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In this paper we present the numerical solution of the conformally invariant wave equation on top of a fixed background space-time corre-
sponding to two different cases: i) 1+1 Minkowski space-time in Cartesian coordinates and ii) Schwarzschild space-time. In both cases we
use hyperboloidal constant mean curvature slices and scri-fixing conformal compactification, and solve the wave equation on the conformal
space-time. In the case of the Schwarzschild space-time we study the quasinormal mode oscillations and the late-time polynomial tail decay
exponents corresponding to a mass-less scalar field. We also present general formulas to construct hyperboloidal constant mean curvature
slicings of spherically symmetric, static, space-times in spherical coordinates.
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En este trabajo presentamos la solución nuḿerica de la ecuación de onda conformalmente invariante para dos casos diferentes de espacio-
tiempo fijo: i) espacio-tiempo de Minkowski 1+1 en coordenadas catesianas y ii) el espacio-tiempo de Schwarzschild. En ambos casos el
espacio-tiempo se describe con hipersuperficies de curvatura espacial media constante y compactificación conforme que contiene al futuro
infinito nulo, y se resuelve la ecuación de onda en un espacio-tiempo conforme. En el caso del espacio-tiempo de Schwarzschild, se estudian
las oscilaciones cuasinormales y los exponentes del decaimiento asintótico temporal polinomial correspondientes a un campo escalar sin
masa. También se presentan las fórmulas generales para construir hipersuperficies hiperboloides con curvatura media constante para un
espacio-tiempo con simetrı́a esf́erica, est́atico y en coordenadas esféricas.

Descriptores:Ecuaciones de onda relativistas; relatividad numérica; hoyos negros.
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1. Introduction

A common problem in numerical relativity is the global treat-
ment of asymptotically flat space-times, specially related to
the implementation of boundary conditions on an artificial
time-like boundary and the measurement of gravitational ra-
diation by detectors located on time-like trajectories. Most of
the initial value problems formulated are based on a Cauchy
space-like foliation with the hypersurfaces approaching spa-
tial infinity. Then, boundary conditions must be supplied at
an artificial boundary, for instance, absorbing boundary con-
ditions [1]. Recent efforts point to the use of hyperboloidal
foliations of the space-time because asymptotically the spa-
tial slices reach future null infinityI +, and for asymptot-
ically flat space-times the gravitational radiation is well de-
fined at such boundary [2,3], so that the measurement of the
gravitational radiation can be measured by detectors near or
at that boundary. More common efforts are related to match-
ing techniques of Cauchy slices with slices approaching fu-
ture null infinity [4-6], which has already been applied to the
binary black hole problem [7]. On the other hand, it is desir-
able to compactify the space-time foliated in this manner in
order to work on a numerical domain that containsI +, for
which it is necessary to compactify the spatial coordinates in
an appropriate way such that the space-time is regular there,
at future null infinity. At present time, foliations with bound-

aries at future null infinity are being used for various appli-
cations, like the solution of perturbation equations [8-10] and
the study of tails [11].

The idea behind scri-fixing conformal compactification is
the following: i) use hyperboloidal slices that reachI +, ii)
compactify the spatial coordinate and iii) rescale the metric
with an appropriate conformal factor. We proceed by defining
a new time coordinatet = t̃−h(ỹ), where (̃t, ỹ) are the orig-
inal time and space coordinates. This transformation has the
advantage that keeps the time direction invariant. That is, re-
gardless of the choice of theh(ỹ), the time-like killing vector
has the same form in both coordinate systems. A compacti-
fying coordinate is introduced in the form̃y = y/Ω, where
Ω = Ω(y) is a non-negative conformal factor that vanishes
at I + [12]. Then, the physical metric̃g becomes singular
at the boundary of the compact coordinate. In order to re-
move the singularities the metric is rescaledg = Ω2g̃ with
the conformal factor so that the conformal metricg is regular
at the boundaryI +. On the other hand, for the construction
of h(ỹ), we restrict this paper to the case of constant mean
curvature (CMC) slices [13].

In this manuscript we present the solution of the wave
equation for the extended Minkowski and Schwarzschild
space-times described with CMC slices, construct the foli-
ations and compactification, and solve the wave equation on
top of the resulting space-times with a twofold goal. On the
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FIGURE 1. Evolution of the wave function fora = 0.5 (left), a = 1 (middle) anda = 5 (right) or equivalentlỹk = 2, 1, 0.2, respectively.
These results are consistent with the space-time diagrams in Fig. 12, where the light cones seem to get narrow near the boundaries for big
values ofa (small values of the curvature), which explains why the pulses slow down and shrink when they approach the boundaries.

FIGURE 2. Convergence tests for the solution of the wave equation withk̃ = 2, 0.2 or equivalentlya = 0.5, 5 on the left and right panels,
respectively. We use three resolutions∆x = 0.002, 0.001, 0.0005. (Top) We show the order of convergenceQ of the constraintC = ψ−∂xφ
to zero, defined byL2(C)[using medium resolution]/L2(C)[using high resolution] = 2Q because the ratio between resolutions is 2.
In the insets we show theL2 norm of the constraint for the three resolutions. (Bottom) Continuous lines represent the difference ofφ for the
two first resolutions and×−lines represent the difference ofφ for the two last resolutions multiplied by 4; the fact that the curves lie on top
of each other indicates the second order self-convergence ofφ for the snapshots presented. In the casea = 5 (small curvature) we can see
that the errors are not as small as in the other case; this is due to the fact that the pulses are being squeezed when approaching the boundaries,
and then the resolution used is not enough to resolve the pulses, and then the errors are bigger; however, we maintain second the convergence
of second order.

one hand, we verify as an academic exercise that the behavior
of the wave function is consistent with the properties of the
particular space-times constructed here, and we are explicit in
the construction of the numerical solution of the wave equa-

tion in one spatial dimension and illustrate the role played by
the gauge. On the other hand, we study in particular the wave
function on top of the Schwarzschild space-time, and track
the quasinormal mode frequencies and tail decay rates of the
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amplitude of the wave function, which is also the case of a
test mass-less scalar field evolving on the space-time.

Once the space-time has been foliated with hyperboloidal
slices, the spatial coordinate has been compactified and the
metric rescaled, it is necessary to solve a wave equation that is
physically meaningful. Thus, the wave equation to be solved
has to be a conformally invariant one. Considering the con-
formally rescaled metricg = Ω2g̃, the following identity ap-
plies for ann-dimensional space-time [14]

[
¤− n− 2

4(n− 1)
R

]
φ=Ω−3

[
¤̃− n− 2

4(n− 1)
R̃

]
φ̃=0, (1)

which means that the operator in brackets is invariant under
conformal transformations and is the one to be considered as
the conformally invariant D’Alambertian operator. In this ex-
pressionR andR̃ are the Ricci scalar in the conformal and
physical space-times, respectively,φ = φ̃/Ω is the conformal
wave function, and¤ is defined by

¤φ =
1√−g

∂µ[
√−ggµν∂νφ], (2)

where gµν is the conformal metric andg its determinant.
For the cases presented in this manuscript, the conformally
invariant wave equation for the 1+1 Minkowski space-time
is ¤φ = 0; whereas, for the Schwarzschild space-time
(n = 4) the conformally invariant wave equation reads
¤φ− (1/6)Rφ = 0.

We solve these two equations as initial value problems in
each case using a first order variable formulation. In the case
of the solution of the wave equation on the Schwarzschild
space-time, the equation also corresponds to a test mass-less
scalar field, which is related to quasinormal mode oscillations
of the black hole and studies the polynomial tail decay of the
amplitude of the scalar field; in such case we use mass-less
scalar field and wave function indistinctly.

This paper is organized as follows. In Sec. 2 we solve
the conformally invariant wave equation on top of the 1+1
Minkowski space-time, and provide diagrams illustrating the
results. In Sec. 3 we solve the conformally invariant wave
equation on top of a scri-fixing conformally compactified ver-
sion of the Schwarzschild solution; we show the quasinormal
mode oscillations and the tail decay of the scalar field, and
compare with previous results. In Sec. 4 we present general
formulas useful to set up slicings with constant mean cur-
vature and scri-fixing conformal compactification for spher-
ically symmetric and static space-times in spherical coordi-
nates; we show as an example the 3+1 Minkowski space-time
in spherical coordinates. Finally, in Sec. 5 we summarize the
main results.

2. 1+1 Minkowski space-time

2.1. Foliation and scri-fixing

We choose the coordinates of the space-timexµ = (t̃, x̃) and
the line element

ds̃2 = −dt̃2 + dx̃2, (3)

wheret̃, x̃ ∈ (−∞,+∞)×(−∞, +∞). In order to construct
the hyperboloidal slices, we perform a time transformation
t = t̃ − h(x̃). Using this new time coordinate, the metric
reduces to

ds̃2 = −dt2 − 2h′dtdx̃ + [1− h
′2]dx̃2, (4)

whereh′ = dh/dx̃. In order to have a simple interpretation
of the embedding of hypersurfaces into the space-time we
compare this expression with the usual ADM-like metric

ds̃2 =
(
−α̃2 + γ̃2β̃2

)
dt2 + 2β̃γ̃2dtdx̃ + γ̃2dx̃2, (5)

and we read off the lapse functioñα = 1/
√

1− h′2, and
then the future-pointing unit vector normal to the hypersur-
facenµ is

nµ = (−α̃, 0) =
(
− 1√

1− h′2
, 0

)
,

nµ =
(√

1− h′2,
h′√

1− h′2

)
, (6)

with which it is possible to calculate the mean extrinsic cur-
vature of the slicẽk = ∇µnµ = (1/

√−g)∂µ(
√−gnµ):

k̃ = ∂x̃

(
h′√

1− h′2

)
⇒ k̃x̃ =

(
h′√

1− h′2

)
+ C, (7)

where the second equality is obtained after assumingk̃ is
constant, and finallyC is an integration constant. This equa-
tion can be manipulated to give a complete description of the
slices:

h′ =
k̃x̃√

1 + (k̃x̃)2
⇒ h(x̃) =

√
a2 + x̃2, (8)

wherea = 1/k̃. The space-time in these new coordinates is
described with hyperboloidal constant mean curvature slices.

In order to compactify the space-time at the future null
infinity boundary it suffices to define a new spatial compact
coordinatex: defined through̃x = x/Ω. A convenient choice
of the conformal factor isΩ = 1 − x2 because we want the
two asymptotic ends̃x → ±∞ to correspond tox = ±1
in the compactified coordinate. This choice has been used,
for instance in Ref. 8, to construct the solution of the per-
turbation equation of charged wormholes. In this way, using
x̃ = x/Ω, with Ω = 1 − x2, h(x̃) =

√
a2 + x̃2, which im-

pliesh′ = x/
√

a2(1− x2)2 + x2, and finally the conformal
metric reads

ds2 = −(1− x2)2dt2 − 2x(1 + x2)√
a2(1− x2)2 + x2

dtdx

+
a2(1 + x2)2

a2(1− x2)2 + x2
dx2. (9)
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FIGURE 3. Space-time diagrams for slicings with̃k = 2, 1, 0.2 or equivalentlya = 0.5, 1, 5. Continuous (dashed) lines represent null rays
moving towardx = +1 (x = −1). These plots are constructed using (14) with various values oft0.

FIGURE 4. Conformal diagrams with hyperboloidal slices fork̃ = 2, 1, 0.2 or equivalentlya = 0.5, 1, 5. Continuous lines represent curves
of constantt whereas dotted lines represent curves of constantx.

In order to find the gauge functions, this conformal metric
has to be identified with the standard 1+1 metric of type (5),
where we remove the tildes because we deal with the confor-
mal metric. The identification implies the following gauge
functions:

α2 =
x2

a2
+ (1− x2)2,

β = − x

a2

√
a2(1− x2) + x2

1 + x2
,

γ2 =
a2(1 + x2)2

a2(1− x2)2 + x2
, (10)

which are the ones used to describe the space-time on top of
which we solve the wave equation.

2.2. The wave equation

We solve the conformally invariant wave equation. For the
casen = 2 andR = 0, the wave operator is conformally
invariant, thus we solve the Eq. (2)

¤φ =
1√−g

∂µ[
√−ggµν∂νφ] = 0,

for the metric (9,10) as an initial value problem.
It is straightforward to show that assumingα = α(x),

β = β(x) andγ = γ(x), the wave equation can be written as
a first order system of equations given by

∂tψ = ∂x

(
α

γ
π + βψ

)
,

∂tπ = ∂x

(
βπ +

α

γ
ψ

)
,

∂xφ = ψ, (11)

whereπ = (γ/α)∂tφ− (γ/α)β∂xφ andψ = ∂xφ. This sys-
tem of equations holds as long asαγ 6= 0. The third equation
is a definition ofψ but it is also a constraint of the system that
has to be satisfied. The value of the wave function is obtained
from the definition ofπ, that is,∂tφ = (α/γ)π+βψ, and can
be integrated in time at the same time asπ andψ. We define
the state vectoru = (π, ψ)T , so that the wave equation can
be cast in a balance law form∂tu + A∂xu = −∂x(A)u,
where

A = −
(

β α/γ
α/γ β

)
, (12)

and the characteristic speeds of the system are given by

dx

dt
= λ± = −β ± α

γ
. (13)

These eigenvalues are real and distinct and in fact correspond
to a complete set of eigenvectors. Then, this system of equa-
tions is symmetric hyperbolic, and together with initial data
for ψ andπ it corresponds to a well posed initial value prob-
lem. We define such problem in the domainx ∈ [−1, 1],
t ∈ [0,∞). We choose initial data corresponding to an ini-
tially time-symmetric wave function with Gaussian profile.
In particular we useφ = e−x2/(0.1)2 , ψ = ∂xφ andπ = 0.
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We solve this problem using a finite differences approx-
imation, with a method of lines using second order stencils
along the spatial direction and a third order Runge-Kutta
time integrator. The question about the boundary conditions
π(−1, t), ψ(−1, t), π(1, t) andπ(1, t) remains, and the an-
swer is that there is no need to apply boundary conditions
(e.g.radiative boundary conditions) because we notice that in
the continuum limit atx = −1 the characteristic speed cor-
responding to the mode moving to the right is zero (λ+ = 0),
whereas the characteristic speed of the mode moving to the
left at x = 1 is also zero (λ− = 0), and then no signals are
propagated into the domain of the problem.

The result is as expected, the initial Gaussian pulse will
split into two pulses with half the initial amplitude and op-
posite directions, and the speed of propagation of each pulse
depends on the gauge chosen. The results of the evolution for
three different values of the mean curvaturek̃ are shown in
Fig. 1, where the effects of the different gauge choices are
illustrated. In Fig. 2 we show the self-convergence of the so-
lution, and the convergence of the constraint∂xφ = ψ, which
validates our numerical results.

2.3. Space-time and conformal diagrams

In order to better illustrate the structure of the space-time we
construct the light cone structure and conformal diagrams, for
which we first estimate the radial null geodesics by solving
the conditionds = 0:

dt

dx
= − x(1 + x2)

(1− x2)2
√

a2(1− x2)2 + x2
± 1 + x2

(1− x2)2
,

whose solution is

t = t0 +
−

√
a2(1− x2)2 + x2 ± x

1− x2
. (14)

The result is shown in Fig. 3. What can be learned from this
figure is that for small values of̃k the light cones become nar-
row nearx = ±1. The implication is that the pulses of the
initial data propagating outwards will slow down and squeeze
when they approach the boundaries in the case of smallk̃.

In order to obtain a better understanding of the nature of
the slices, we construct the conformal diagrams of the three
cases studied. The conformal diagram is constructed using
the coordinates̃t = t̃(t, x) andx̃ = x̃(t, x). Considering that
h(x̃) =

√
a2 + x̃2 andΩ = 1 − x2, the physical spatial co-

ordinate reads̃x = x/1− x2. With this information one has
the tilde coordinates given by:

t̃ =

√
a2 +

x2

(1− x2)2
, x̃ =

x

1− x2
.

The results are depicted in Fig. 4. These diagrams are use-
ful to interpret the effects of the gauge used. For the case of
small k̃ the hypersurfaces used for the evolution, even if they
reachI +, are concentrated near spatial infinity, whereas in
the cases of bigger values ofk̃ slices are very separated near
I +, and allow the pulses arrive at the boundaries quickly.

3. Schwarzschild space-time

3.1. Foliation and scri fixing

We want to solve the wave equation on top of the
Schwarzschild background in coordinates with two important
properties: i) the wave is allowed to enter the event horizon of
the black hole and ii) the wave is allowed to reach future null
infinity. We then start with the Schwarzschild metric written
as usual

ds̃2 = −
(

1− 2M

r̃

)
dt̃2

+
dr̃2

1− 2M
r̃

+ r̃2(dθ2 + sin2 θdϕ2), (15)

and proceed to construct a hyperboloidal foliation and a scri-
fixing compactification.

By introducing the change of coordinatet = t̃ − h(r̃)
in (15) the line element takes the form

ds̃2 = −
(

1− 2M

r̃

)
dt2 − 2h′

(
1− 2M

r̃

)
dtdr̃

+

[(
1− 2M

r̃

)−1

−
(

1− 2M

r̃

)
h
′2

]
dr̃2

+ r̃2(dθ2 + sin2 θdϕ2), (16)

whereh′ = dh/dr̃, and from which we read off the gauge
quantities

α̃ =
1
γ

,

β̃ = −h′(1− 2M
r̃ )

γ2
,

γ̃2 =
(

1− 2M

r̃

)−1

−
(

1− 2M

r̃

)
h
′2, (17)

from which the unit normal vector to the spatial hypersur-
faces pointing to the future is given by

nµ =
[
γ̃,

h′

γ̃

(
1− 2M

r̃

)
, 0, 0

]
. (18)

Now, the extrinsic mean curvature at the initial time slice
k̃ = ∇̃µnµ reads

k̃ =
1
r̃2

∂r̃

[
r̃2h′

γ

(
1− 2M

r̃

)]
, (19)

and can be integrated for constantk̃:

k̃r̃3

3
− C =

r̃2h′

γ

(
1− 2M

r̃

)
, (20)
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where de derivativeh′ is

h′ =

(
k̃r̃3

3 − C
)

(
1− 2M

r̃

)√(
k̃r̃3

3 − C
)2

+
(
1− 2M

r̃

)
r̃4

. (21)

In this case, it is not easy to findh in a closed form as in the
previous case in this paper, and in order to have a description
of the slices one has to integrate this function numerically;
however, notice thath is not required but only its derivative.

On the other hand, in order to perform the scri-fixing
compactification we choose the conformal factor to be
Ω=1−r, and thus the compactifying coordinate is given by
r̃ = r/Ω. Then, the Schwarzschild space-time using scri-
fixing conformal compactification is described by the line el-
ement [15]

ds2 = −
(

1− 2MΩ
r

)
Ω2dt2 − 2(k̃r3/3− CΩ3)

P (r)
dtdr

+
r4

P 2(r)
dr2 + r2(dθ2 + sin2 θdϕ2), (22)

where

P (r) = Ω3P̃ (r)

=

√√√√
(

k̃r3

3
− CΩ3

)2

+
(

1− 2MΩ
r

)
Ω2r4. (23)

The values of̃k andC are restricted in such a way thatP (r)
is real. Important features of these coordinates are that: i) the
event horizon is located atr = 2M/(1 + 2M), ii) the slices
penetrate the event horizon, iii) the slices do not avoid the
singularity atr = r̃ = 0, and iv) they reach the future null
infinity. Condition (ii) allows the practice of excision inside
the horizon, that is, a chunk of the domain is removed from
the numerical domain which we know lies inside the horizon
of the black hole, which means that the domainr ≤ rexc

is removed and no need of boundary conditions atrexc are
needed as long as the speeds of the characteristic fields are
negative at that boundary.

The gauge functions for this conformal metric are in this
case

α =

√(
1− 2Ω

x

)
Ω2 +

(CΩ3 − 1
3 k̃x3)2

x4
,

β =
P (r)
x4

(
CΩ3 − 1

3
k̃x3

)
,

γ =
x2

P (r)
. (24)

3.2. The wave equation

Following our convention, the conformal metric is given by
ds2 = Ω2ds̃2, meaning that the physical metric is the one

with the tildes. We decide to solve the wave equation using
the conformal metric because of various reasons: 1) the slices
are hyperboloidal and reachI + at infinity, 2) the spatial
coordinate is compactified, and therefore the wave function
reaches future null infinity at the boundaryr = 1, 3) such
boundary is null and there is no need to impose boundary
conditions there, because the characteristic speedλ− = 0 on
that boundary. In order to use these benefits the conformally
invariant wave equation needs to be solved:

(
¤− 1

6
R

)
φT (t, r, θ, ϕ) = 0, (25)

where R is the Ricci scalar of the conformal metric and
¤ = ∇µ∇µ also corresponds to the conformal metric. In or-
der to study non-radial modes, we separateφT (t, r, θ, ϕ) =
φ(t, r)Ylm(θ, ϕ) with Ylm the spherical harmonics. We solve
numerically this equation considering a domainr ∈ [rexc, 1].
We chooserexc such that it lies inside the event horizon and
satisfies the need ofP (r) being real.

We solve (25) forΦ(t, r, θ, ϕ) as an initial value problem
using a first order variable formulation. In terms of the line
element given by the gauge (24) the system of equations to
be solved is

∂tψ = ∂r

(
α

γ
π + βψ

)
,

∂tπ =
1
r2

∂r

(
r2(βπ +

α

γ
ψ)

)
,

− αγ

(
1
6
Rφ +

l(l + 1)
r2

φ

)
,

∂rφ = ψ, (26)

where R = (12Ω/r2) (r + M(2r − 1)). The system of
equations is again symmetric hyperbolic and we solve it us-
ing initial data forπ andψ in the domainr ∈ [rexs, 1] and
t ∈ [0,∞). As initial data we choose an approximately out-
going Gaussian pulse that on the initial hypersurface satisfies

∂t(rφ) + λ+∂r(rφ) = 0, (27)

where λ+ is the outgoing characteristic speed given by
λ+=−β + (α/γ). The initial data reads as follows

φ(0, r) = Ae−(r−r0)
2/σ2

,

ψ(0, r) = −2
(r − r0)

σ2
φ(0, r),

π(0, r) = −ψ(0, r)− φ(0, r)
r

(
1− βγ

α

)
. (28)

The numerical methods consist again in a finite differ-
ences approximation using the method of lines; however, this
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FIGURE 5. Snapshots of the wave function fork̃ = 0.4, 0.1, left and right panels, respectively, for the wave equation on the space-time given
by (22) withM = 1. Again, slices with small curvature imply the outgoing pulse squeezes and slows down before it reachesI +, whereas
for big curvature values the outgoing pulse reaches future null infinity quickly. The initial Gaussian is located atr = 0.8. The pulse splits
into two pulses: one moving toward scri plus and the other moving toward the horizon. We excise a part of the domain withrexc = 0.6.

FIGURE 6. We show the light cones for the space-time (22) for the two valuesk̃ = 0.1 (left) andk̃ = 0.4 (right). It can be seen that for
small k̃ the light cones stretch near the boundary, whereas for big values ofk̃ the cones are wide open atI +.

time we use more accurate stencils in order to track small am-
plitudes related to the tail decay behavior of the wave func-
tion. We use now sixth order stencils along the spatial direc-
tion and a fourth order Runge-Kutta integrator in time.

We choose an excision radiusrexc < 2M/(1+2M) such
that in the numerical domainP (r) is real for the values ofC
and k̃ we have used. About the boundary at future null in-
finity r = 1, the characteristic speed of the mode moving to
the leftλ− = −β − α/γ is zero, so that the wave propagates
along the boundary and not toward the numerical domain.
This implies that there is no need to apply boundary condi-
tions there.

In Fig. 5 we show the effects of the gauge parameters
chosen for the slices of the space-time for a spherical wave.
In one case, when a large value of the curvature is used, the
light cones nearI + are wide open and the outgoing pulse of
the scalar field arrives at such boundary without suffering a
considerable deformation, whereas for smaller values of the

curvature the pulse slows down and squeezes a little. To ex-
plain this effects we show in Fig. 6 the light cone structure
of the space-time for two values of the extrinsic curvature
of the slices. An important comment about the location of
event horizons from Fig. 6 is also in turn. Event horizons
are located in numerical relativity via tracking null surfaces,
and the event horizon is calculated approximately as the sur-
face from which the evolution of null 2-surfaces to the future
diverge toward inside the horizon and towardI + [16]. In
this case, where hyperboloidal slices are compactified and
the causal structure is maintained even after the conformal
rescaling, we are sure that some of the null rays reachI +

located atr = 1; a fine tuned set of null rays in Fig. 6 would
locate the exact threshold between those outgoing rays (rays
in this case of spherical symmetry) really escaping to future
null infinity and those that reach the excision boundary, being
such threshold the location of the event horizon atr = 2/3.
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FIGURE 7. We show the amplitude of the test scalar field in time,
including the oscillating and the polynomial tail decay stages for
different values ofC and k̃ measured atI + on Schwarzschild
space-time forl = 2 andM = 1. We found that each observer
measures the same decay exponentp for different values ofC andk̃
and also the quasinormal mode frequencies measured are the same
for different values ofC andk̃.

TABLE I. Frecuecies and decay exponent of the test mass-less
scalar field for an observer atI + with l = 2, K = 0.4 and
C = 2.0. We fit the amplitude of the field with the function
f(x)=ae−bx cos(cx+d) to estimate the frequenciesω = c using a
time domaint ∈ [0, 60]. These values have an errorδω = ±0.004.
In order to obtain the polynomial tail decay exponent we fit the am-
plitude of the field with the functionf(x) = a/xb +c and measure
p = b in the intervalt ∈ [300, 1000]; the values have an error
δp = ±0.09.

M ω p

0.5 0.749336 4.15273

0.6 0.727702 4.15273

0.8 0.687830 4.15273

1.0 0.660004 4.15273

1.01 0.656431 4.15273

3.3. Tails decay rates and quasinormal modes for the
test scalar field on Schwarzschild space-time

The study of wave tails in general relativity was first stud-
ied by Price and Pullin [17,18]. Polynomial tail decay shows
up after an oscillatory phase related to the quasinormal ring-
down frequencies of black holes and can be regarded as be-
ing due to back-scattering of gravitational radiation off the
curved background space-time. It is estimated that polyno-
mial tail decay∼ tp depends on the model that is being
analyzed and on the trajectory of the observer, for instance
p = −3 for time-like observers [17], whereas for null ob-
servers atI + p = −2 [18], when l = 0, and in general
p = −2l − 3 at finite distances andp = −l − 2 atI +.

Recent studies about the tail decay of a mass-less scalar
field have been presented, which include the dependence on

the location of the observer [19]. In this section we reproduce
the decay rates and quasinormal frequencies for a mass-less
scalar field with angular momentum on a fixed Schwarzschild
space-time background forl = 0, 1, 2. In order to do so, we
solve again the initial value problem for (26,27,28) and study
the amplitude ofφ for large values of time.

3.4. Numerical results

In order to study the oscillations and the tail decay it is
enough to track the behavior in time of the amplitude of
the physical scalar field̃φ, which reveals the oscillations and
polynomial tail decay. Even though we are solving for the
test scalar field on top of the conformal metric, the amplitude
of the conformal scalar fieldφ will show the same behavior
in time as the physical scalar field, this is why showing the re-
sults forφ suffices, since the conformal factor depends only
on the spatial coordinate. We locate detectors of the scalar
field at various positions in the domain, and relate the physi-
cal and conformal positions via the definition of the compact
coordinatẽr = r/(1− r) and its inverser = r̃/(1 + r̃).

The typical behavior of the wave function amplitude at
late times is shown in Fig. 7, for various values of the gauge
parameters. At initial times we have the quasinormal mode
oscillations, after which the polynomial tail decay appears.
We have also verified that the exponents are independent of
a wide range of initial data profiles, both, amplitudes and
widths of the Gaussian.

An important property that can be explored at this point is
the frequency of the quasinormal mode oscillations. In Fig.
8 we show the amplitude of the scalar field for two differ-
ent values of the black hole massM , in one case we use
M = 0.5, as usually done in previous papers; and in the
other case we use the valueM = 1, which is the one we
use in all our further calculations. A fit of the oscillations
shown in Fig. 8 reveals that the frequency of oscillation for
M = 0.5 is ω = 0.7493, which is consistent with previous
studies [20]. In Table I we illustrate the frequencies and tail
decay exponents for different values of the mass of the black
hole; these values are obtained via a fitting of the amplitude
of the scalar field.

In order to validate our numerical results we show in Fig.
9 an example of the convergence of the constraintψ = ∂rφ
and a self convergence test of the scalar field. These tests in-
dicate that the convergence of our results range between the
fourth and sixth order for quite a long time, which is con-
sistent with the order of accuracy of our finite difference ap-
proximation and our MoL time-integrator.

We also measure the wave function for observers located
at different positions from the event horizon. In Fig. 10 we
show how the polynomial tail decay exponent depends on the
location of the detector forl = 2, and similar behavior is
found for the other modes.

An efficient way of calculating the exponentp consists
in using the fact that assumingφ(x, t) ∼ Btp, with B a con-
stant, the exponent is given byp = d log |φ|/d log(t), as done
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FIGURE 8. We show the quasinormal modes and the tail decay rates of the wave function for different values of the mass of the black hole,
measured by an observer located atI + for l = 2, k̃ = 0.4 andC = 2. We found that the frequencies are different for different ADM
masses and the decay exponents are the same. The figure in the left panel is a zoom of the plot in the right panel for two cases that shows
more clearly the dependence of the frequency on the mass of the black hole. It can also be noticed that the tail decay exponent is the same in
all cases.

FIGURE 9. We show the typical convergence tests for one of our runs, in this case forl = 0 and resolutions∆x1 = 7.6 × 10−4,
∆x2 = ∆x1/2, and∆x3 = ∆x1/4. In the left panel we show the order of convergenceQ of theL2 norm of the constraintC = ψ− ∂rφ as
defined in Fig 2, and in the inset theL2 norm of the violation of the constraint for the three resolutions. In the right panel we show the order
of self-convergenceQsc of φ, using theL2 norm of the differences between the value of the wave function for the various resolutions. We
calculate the convergence factorQsc as follows: given thatφ1, φ2 andφ3 represent the numerical scalar field calculated using, respectively,
∆x1, ∆x2 and∆x3, then2Qsc = L2(φ1 − φ2)/L2(φ2 − φ3). Notice that the convergence factor is near to 6, which is the accuracy of our
stencils along the spatial direction, and in general the criteria we use to trust our results is that the convergence factor must be bigger than 4,
which is the accuracy of the time integrator of the method of lines, the least accurate algorithm used in our calculations.

in Ref. 19, so that it is possible to track the time dependence
of the exponent itself. In Fig. 11 we show the exponentp
for l = 0, 1, 2, measured at various positions and verify the
bounds of the exponents to be betweenp = −2l−3 for time-
like observers andp = −l − 2 atI +.

4. General formulas for the scri-fixing confor-
mal compactification

We now develop the construction of the conformal compact-
ification for a static spherically symmetric space-time de-
scribed by the type of metric

ds̃2=−α2(r̃)dt̃2+b2(r̃)dr̃2+r̃2(dθ2+sin2 θdϕ2), (29)

whereb andα are assumed to be known metric functions,
and proceed to construct a hyperboloidal foliation and a
scri-fixing conformal compactification. By introducing the
change of coordinatet = t̃− h(r̃) the line element takes the
form

ds̃2=−α2(r̃)dt2−2h′(r̃)α2(r̃)dtdr̃

+
[
b2(r̃)−α2(r̃)(h′(r̃))2

]
dr̃2

+r̃2(dθ2+sin2 θdφ2), (30)
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FIGURE 10. Amplitude of the wave function measured at differ-
ent distances from the black hole forl = 2. We use:A = 0.1,
x0 = 0.8 andσ = 0.1.

whereh′ = (dh/dr̃). Comparison of this metric with the 3+1
metric

ds̄2 = (−ᾱ2 + γ̄2β̄2)dt2 + 2β̄γ̄2dr̃dt

+ γ̄2dr̃2 + r̃2(dθ2 + sin2 θdϕ2)

allows to read off the gauge and metric functions

ᾱ(r̃) =
α(r̃)b(r̃)

γ̄(r̃)
,

β̄(r̃) = −h′(r̃)α2(r̃)
γ̄2(r̃)

,

γ̄2(r̃) = b2(r̃)− α2(r̃)(h′(r̃))2. (31)

In terms of these functions, the unit normal vector to the
spatial hypersurfaces pointing to the future is given by

nµ =
[

γ̄(r̃)
α(r̃)b(r̃)

,
h′(r̃)α(r̃)
γ̄(r̃)b(r̃)

, 0, 0
]

. (32)

Given a space-like slice, we can drag it along the time-
like Killing vector. This will give a slicing where the time
translation is along the Killing vector. Now, the mean curva-
ture at the initial time slice is given by

k̃ =
1

r̃2α(r̃)b(r̃)
∂r̃

[
r̃2h′(r̃)α2(r̃)

γ̄(r̃)

]
, (33)

and can be integrated for constantk̃, which means the slices
are of constant mean curvature (CMC):

k̃

∫
r̃2α(r̃)b(r̃)dr̃ − C =

r̃2h′(r̃)α2(r̃)
γ̄(r̃)

, (34)

where nowh′(r̃) is

h′(r̃) =
[k̃I(r̃)− C]b(r̃)

α(r̃)
√

[k̃I(r̃)− C]2 + α2(r̃)r̃4

(35)

FIGURE 11. We show the exponent of the polynomial tail decay
for l = 0, 1, 2 measured by observers located at various distances
from the black hole. From top to bottom the curves correspond to
detectors located at̃r = ∞, 1000 M, 250 M, 110 M, 50 M, and
10 M, and the remaining curves (for the casel = 0) correspond to
detectors located even closer to the horizon.

and

I(r̃) =
∫

r̃2α(r̃)b(r̃)dr̃. (36)

In general, it is not easy to findh in a closed form, so in or-
der to have a description of the slices in general one has to
integrate this function numerically.
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On the other hand, in order to perform the scri-fixing
compactification, we define the compact coordinater by
r̃ = r/Ω and we rescale the original metric using the con-
formal factorΩ. The space-time using scri-fixing conformal
compactification is finally given by the conformal line ele-
ment

ds2 = −α2(r)Ω2(r)dt2 − 2h′(r)α2(r)(Ω− rΩ′)dtdr

+
[
b2(r)− α2(r)(h′(r))2

]
(Ω− rΩ′)2

dr2

Ω2(r)

+ r2(dθ2 + sin2 θdϕ2), (37)

where the functionsα(r), b(r) andh′(r) are functions ofr.
The conformal factorΩ determines various properties of the
resulting conformal metric.

For instance, for the Schwarzschild space-time,
α2=1/b2 = (1− (2M/r̃)), with which our expression (35),
usingΩ = 1 − r is reduced to the expression forh′(r̃) ob-
tained by Malec and Murchadha [15], and the final version
of the conformally rescaled metric is (22).

4.1. The wave equation

In general, from (37) we can read off again the gauge in terms
of the ADM-like metric

dŝ2 = (−α̂2 + γ̂2β̂2)dt2 + 2β̂γ̂2drdt

+ γ̂2dr2 + r2(dθ2 + sin2 θdϕ2)

and obtain the following gauge and metric functions

α̂2(r) = α2(r)Ω2 + β̂2(r)γ̂2(r),

β̂(r) = −α2(r)h′(r)(Ω− rΩ′)
γ̂2(r)

,

γ̂2(r) =
(b2(r)− α2(r)h′2(r))(Ω− rΩ′)2

Ω2
, (38)

which are the final metric functions used to solve the wave
equation for a generic space-time. In order to solve (25) as
a first order system, first order variables are define as previ-
ously:π = (γ̂/α̂)∂tφ− (γ̂/α̂)β̂∂rφ andψ = ∂rφ. Then, the
system to be solved is (26) with the gauge (38) for given ini-
tial data on a given spatial domain and appropriate boundary
conditions.

4.2. Example: 3+1 Minkowski space-time

As an extra example, we present the case of the Minkowski
space-time in spherical coordinates. We start with the line el-
ement for the Minkowski space-time in spherical coordinates
xµ = (t̃, r̃, θ, φ) for the physical metric given by

ds̃2 = −dt̃2 + dr̃2 + r̃2(dθ2 + sin2 θdφ2), (39)

wheret̃ ∈ (−∞,∞) and r̃ ∈ [0,∞). The integral (36) im-
plies I(r̃) = r̃3/3, which substituted into (35) withC = 0
implies

h′ =
r̃√

a2 + r̃2
, (40)

wherea is a constant that is given in terms of the curvature by
k̃ = 3/a. It is also possible to integrate again forh and obtain
a complete description of the slices with the height function
h(x̃) =

√
a2 + x̃2, which completes the description of the

conformal metric of the space-time.

4.3. A particular case of the 3+1 Minkowski space-time

In order to compactify this case we use a compact coordinate
r̃ = (r/Ω). Unlike the 1+1 Minkowski case, one only needs
to regularize atr = 1 for which various choices are evident:
Ω = 1 − r or Ω = 1 − r2, in fact in Ref. 21 for the solution
of the Klein-Gordon equation with aφ4 potential, the con-
formal factor used isΩ = (1 − r2)/2, which is a conformal
factor that shows a regular Ricci scalarR at the origin. For
the example developed here we choose the first choice and
the conformal metric then reads:

ds2 = −(1− r)2dt2 − 2r√
a2(1− r)2 + r2

dtdr

+
a2

a2(1− r)2 + r2
dr2 + r2(dθ2 + sin2 θdφ2), (41)

from which we read off the gauge functions

α2 = (1− r)2 +
r2

a2
,

β = − r

a2

√
a2(1− r)2 + r2,

γ2 =
a2

a2(1− r)2 + r2
. (42)

In order to visualize the space-time structure we calculate
the null rays of the space-time which obeyds = 0, that is

dt

dr
=

1
(1− r)2

(
− r√

a2(1− r)2 + r2
± 1

)
, (43)

whose solution reads

t− t0 =

√
(a2 + 1)(r − 1)2 + 2r − 1

r − 1
± 1

1− r
. (44)

The results are presented in Fig. 12 for valuesa = 0.5, 1, 5
or equivalentlyk̃ = 6, 3, 0.6. The corresponding conformal
diagrams are shown in Fig. 13, where the embedding of the
slices in the space-time depending on the value of the extrin-
sic curvature is manifest.
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FIGURE 12. Space-time diagrams described with hyperboloidal slices andk̃ = 6, 3, 0.6, or equivalentlya = 0.5, 1, 5. Continuous (dotted)
lines indicate outgoing (in-going) null rays. As in the previous cases, the light cones close near the boundary for small values of the curvature.

FIGURE 13. Conformal diagrams of the spherically symmetric Minkowski space-time in spherical coordinates, using hyperboloidal slices
and conformal compactification withΩ = 1 − r and various values ofa = 0.5, 1, 5 or k̃ = 6, 3, 0.6. These diagrams are quite similar to
those of the 1+1 Minkowski space-time, however notice that we are using a different conformal factor and that the curvature of the slices is
different in terms of the parametera. In fact, it has been found that a conformal factorΩ = (1 − r2)/2 is helpful to obtain a regular Ricci
scalar at the origin, which is useful to solve the conformally invariant wave equation [21,22].

5. Final comments

We presented the numerical solution of the wave equation on
top of particular space-times using hyperbolidal slices and
scri-fixing conformal compactification. We calculate the so-
lution as an initial value problem using first order variables,
and verified that the resulting constraints converge when the
first order variables are defined, and also that the numerical
solutions self-converge.

We presented a detailed step-by-step construction of
the foliation and conformal compactification for the 1+1
Minkowski space-time. Following previous results we con-
structed the case of Schwarzschild. We generalized in detail
the scri-fixing conformal compactification for the case of a
spherically symmetric static space-time, and provide a recipe
to construct the adequate coordinates in that case. We illus-
trate each case with space-time and conformal diagrams in
order to show the global structure of the space-time and how
the slices are embedded into the space-time.

The solution of the wave equation for the case of the

Minkowski space-time in 1+1 is in fact the solution on the
physical metric because the wave operator is conformally in-
variant. In the -four dimensional- Schwarzschild case we
want to stress that we solve the wave equation on top of the
conformal space-time background. We studied the case of an
outgoing pulse and tracked the late-time behavior of the am-
plitude of the wave function, and were able to study the quasi-
normal mode frequencies for various masses of the black hole
and modesl = 0, 1, 2, and the exponents of the tail decay.
We fitted the frequencies found previously and showed that
the tail decay exponents obey the restrictions studied in the
past.
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