
=0 sl(m + s)! tion Ry of the expression (34) behaves as
x [In(1 —v) — (s +1) Ry ~ (1 —v)*/4, (36)

—p(s+m+1)+¢P(a+s)+(B+s)], (30) and therefore it satisfies the boundary condition ii) of the
QNM asv — 1. A similar thing happens fogy = —n.
Thus imposing the conditions (33) we obtain that the radial
function Ry satisfies the boundary condition ii) of the QNM.

From the conditions (33) and taking into account the val-
ues of the parameters (22) and (23) we get that the QNF of
the vector type electromagnetic field are equal to

when the parameters and 3 are different from negative in-
tegers [34-36]. In the previous formulais the logarithmic
derivative of the gamma function arieh), is the Pochham-
mer symbol. Fofn = 0 we must delete the finite sum. Notice
that for the vector type electromagnetic field we have- 1.
To analyze the behavior of the field as— +oo we use

1 [R 2K 2
the property (30) to write the radial function (28) as wv = i& ol Z;“‘ +1). (37)
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It is convenient to notice that the QNF (37) of the vector typeit is known that the eigenvalues of the vector harmonics sat-
electromagnetic field depend on the value of the parametésfy k7. > 2| K| [32]. Thus for these three-dimensional base
K related to the scalar curvature of the base manifold. Wenanifolds there is no instability of the QNM of the vector
recall thatp < 0 to have a positive radius of the event hori- type electromagnetic field. We do not know an example of
zon. Furthermore we remember that the eigenvalijeare  a three-dimensional base Einstein manifold with eigenvalues
non negative and they are discrete for= 1, whereas they in the range) < ki < 2.
are continuous fo¥ < 0 [32]. From the values (37) for the
QNF we get that fork = 0 and K’ = 1 the real part of the
QNF for the vector type field is different from zero and the
imaginary part is negative, that is, the QNM decay in time
since we have a time dependers(—iwt), and therefore
they are stable foll = 0 and K = 1. We remark that for
K =0andK = 1the QNF (37) are complex.

For K = —1 we obtain that the QNF (37) simplify to

5. Quasinormal frequencies of the scalar type
electromagnetic field

Here we extend the results of the previous section and calcu-
late exactly the QNF of the scalar type electromagnetic field
propagating on the topological black holes (8). In a similar
way to the previous section we take

2 _ _ A twt
wy =1,V | 2 _2m+). (38) 05 =e " Ry(r), (43)
q p q

and from Eg. (5) we obtain that the functidtxy must be a
Thus fork?, > 2 the QNF (38) have real and imaginary parts solution of the differential equation
different from zero and they are stable sidee(wy) < 0. )
Nevertheless if the base manifold allows eigenvalues of the dﬂ df dRs

vector harmonics satisfying < k%, < 2, we obtain that the dr2 " dr dr
QNF (38) transform into w2 o 1df  3f K
—_ - = = = 0. 44
+<f 2r dr  4r2 1“2)RS 0. (44)
i (|k2—2] 2
wy = £- T |7 Zg(” +1), (39) 7o solve exactly this equation we use the variablgefined

in the formula (15) to find that it transforms into
that is, they are purely imaginary. From the expressions (38)
and (39) we remark that fokk = —1 we get complex or & Rs (1 12 ) dits
purely imaginary QNF depending on the value of the eigen- dv? v l1-v/ dv
valuesk?,. The QNF (39) with the minus sign of the square F+H+1/16 F
root are stable sindan(wy ) < 0, but the QNF with the plus <U<1_U) 2
sign of the square root are unstable if

sl R =0, @

with F' defined in the expression (17) and
> 4(n+1)% (40) K23
= @ + 1—6_

k2 — 2’
(46)

We notice that this inequality is not satisfied fpf > 1, but _

for k% sufficiently small, we can fulfill the inequality (40) for To solve Eq. (45) we propose that the radial functiog

sufficiently small|p| < 1, that is, for the plus branch of the takes the form

topological black holes (8) withl = —1. Thus, for these

_ As, B
topological black holes the fundamental mode= 0) is un- Rs = (1 —0)"5v™ Ras, (47)

stable for 9 with the quantitiesds and Bg being solutions of the alge-
2 —dlp| > ky. 41) " praic equations
For the overtones we find that the condition (40) becomes A 1
AL -5 4 — o, BX+F=0, (48)
2 —4p|(n +1) > k2. (42) 2 16

) . . to find that the functiomRs s is a solution of the differential
Thus for the topological black holes (8) wifi = —1inthe  gquation

plus branch with sufficiently small values of the parameter

|p| we find unstable QNM for the vector type electromag- d?Ryg
netic field if the base manifold has eigenvalues of the vector v(l-v) oz (2Bs +1~ (2Bs + 245
harmonics in the range < k% < 2. dRys

Nevertheless, for three-dimensional closed base mani- +3/2)v)= = — (24sBs + Bs/2

folds and three-dimensional open base manifolds such that

the quantityV7 D;V; fall off sufficiently rapidly at infinity, +As —1/16 — F — H)Rps = 0.  (49)
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This equation is of hypergeometric type (see Eq. (21)) withwhereL; andL- are constants. We notice that in the previous

parameters formula both terms go to zero as— +oo. Thus the function
; Rg of the expression (52) that fulfills the boundary condition
ag=As+Bs+ 1+ 31/ %7 near the horizon, for all the frequencies, it also satisfies the

boundary condition ii) of the QNM, thus, we shall obtain a
Y I continuous spectrum of QNF for the scalar type electromag-
fs =As+Bs+3—3 = netic field (see for example Refs. 37 and 38). Nevertheless
we expect to obtain a discrete set of quasinormal frequencies
Vs =2Bs+1. (50) determined by the physical parameters of the black hole and
In what follows we choosels = 1/4, Bs = iwq/2, and the field [1,2]. Therefore we must make a careful analysis of
we notice that the parameters, Bs, Vs of the hypergeomet- the behavior of the radial functioRg asr — oo before we
ric function fulfill v — g — g = 0. From these results we impose the boundary condition ii) of the QNM.
obtain that the radial functioR is equal to [34-36] We find a similar example in the exact calculation of the
i QNF for the electromagnetic field propagating on an asymp-
Rs = (1 — ) /"™ 2 (Ky o Fy (as, Bsiysiv) totically Lifshitz black hole [33]. In the previous reference, to

+ Ky S, Fy (g — vs + 1, Bs calculate the QNF of the electromagnetic field the boundary
condition in the asymptotic region was modified to get a dis-
—7s + 152 = ys5v)), (51)  crete spectrum of QNF. We see that in Ref. 33 it is proposed

where K3 and K, are constants. Near the event horizonthat for calculating the QNF o_f the electromagnetic field in
(v = 0) of the topological black holes (8) this function be- th€ cases where the functidt is well behaved as — +-oo
haves in a similar way to Eq. (26). To fulfill the boundary W& mustimpose as a boundary condition that the leading term

condition i) of the QNM we must tak& — 0 and the func-  ©f the asymptotic behavior must be canceled.

tion Rg that satisfies this boundary condition is Following Ref. 33 to calculate the QNF of the scalar type
14 —iwq)2 electromagnetic field in the topological black holes (8) we
Rs = Ky4(1 —v) /"o "% Fi(as —vs + 1, propose that instead of the boundary condition ii) of the pre-

Bs — s +1:2 — y:0) vious section, in the asymptotic region we must impose as
boundary condition that the leading term in the asymptotic

= K41 — )%™/, F (4, Bs;4s;v), (52)  behavior (55) of the radial functioRs must be canceled. We
notice that for the vector type electromagnetic field when we

with calculate its QNF in the previous section we also cancel the
dg = ag — s + 1, Bs = Bs — s + 1, leading term in the asymptotic behavior of the radial function
Ry, but for the vector type electromagnetic field the leading
Vs =2-7s- (53)  termis divergent as — +oo. Thus for the vector type elec-

It is convenient to notice that the new parametersifomagnetic field the new boundary condition/as- +oo
és, Bs,4s also fulfill 45 — &g — B = 0. As for the vector ~ @ls0 can be used to compute its QNF and we obtain the same
type electromagnetic field, due to this fact we cannot use thEesults of Sec. 4. We think that the new boundary condition
Kummer property of the hypergeometric function [34-36] to that we impose at the asymptotic region is a natural general-
analyze the behavior of the scalar type electromagnetic fielgation of the boundary condition ii).
asr — +oo (v — 1). Taking into account the property (30) In a similar way to Ref. 33 and motivated by the results
of the hypergeometric function we find that the functi8p ~ Of the previous section we assume that the parameteesid
satisfying the boundary condition near the horizon takes thés take the values

form R
) _ 2 &S:fn, /BS:fn, HZO,I,Q,..., (56)
Rs = Kyv~™9/2(1 — v)”‘lw
'(as)l(Ps) and with these values of the parameters we verify whether
oo (&s)s(ﬁs)s X - the radial funct?anS of the formula (52) satisfies the_ new
Xy W( —v)°[In(1 —v) boundary condition of the QNM as — +oco. Thus taking
s=0 ag = —n we get that this radial function becomes

—2h(s+ 1)+ (s +s) +¥(Bs +5)]  (54)

Rs = Ky~ 2(1 — 0)Y4 Fy (—n, Bsi4siv).  (57)
in the variablel — v. Asr — +oo (v — 1) this function

behaves as Using the property (35) of the hypergeometric function we
Rs ~ (1 —0)Y4In(1 — v) — 2¢(1) + ¥(as) + ¥(Bs)] find that as- — +oc the radial function (57) behaves as
- Ly Lo 111(7’) 3p 1/4 1
St TanT (53) Rs ~ (A) 7 (58)
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that is, we cancel the leading term of the asymptotic expanboundaries by imposing the analogue of the conditions (33)
sion (55) forRg and asr — +oo the radial function (57) and (56) [18-25].

fulfills the new boundary condition of the QNM. Something Depending on the physical parameters for the scalar type
similar happens when we takls = —n. Therefore the QNF  and vector type electromagnetic fields we obtain complex
of the scalar type electromagnetic field are determined by th@NF or purely imaginary QNF. We find that the QNM of

conditions (56) and they are equal to the electromagnetic field are stable, except for the topologi-
5 cal black holes withi' = —1 of the plus branch for which
e = L1 ks —1pl .2 (n n 1) _ (59) We find that for small values of the paramegrand of the
Ip| 2 eigenvaluesi?, for the vector harmonics, the QNM of the

. vector type electromagnetic field would be unstable if the
Shree-dimensional base manifold has eigenvakiessatis-
fying 0 < k% < 2. Therefore, as noted previously for other
backgrounds in Refs. 32 and 39, the eigenvalues of the scalar
and vector harmonics of the base manifold play a relevant
role in the analysis of the classical stability of the black holes
under perturbations.
: 12 Comparing the expressions (37) and (59) for the QNF of
¢ |p‘ ks .2 1 .
wg = £— —i—(n+<], (60)  the vector type and scalar type electromagnetic fields, we see
q Ip q 2 - , -
that they are not isospectral since the terms in square roots
that are purely imaginary. Thus depending on the values o$how a different dependence on the parametédso, notice
Ip| andk% we get complex or purely imaginary QNF for the that the QNF of the vector type electromagnetic field depends
scalar type electromagnetic field. For the minus sign of theon the scalar curvatu€, whereas the QNF of the scalar type
square root in the formula (60) we have stable QNM, butelectromagnetic field are independenttof Furthermore the
for the plus sign of the square root we obtain QNF with QNF of the vector type field depend on the overtone number
Im(wg) > 0 when we fulfill the following inequality n in the form(n + 1), whereas the QNF of the scalar type
9 field depend om in the form(n + 1/2).
lp| — k% > 4|p| (n + ) ) (61) Finally considering that the Hawking temperature of the
2 topological black holes (8) is [28]

In a straightforward way we verify that this inequality cannot
be satisfied for the allowed values of the physical parameters, Ty =
that is, fork% < |p| also we obtain stable QNM. Thus for the

scalar type electromagnetic field we find only stable QNM infor the vector type electromagnetic field we can write its
the five dimensional topological black holes (8). QNF (37) as

field, the previous QNF do not depend on the param&ter
Recalling that forK = 0,41 the eigenvalueg? are non
negative [32], for the three values &f and fork% > [p| we
have complex QNF that are stable sidee(ws) < 0. For
k% < |p| the QNF (59) transform into

; (62)

6. Discussion k% + 2K

In the previous sections we calculate exactly the QNF of the

vector type and the scalar type electromagnetic fields propand for the scalar type electromagnetic field its QNF (59) as
gating on the topological black holes (8). It is convenient to

notice that for the three values of the paramédtewe state k2 — |p|

the radial problem in a common form and we solve simulta- ~ ws = =277 ([ —2 —ilnTy (n + )
neously the differential equations. It is convenient to notice p

that the method previously used to calculate the QNF (37, s for the five-dimensional topological black holes (8) the
and (59) is slightly different from the used in other referencesQNF are proportional to its Hawking temperature.
since the special values of the parameters for the hypergeo-

metric functions that we obtain in the topological black hole

(8), force us to impose the conditions (33) and (56) and thelACknOWIedgments

verify that for these values of the parameters the radial func-

tions satisfy the boundary condition at infinity. Usually it This work was supported by CONACYT &kico, SNI
possible to employ the Kummer property of the hypergeoMéxico, EDI-IPN, COFAA-IPN, and Research Project IPN
metric function and to choose the appropriate behavior at th81P-20171817.
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