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Instituto Polit́ecnico Nacional, Unidad Profesional Adolfo López Mateos, Edificio 9, 07738, Ciudad de México.
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We calculate exactly the QNF of the vector type and scalar type electromagnetic fields propagating on a family of five-dimensional topological
black holes. To get a discrete spectrum of quasinormal frequencies for the scalar type electromagnetic field we find that it is necessary to
change the boundary condition usually imposed at the asymptotic region. Furthermore for the vector type electromagnetic field we impose
the usual boundary condition at the asymptotic region and we discuss the existence of unstable quasinormal modes in the five-dimensional
topological black holes.
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1. Introduction

The quasinormal modes (QNM) are the characteristic oscilla-
tions of a test field or of the metric perturbations that satisfy
the appropriate boundary conditions near the event horizon
and at the asymptotic region of the black hole [1,2]. Thus
the QNM appear when the black hole is perturbed from its
equilibrium state and they depend on the physical proper-
ties of the black hole and the field. Recently the QNM have
found many applications in different studies about the clas-
sical stability of the black holes [1,2], the area spectrum of
the event horizon [3,4], and motivated by the AdS-CFT cor-
respondence [5], the QNM spectra of asymptotically anti-de
Sitter black holes are extensively studied since they are useful
in the calculation of the decay rates in dual theories [5-24].

Furthermore the exactly solvable systems are relevant in
physics, since in these systems we can explore in detail their
physical properties. Thus we think that in the research line of
black hole perturbations is useful the search and study of ex-
actly solvable systems. In particular for asymptotically anti-
de Sitter black holes it is possible to calculate exactly the
quasinormal frequencies (QNF) of several fields [18-25]. We
know that this is the case for the BTZ black holes [18-20],
the massless topological black holes [21-24], and the five-
dimensional topological black holes [25] of Refs. 26 to 28.
See also [29-31] for related examples of exact determination
of QNF.

The QNF spectrum of the electromagnetic field in asymp-
totically anti-de Sitter black holes has been explored previ-
ously [8-12], [14-17]. Among the motivations we find that
the electromagnetic field behaves in a different way than
other classical fields and its analysis is physically more rel-
evant than the study of the Klein-Gordon field. Addition-
ally in the AdS-CFT correspondence the QNF of the elec-
tromagnetic field in asymptotically anti-de Sitter spacetimes
are related to the poles of the retarded Green functions of the
R-symmetry currents. Thus for the electromagnetic field we
believe that it is convenient to determine its spectrum of QNF
in asymptotically anti-de Sitter black holes.

Based on the results by Kodama and Ishibashi on the sim-
plification of the Maxwell equations in static spacetimes [32],
(see also [33]) here we generalize previous results on the
QNM of the Klein-Gordon field [25] in the five-dimensional
topological black holes of Refs. 26 to 28 and calculate exactly
the spectrum of QNF for the electromagnetic field. Using
these results we study the stability of the topological black
holes of Refs. 26 to 28 under perturbations. At this point it is
convenient to mention that we discuss the possible existence
of unstable QNM for the electromagnetic field for some val-
ues of the parameters.

We organize this work as follows. Following Kodama and
Ishibashi [32] (see also [33]) in Sec. 2 we recall some rele-
vant results about the simplification of the vacuum Maxwell
equations in static spacetimes to two differential equations,
one for the vector type electromagnetic field and another for
the scalar type electromagnetic field. In Sec. 3 we enumerate
the relevant features of the five-dimensional topological black
holes of Refs. 26 to 28 that we study in this work. In Sec. 4
we calculate exactly the QNF of the vector type electromag-
netic field propagating on these five-dimensional topological
black holes and discuss the stability of the QNM. We make
a similar calculation for the scalar type electromagnetic field
in Sec. 5, but in this case we need to make a careful study
of the boundary condition at the asymptotic region since the
usual boundary condition leads to a continuum of QNF and
we modify the boundary condition to get a discrete set of
QNF that depends on the parameters of the black hole and
the field. Finally we discuss the main results in Sec. 6.

2. Maxwell equations

As is well known, we can write the line element of a
D-dimensional generalization of the spherically symmetric
spacetime in the form [32]

ds2 = gab(x)dxadxb + r2(x)dΩ2
D−2, (1)
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wherea, b = 1, 2, dΩ2
D−2 = γ̂ijdŷidŷj , i, j = 1, 2, . . . , D−

2, is the line element of the(D − 2)-dimensional maximally
symmetric base manifold with metriĉγij and whose Ricci
tensor fulfills R̂ij = (D − 3)Kγ̂ij , that is, the base mani-
folds are of Einstein type. HereK is a constant determined
by the scalar curvature of the base manifold and can be nor-
malized to the valuesK = 0,±1 [32]. In what follows we
assume that the bidimensional line element that appears in
the metric (1) is given by

ds2
2 = gab(x)dxadxb = −Fdt2 +

dr2

G , (2)

with F andG functions of the radial coordinater.
If we denote the Maxwell tensor byFµν then the Maxwell

equations in vacuum are

∇[σFµν] = 0, ∇µFµν = 0. (3)

It is well known that if we make a harmonic sum on the scalar
and vector eigenfunctions of the Laplacian on the base man-
ifold dΩ2

D−2, the Maxwell equations in a spacetime of the
form (1) simplify to [32,33].

DaDaΦV − D − 4
4r

dG
dr

ΦV − (D − 4)(D − 6)G
4r2

ΦV

− D − 4
4r

G
F

dF
dr

ΦV − k2
V + (D − 3)K

r2
ΦV = 0, (4)

for the vector type electromagnetic field and

DaDaΦS − (D − 2)(D − 4)
4

G
r2

ΦS +
dG
dr

D − 4
4r

ΦS

+
G
rF

dF
dr

D − 4
4

ΦS − k2
S

r2
ΦS = 0, (5)

for the scalar type electromagnetic field. Here the symbolDa

denotes the covariant derivative for the bidimensional metric
gab(x), the functionsΦV andΦS depend on the coordinates
xa of the two-dimensional space with metricgab and they
contain the relevant information about the dynamics of the
vector type and scalar type electromagnetic fields in space-
times of the form (1). In the previous formulask2

V (k2
S) are

the eigenvalues of the vector harmonicsVi (scalar harmon-
ics S) on the maximally symmetric base manifold with line
element dΩ2

D−2, that is, they satisfy [32]

(D̂iD̂
i + k2

V )Vj = 0, D̂iVi = 0,

((D̂iD̂
i + k2

S)S = 0), (6)

whereD̂i is the covariant derivative on the maximally sym-
metric base manifold. ForF = G = f we point out that in
Eqs. (4) and (5) the operatorDaDa takes the form

DaDa = − 1
f

∂2
t + ∂r(f∂r). (7)

3. Five dimensional topological black holes

The five-dimensional topological black holes that we study
in this work have the line element

ds2 = −fdt2 +
dr2

f
+ r2dΩ2

K , (8)

where dΩ2
K is the line element of the three-dimensional max-

imally symmetric base manifold and the functionf takes the
form [26–28]

f = −Λ
3

r2 + K ±√c0, (9)

whereΛ is a negative constant,K = 0,±1, andc0 is a non
negative constant. We notice that for the three-dimensional
base manifold the scalar curvature is equal to6K. The so-
lution with positive sign of

√
c0 is usually called the plus

branch, whereas the solution with negative sign of
√

c0 is
usually known as the minus branch [28]. The topologi-
cal black holes (8) are solutions of several gravity theo-
ries as the five-dimensional Chern-Simmons theory [26], the
five-dimensional Gauss-Bonnet gravity with special Gauss-
Bonnet coefficient [27], and the five-dimensionalz = 4
Hořava-Lifshitz gravity [28].

The event horizon of the topological black holes (8) is
determined by

r2
+ = − 3

Λ
(∓√c0 −K). (10)

Since we impose that the radius of the event horizon is posi-
tive, we need that the parametersc0 andK fulfill

∓√c0 −K > 0. (11)

Notice that depending on the value ofK we have one or two
positive values of the event horizon according to the follow-
ing list.

1. For K = 0 andK = 1 the black hole exists in the
minus branch.

2. ForK = −1 to have a black hole in the plus branch
we require that

√
c0 < 1.

3. For K = −1 in the minus branch we always have a
black hole.

Thus forK = −1 we have black holes in the two branches
of the solution (8) [28].

In the following sections it is useful to define the quantity

p = K ±√c0, (12)

and if the black hole exists, thenp < 0. We also notice that
for K = −1 the parameterp satisfies|p| > 1 in the minus
branch and|p| < 1 in the plus branch.
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4. Quasinormal frequencies of the vector type
electromagnetic field

To extend the previous results of [25] on the QNM spectrum
of the five-dimensional topological black holes (8) in what
follows we calculate exactly the QNF of the electromagnetic
field moving on these black holes. Following Refs. 18 to 25
for the topological black holes (8) we define their QNM as
the oscillations that satisfy the boundary conditions

i) The electromagnetic field is purely ingoing
near the black hole horizon.

ii) The electromagnetic field goes to zero as
r → +∞.

We notice that the line elements of the five-dimensional
topological black holes (8) are of the form (1) withF=G=f ,
therefore we can use Eqs. (4) and (5) to study the propagation
of the electromagnetic fields on these backgrounds. Here we
begin with the vector type electromagnetic field.

Since the topological black holes (8) are static and taking
into account the expression (7) for the operatorDaDa, we
propose that the functionΦV takes the form

ΦV = e−iωtRV (r), (13)

and therefore from Eq. (4) we obtain that the radial function
RV must be a solution of the differential equation

f
d2RV

dr2
+

df

dr

dRV

dr
+

(
ω2

f
− 1

2r

df

dr

+
f

4r2
− k2

V + 2K

r2

)
RV = 0. (14)

To solve exactly the previous differential equation, as in
Ref. 25, it is convenient to define the variablei

v = 1− 3p

Λr2
, (15)

with p already given in the formula (12). Using the variable
v we find that Eq. (14) transforms into

d2RV

dv2
+

(
1
v
− 1/2

1− v

)
dRV

dv

+
(

F + G− 3/16
v(1− v)

+
F

v2
− 3/16

(1− v)2

)
RV = 0, (16)

where we define the constantsF andG by

F =
3ω2

4pΛ
, G =

k2
V + 2K

4p
− 1

16
. (17)

Taking the functionRV in the form

RV = (1− v)AV vBV R2V , (18)

with the parametersAV andBV being solutions to the alge-
braic equations

A2
V −

AV

2
− 3

16
= 0, B2

V + F = 0, (19)

we find that the functionR2V is a solution of the differential
equation

v(1− v)
d2R2V

dv2
+ (2BV + 1− (2BV + 2AV

+ 3/2)v)
dR2V

dv
− (2AV BV + BV /2

+ AV + 3/16− F −G)R2V = 0. (20)

This equation is of hypergeometric type [34-36]

v(1− v)
d2h

dv2
+ (γ − (α + β + 1)v)

dh

dv
− αβh = 0, (21)

with parametersαV , βV , γV equal to

αV = AV + BV + 1
4 + 1

2

√
1
4 + 4G,

βV = AV + BV + 1
4 − 1

2

√
1
4 + 4G,

γV = 2BV + 1. (22)

In what follows we choose

AV =
3
4
, BV =

iωq

2
, (23)

where

q =
√

3
pΛ

. (24)

Notice thatq > 0. For these values ofAV , BV we get that
γV − αV − βV = −1.

From these results we find that the functionRV is equal
to [34-36]

RV = (1− v)3/4viωq/2
(
K1 2F1(αV , βV ; γV ; v)

+ K2v
1−γV

2F1(αV − γV + 1,

βV − γV + 1; 2− γV ; v)
)
, (25)

whereK1, K2 are constants and2F1(α, β; γ; v) denotes the
hypergeometric function [34]– [36]. Taking into account that
v ≈ 0 near the horizon of the black hole, from the expression
(25) for RV , we observe that near the horizon this function
behaves as

RV≈K1v
iωq/2+K2v

−iωq/2 ≈ K1eiωr∗+K2e−iωr∗ , (26)

where r∗ denotes the tortoise coordinate of the five-
dimensional topological black hole (8)

r∗ =
q

2
ln

∣∣∣∣
√

1− v − 1√
1− v + 1

∣∣∣∣ . (27)

Notice thatr∗ → −∞ near the horizon andr∗ → 0 as
r → +∞.
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Since we take a time dependence of the formexp(−iωt)
(see the expression (13)) we find that the first term of the ex-
pression (26) is an outgoing wave near the horizon, whereas
the second term is an ingoing wave near the horizon. Thus to
satisfy the boundary condition i) of the QNM we must take
K1 = 0 and therefore the functionRV fulfilling the boundary
condition near the horizon takes the form

RV = K2(1− v)3/4v−iωq/2
2F1(αV − γV + 1,

βV − γV + 1; 2− γV ; v)

= K2(1− v)3/4v−iωq/2
2F1(α̂V , β̂V ; γ̂V ; v), (28)

with

α̂V = αV − γV + 1, β̂V = βV − γV + 1,

γ̂V = 2− γV . (29)

To study the behavior of the field asr → +∞ (v → 1) the
usual procedure for many exactly solvable problems [18-25]
is to use the Kummer property of the hypergeometric func-
tion [34-36], but for the vector type field, since the param-
eters of the hypergeometric function that appears in the so-
lution (28) fulfill γ̂V − β̂V − α̂V = −1 and the Kummer
property is not valid when the values of the parameters sat-
isfy this condition [34-36], we cannot employ the usual pro-
cedure. Nevertheless forγ − α− β = −m, m = 0, 1, 2, . . . ,
the hypergeometric function satisfies

2F1(α,β; γ; v) =
Γ(γ)Γ(m)
Γ(α)Γ(β)

(1− v)−m

×
m−1∑
s=0

(α−m)s(β −m)s

s!(1−m)s
(1− v)s

+
(−1)m+1Γ(γ)

Γ(α−m)Γ(β −m)

×
∞∑

s=0

(α)s(β)s

s!(m + s)!
(1− v)s

× [ln(1− v)− ψ(s + 1)

− ψ(s + m + 1) + ψ(α + s) + ψ(β + s)], (30)

when the parametersα andβ are different from negative in-
tegers [34-36]. In the previous formulaψ is the logarithmic
derivative of the gamma function and(m)s is the Pochham-
mer symbol. Form = 0 we must delete the finite sum. Notice
that for the vector type electromagnetic field we havem = 1.

To analyze the behavior of the field asr → +∞ we use
the property (30) to write the radial function (28) as

RV = K2(1− v)3/4v−iωq/2

(
Γ(γ̂V )

Γ(α̂V )Γ(β̂V )

1
1− v

+
Γ(γ̂V )

Γ(α̂V − 1)Γ(β̂V − 1)

∞∑
s=0

(α̂V )s(β̂V )s

s!(s + 1)!
(1− v)s

× [
ln(1− v)− ψ(s + 1)− ψ(s + 2)

+ ψ(α̂V + s) + ψ(β̂V + s)
]
)

. (31)

From this expression we obtain that the second factor goes to
zero asr → +∞, but in this limit the first factor behaves in
the form

Γ(γ̂V )

Γ(α̂V )Γ(β̂V )

1
(1− v)1/4

, (32)

and therefore diverges asv → 1. In a similar way to previous
works [18-25,33], to cancel this term we like to impose the
conditions

α̂V = −n, β̂V = −n, (33)

with n = 0, 1, 2, . . . But if we impose the conditions (33),
then we contradict the assumptions under which the prop-
erty (30) is true. Thus if we use the property (30) then we
cannot impose the conditions (33) because we contradict the
assumptions under which this property is valid.

Another path is to impose the conditions (33) on the pa-
rameters of the solution (28) and see whether the radial func-
tion RV satisfies the boundary condition ii) of the QNM [33].
Thus assuming that̂αV = −n, we find that

RV = K2(1− v)3/4v−iωq/2
2F1(−n, β̂V ; γ̂V ; v)

= K2(1− v)3/4v−iωq/2 (1− βV )n

(2− γV )n

× 2F1(−n, βV − γV + 1; βV − n; 1− v), (34)

where we use that the hypergeometric function fulfills [36]

2F1(−n,β; γ; v) =
(γ − β)n

(γ)n

× 2F1(−n, β; β − γ − n + 1; 1− v). (35)

In a straightforward way we obtain that nearv = 1 the func-
tion RV of the expression (34) behaves as

RV ≈ (1− v)3/4, (36)

and therefore it satisfies the boundary condition ii) of the
QNM asv → 1. A similar thing happens for̂βV = −n.
Thus imposing the conditions (33) we obtain that the radial
functionRV satisfies the boundary condition ii) of the QNM.

From the conditions (33) and taking into account the val-
ues of the parameters (22) and (23) we get that the QNF of
the vector type electromagnetic field are equal to

ωV = ±1
q

√
k2

V + 2K

|p| − i
2
q
(n + 1). (37)
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It is convenient to notice that the QNF (37) of the vector type
electromagnetic field depend on the value of the parameter
K related to the scalar curvature of the base manifold. We
recall thatp < 0 to have a positive radius of the event hori-
zon. Furthermore we remember that the eigenvaluesk2

V are
non negative and they are discrete forK = 1, whereas they
are continuous forK ≤ 0 [32]. From the values (37) for the
QNF we get that forK = 0 andK = 1 the real part of the
QNF for the vector type field is different from zero and the
imaginary part is negative, that is, the QNM decay in time
since we have a time dependenceexp(−iωt), and therefore
they are stable forK = 0 andK = 1. We remark that for
K = 0 andK = 1 the QNF (37) are complex.

ForK = −1 we obtain that the QNF (37) simplify to

ωV = ±1
q

√
k2

V − 2
|p| − i

2
q
(n + 1). (38)

Thus fork2
V > 2 the QNF (38) have real and imaginary parts

different from zero and they are stable sinceIm(ωV ) < 0.
Nevertheless if the base manifold allows eigenvalues of the
vector harmonics satisfying0 < k2

V < 2, we obtain that the
QNF (38) transform into

ωV = ± i

q

√∣∣∣∣
k2

V − 2
p

∣∣∣∣− i
2
q
(n + 1), (39)

that is, they are purely imaginary. From the expressions (38)
and (39) we remark that forK = −1 we get complex or
purely imaginary QNF depending on the value of the eigen-
valuesk2

V . The QNF (39) with the minus sign of the square
root are stable sinceIm(ωV ) < 0, but the QNF with the plus
sign of the square root are unstable if

∣∣∣∣
k2

V − 2
p

∣∣∣∣ > 4(n + 1)2. (40)

We notice that this inequality is not satisfied for|p| > 1, but
for k2

V sufficiently small, we can fulfill the inequality (40) for
sufficiently small|p| < 1, that is, for the plus branch of the
topological black holes (8) withK = −1. Thus, for these
topological black holes the fundamental mode (n = 0) is un-
stable for

2− 4|p| > k2
V . (41)

For the overtones we find that the condition (40) becomes

2− 4|p|(n + 1)2 > k2
V . (42)

Thus for the topological black holes (8) withK = −1 in the
plus branch with sufficiently small values of the parameter
|p| we find unstable QNM for the vector type electromag-
netic field if the base manifold has eigenvalues of the vector
harmonics in the range0 < k2

V < 2.
Nevertheless, for three-dimensional closed base mani-

folds and three-dimensional open base manifolds such that
the quantityVjD̂iVj fall off sufficiently rapidly at infinity,

it is known that the eigenvalues of the vector harmonics sat-
isfy k2

V ≥ 2|K| [32]. Thus for these three-dimensional base
manifolds there is no instability of the QNM of the vector
type electromagnetic field. We do not know an example of
a three-dimensional base Einstein manifold with eigenvalues
in the range0 < k2

V < 2.

5. Quasinormal frequencies of the scalar type
electromagnetic field

Here we extend the results of the previous section and calcu-
late exactly the QNF of the scalar type electromagnetic field
propagating on the topological black holes (8). In a similar
way to the previous section we take

ΦS = e−iωtRS(r), (43)

and from Eq. (5) we obtain that the functionRS must be a
solution of the differential equation

f
d2RS

dr2
+

df

dr

dRS

dr

+
(

ω2

f
+

1
2r

df

dr
− 3f

4r2
− k2

S

r2

)
RS = 0. (44)

To solve exactly this equation we use the variablev defined
in the formula (15) to find that it transforms into

d2RS

dv2
+

(
1
v
− 1/2

1− v

)
dRS

dv

+
(

F + H + 1/16
v(1− v)

+
F

v2
+

1/16
(1− v)2

)
RS = 0, (45)

with F defined in the expression (17) and

H =
k2

S

4p
+

3
16

. (46)

To solve Eq. (45) we propose that the radial functionRS

takes the form

RS = (1− v)AS vBS R2S , (47)

with the quantitiesAS andBS being solutions of the alge-
braic equations

A2
S −

AS

2
+

1
16

= 0, B2
S + F = 0, (48)

to find that the functionR2S is a solution of the differential
equation

v(1− v)
d2R2S

dv2
+ (2BS + 1− (2BS + 2AS

+ 3/2)v)
dR2S

dv
− (2ASBS + BS/2

+ AS − 1/16− F −H)R2S = 0. (49)
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This equation is of hypergeometric type (see Eq. (21)) with
parameters

αS = AS + BS + 1
4 + 1

2

√
k2

S+p
p ,

βS = AS + BS + 1
4 − 1

2

√
k2

S+p
p ,

γS = 2BS + 1. (50)

In what follows we chooseAS = 1/4, BS = iωq/2, and
we notice that the parametersαS , βS , γS of the hypergeomet-
ric function fulfill γS − βS − αS = 0. From these results we
obtain that the radial functionRS is equal to [34-36]

RS = (1− v)1/4viωq/2
(
K3 2F1(αS , βS ; γS ; v)

+ K4v
1−γS

2F1(αS − γS + 1, βS

− γS + 1; 2− γS ; v)), (51)

whereK3 and K4 are constants. Near the event horizon
(v = 0) of the topological black holes (8) this function be-
haves in a similar way to Eq. (26). To fulfill the boundary
condition i) of the QNM we must takeK3 = 0 and the func-
tion RS that satisfies this boundary condition is

RS = K4(1− v)1/4v−iωq/2
2F1(αS − γS + 1,

βS − γS + 1; 2− γS ; v)

= K4(1− v)1/4v−iωq/2
2F1(α̂S , β̂S ; γ̂S ; v), (52)

with

α̂S = αS − γS + 1, β̂S = βS − γS + 1,

γ̂S = 2− γS . (53)

It is convenient to notice that the new parameters
α̂S , β̂S , γ̂S also fulfill γ̂S − α̂S − β̂S = 0. As for the vector
type electromagnetic field, due to this fact we cannot use the
Kummer property of the hypergeometric function [34-36] to
analyze the behavior of the scalar type electromagnetic field
asr → +∞ (v → 1). Taking into account the property (30)
of the hypergeometric function we find that the functionRS

satisfying the boundary condition near the horizon takes the
form

RS = K4v
−iωq/2(1− v)1/4 (−1)Γ(γ̂S)

Γ(α̂S)Γ(β̂S)

×
∞∑

s=0

(α̂S)s(β̂S)s

(s!)2
(1− v)s[ln(1− v)

− 2ψ(s + 1) + ψ(α̂S + s) + ψ(β̂S + s)] (54)

in the variable1 − v. As r → +∞ (v → 1) this function
behaves as

RS ≈ (1− v)1/4[ln(1− v)− 2ψ(1) + ψ(α̂S) + ψ(β̂S)]

≈ L1

r1/2
+

L2 ln(r)
r1/2

, (55)

whereL1 andL2 are constants. We notice that in the previous
formula both terms go to zero asr → +∞. Thus the function
RS of the expression (52) that fulfills the boundary condition
near the horizon, for all the frequencies, it also satisfies the
boundary condition ii) of the QNM, thus, we shall obtain a
continuous spectrum of QNF for the scalar type electromag-
netic field (see for example Refs. 37 and 38). Nevertheless
we expect to obtain a discrete set of quasinormal frequencies
determined by the physical parameters of the black hole and
the field [1,2]. Therefore we must make a careful analysis of
the behavior of the radial functionRS asr → ∞ before we
impose the boundary condition ii) of the QNM.

We find a similar example in the exact calculation of the
QNF for the electromagnetic field propagating on an asymp-
totically Lifshitz black hole [33]. In the previous reference, to
calculate the QNF of the electromagnetic field the boundary
condition in the asymptotic region was modified to get a dis-
crete spectrum of QNF. We see that in Ref. 33 it is proposed
that for calculating the QNF of the electromagnetic field in
the cases where the functionRS is well behaved asr → +∞
we must impose as a boundary condition that the leading term
of the asymptotic behavior must be canceled.

Following Ref. 33 to calculate the QNF of the scalar type
electromagnetic field in the topological black holes (8) we
propose that instead of the boundary condition ii) of the pre-
vious section, in the asymptotic region we must impose as
boundary condition that the leading term in the asymptotic
behavior (55) of the radial functionRS must be canceled. We
notice that for the vector type electromagnetic field when we
calculate its QNF in the previous section we also cancel the
leading term in the asymptotic behavior of the radial function
RV , but for the vector type electromagnetic field the leading
term is divergent asr → +∞. Thus for the vector type elec-
tromagnetic field the new boundary condition asr → +∞
also can be used to compute its QNF and we obtain the same
results of Sec. 4. We think that the new boundary condition
that we impose at the asymptotic region is a natural general-
ization of the boundary condition ii).

In a similar way to Ref. 33 and motivated by the results
of the previous section we assume that the parametersα̂S and
β̂S take the values

α̂S = −n, β̂S = −n, n = 0, 1, 2, . . . , (56)

and with these values of the parameters we verify whether
the radial functionRS of the formula (52) satisfies the new
boundary condition of the QNM asr → +∞. Thus taking
α̂S = −n we get that this radial function becomes

RS = K4v
−iωq/2(1− v)1/4

2F1(−n, β̂S ; γ̂S ; v). (57)

Using the property (35) of the hypergeometric function we
find that asr → +∞ the radial function (57) behaves as

RS ≈
(

3p

Λ

)1/4 1
r1/2

, (58)
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that is, we cancel the leading term of the asymptotic expan-
sion (55) forRS and asr → +∞ the radial function (57)
fulfills the new boundary condition of the QNM. Something
similar happens when we takêβS = −n. Therefore the QNF
of the scalar type electromagnetic field are determined by the
conditions (56) and they are equal to

ωS = ±1
q

√
k2

S − |p|
|p| − i

2
q

(
n +

1
2

)
. (59)

In contrast to the QNF of the vector type electromagnetic
field, the previous QNF do not depend on the parameterK.
Recalling that forK = 0,±1 the eigenvaluesk2

S are non
negative [32], for the three values ofK and fork2

S > |p| we
have complex QNF that are stable sinceIm(ωS) < 0. For
k2

S < |p| the QNF (59) transform into

ωS = ± i

q

√
|p| − k2

S

|p| − i
2
q

(
n +

1
2

)
, (60)

that are purely imaginary. Thus depending on the values of
|p| andk2

S we get complex or purely imaginary QNF for the
scalar type electromagnetic field. For the minus sign of the
square root in the formula (60) we have stable QNM, but
for the plus sign of the square root we obtain QNF with
Im(ωS) > 0 when we fulfill the following inequality

|p| − k2
S > 4|p|

(
n +

1
2

)2

. (61)

In a straightforward way we verify that this inequality cannot
be satisfied for the allowed values of the physical parameters,
that is, fork2

S < |p| also we obtain stable QNM. Thus for the
scalar type electromagnetic field we find only stable QNM in
the five dimensional topological black holes (8).

6. Discussion

In the previous sections we calculate exactly the QNF of the
vector type and the scalar type electromagnetic fields propa-
gating on the topological black holes (8). It is convenient to
notice that for the three values of the parameterK we state
the radial problem in a common form and we solve simulta-
neously the differential equations. It is convenient to notice
that the method previously used to calculate the QNF (37)
and (59) is slightly different from the used in other references,
since the special values of the parameters for the hypergeo-
metric functions that we obtain in the topological black hole
(8), force us to impose the conditions (33) and (56) and then
verify that for these values of the parameters the radial func-
tions satisfy the boundary condition at infinity. Usually it
possible to employ the Kummer property of the hypergeo-
metric function and to choose the appropriate behavior at the

boundaries by imposing the analogue of the conditions (33)
and (56) [18-25].

Depending on the physical parameters for the scalar type
and vector type electromagnetic fields we obtain complex
QNF or purely imaginary QNF. We find that the QNM of
the electromagnetic field are stable, except for the topologi-
cal black holes withK = −1 of the plus branch for which
we find that for small values of the parameter|p| and of the
eigenvaluesk2

V for the vector harmonics, the QNM of the
vector type electromagnetic field would be unstable if the
three-dimensional base manifold has eigenvaluesk2

V satis-
fying 0 < k2

V < 2. Therefore, as noted previously for other
backgrounds in Refs. 32 and 39, the eigenvalues of the scalar
and vector harmonics of the base manifold play a relevant
role in the analysis of the classical stability of the black holes
under perturbations.

Comparing the expressions (37) and (59) for the QNF of
the vector type and scalar type electromagnetic fields, we see
that they are not isospectral since the terms in square roots
show a different dependence on the parameterp. Also, notice
that the QNF of the vector type electromagnetic field depends
on the scalar curvatureK, whereas the QNF of the scalar type
electromagnetic field are independent ofK. Furthermore the
QNF of the vector type field depend on the overtone number
n in the form(n + 1), whereas the QNF of the scalar type
field depend onn in the form(n + 1/2).

Finally considering that the Hawking temperature of the
topological black holes (8) is [28]

TH =
1

2πq
, (62)

for the vector type electromagnetic field we can write its
QNF (37) as

ωV = ±2πTH

√
k2

V + 2K

|p| − i4πTH(n + 1), (63)

and for the scalar type electromagnetic field its QNF (59) as

ωS = ±2πTH

√
k2

S − |p|
|p| − i4πTH

(
n +

1
2

)
. (64)

Thus for the five-dimensional topological black holes (8) the
QNF are proportional to its Hawking temperature.
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i. Notice that the quantityv varies over the range0 < v < 1.
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