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In this paper we present the numerical solution of the conformally invariant wave equation on top of a fixed background space-time corre-
sponding to two different cases: i) 1+1 Minkowski space-time in Cartesian coordinates and ii) Schwarzschild space-time. In both cases we
use hyperboloidal constant mean curvature slices and scri-fixing conformal compactification, and solve the wave equation on the conformal
space-time. In the case of the Schwarzschild space-time we study the quasinormal mode oscillations and the late-time polynomial tail decay
exponents corresponding to a mass-less scalar field. We also present general formulas to construct hyperboloidal constant mean curvature
slicings of spherically symmetric, static, space-times in spherical coordinates.

Keywords:Relativistic wave equations; numerical relativity; black holes.

En este trabajo presentamos la sduachunérica de la ecuaén de onda conformalmente invariante para dos casos diferentes de espacio-
tiempo fijo: i) espacio-tiempo de Minkowski 1+1 en coordenadas catesianas y ii) el espacio-tiempo de Schwarzschild. En ambos casos el
espacio-tiempo se describe con hipersuperficies de curvatura espacial media constante y compacidifacime que contiene al futuro

infinito nulo, y se resuelve la ecuaci de onda en un espacio-tiempo conforme. En el caso del espacio-tiempo de Schwarzschild, se estudian
las oscilaciones cuasinormales y los exponentes del decaimientétiasirémporal polinomial correspondientes a un campo escalar sin
masa. Taml@in se presentan laérimulas generales para construir hipersuperficies hiperboloides con curvatura media constante para un
espacio-tiempo con simédresérica, esitico y en coordenadas ésitas.

Descriptores:Ecuaciones de onda relativistas; relatividad guoa; hoyos negros.

PACS: 03.65.Pm; 4.25.D-; 04.25.dg

1. Introduction aries at future null infinity are being used for various appli-
cations, like the solution of perturbation equations [8-10] and
A common problem in numerical relativity is the global treat- the study of tails [11].
ment of asymptotically flat space-times, specially related to  The idea behind scri-fixing conformal compactification is
the implementation of boundary conditions on an artificialthe following: i) use hyperboloidal slices that reaght, ii)
time-like boundary and the measurement of gravitational racompactify the spatial coordinate and iii) rescale the metric
diation by detectors located on time-like trajectories. Most ofwith an appropriate conformal factor. We proceed by defining
the initial value problems formulated are based on a Cauchg new time coordinate= ¢ — h(3), where , §) are the orig-
space-like foliation with the hypersurfaces approaching spainal time and space coordinates. This transformation has the
tial infinity. Then, boundary conditions must be supplied atadvantage that keeps the time direction invariant. That is, re-
an artificial boundary, for instance, absorbing boundary congardless of the choice of thdg), the time-like killing vector
ditions [1]. Recent efforts point to the use of hyperboloidalhas the same form in both coordinate systems. A compacti-
foliations of the space-time because asymptotically the spdying coordinate is introduced in the forjn= y/Q, where
tial slices reach future null infinity? ™, and for asymptot- © = Q(y) is a non-negative conformal factor that vanishes
ically flat space-times the gravitational radiation is well de-at .#* [12]. Then, the physical metrig becomes singular
fined at such boundary [2,3], so that the measurement of that the boundary of the compact coordinate. In order to re-
gravitational radiation can be measured by detectors near enove the singularities the metric is rescaled= Q2g with
at that boundary. More common efforts are related to matchthe conformal factor so that the conformal meyis regular
ing techniques of Cauchy slices with slices approaching fuat the boundary?Z*. On the other hand, for the construction
ture null infinity [4-6], which has already been applied to theof i(§), we restrict this paper to the case of constant mean
binary black hole problem [7]. On the other hand, it is desir-curvature (CMC) slices [13].
able to compactify the space-time foliated in this manner in  In this manuscript we present the solution of the wave
order to work on a numerical domain that contaifig, for  equation for the extended Minkowski and Schwarzschild
which it is necessary to compactify the spatial coordinates irspace-times described with CMC slices, construct the foli-
an appropriate way such that the space-time is regular therations and compactification, and solve the wave equation on
at future null infinity. At present time, foliations with bound- top of the resulting space-times with a twofold goal. On the
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FIGURE 1. Evolution of the wave function foz = 0.5 (left), a = 1 (middle) anda = 5 (right) or equivalentlyk = 2, 1, 0.2, respectively.
These results are consistent with the space-time diagrams in Fig. 12, where the light cones seem to get narrow near the boundaries for bi
values ofa (small values of the curvature), which explains why the pulses slow down and shrink when they approach the boundaries.
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FIGURE 2. Convergence tests for the solution of the wave equation kith 2, 0.2 or equivalentlya = 0.5, 5 on the left and right panels,
respectively. We use three resolutiahs = 0.002, 0.001, 0.0005. (Top) We show the order of converger@ef the constrain€ = ) — 0, ¢

to zero, defined by.2(C)[using medium resolution]/ L2 (C)[using high resolution] = 2% because the ratio between resolutions is 2.

In the insets we show the, norm of the constraint for the three resolutions. (Bottom) Continuous lines represent the differerfoe thie

two first resolutions anck —lines represent the difference éffor the two last resolutions multiplied by 4; the fact that the curves lie on top

of each other indicates the second order self-convergengdafthe snapshots presented. In the case 5 (small curvature) we can see

that the errors are not as small as in the other case; this is due to the fact that the pulses are being squeezed when approaching the boundar
and then the resolution used is not enough to resolve the pulses, and then the errors are bigger; however, we maintain second the converger
of second order.

one hand, we verify as an academic exercise that the behavition in one spatial dimension and illustrate the role played by
of the wave function is consistent with the properties of thethe gauge. On the other hand, we study in particular the wave
particular space-times constructed here, and we are explicit function on top of the Schwarzschild space-time, and track
the construction of the numerical solution of the wave equathe quasinormal mode frequencies and tail decay rates of the
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amplitude of the wave function, which is also the case of a d&* = —dt* + di?, 3)
test mass-less scalar field evolving on the space-time. ~

Once the space-time has been foliated with hyperboloidalheret, z € (—oo, +00) x (—o0, +00). In order to construct
slices, the spatial coordinate has been compactified and tlibe hyperboloidal slices, we perform a time transformation
metric rescaled, it is necessary to solve a wave equation thatts= ¢ — h(Z). Using this new time coordinate, the metric
physically meaningful. Thus, the wave equation to be solvededuces to
has to be a conformally invariant one. Considering the con- ,
formally rescaled metrig = 223, the following identity ap- 3 = —dt* — 21'dtdz + [1 — h *|dz?, 4)

plies for ann-dimensional space-time [14] , - . . .
whereh’ = dh/dz. In order to have a simple interpretation
n—2

a3l n—-2 =]~ of the embedding of hypersurfaces into the space-time we
D_4(n 1) R| =02 D_4(n _ 1)R ¢=0, (1) compare this expression with the usual ADM-like metric

which means that the operator in brackets is invariant under 432 — <_@2 + 3252) dt? + 2352dtdE + 72dz®,  (5)
conformal transformations and is the one to be considered as

the conformally invariant D’Alambertian operator. In this €x- 544 we read off the lapse functigh = 1/v/1— /2, and

pressioni and i are the Ricci scalar in the conformal and {hen the future-pointing unit vector normal to the hypersur-
physical space-times, respectively= ¢/ is the conformal

s > - facen* is
wave function, and] is defined by
1
1 n :(_d70): (_,>0>7
O¢ = ——=0u[v=99" ¢, 2 ' VI-—h"
/=g y
where g,,,, is the conformal metric and its determinant. nt = (V 1=h72, m) ) (6)

For the cases presented in this manuscript, the conformally
invariant wave equation for the 1+1 Minkowski Space_timeWi'[h which it is pqssible to calculate the mean extrinsic cur-
is O¢ = 0; whereas, for the Schwarzschild space-timevature of the slicé = V. n* = (1/y/=g)0,.(v/—gn*):

(n = 4) the conformally invariant wave equation reads B B
06 — (1/6)Re = 0. i = o () o = () Lo, @
We solve these two equations as initial value problems in V1—h'? V1—h'2 %

each case using a first order variable formulation. In the case o ) .
of the solution of the wave equation on the SchwarzschildVhere the second equality is obtained after assunking

space-time, the equation also corresponds to a test mass-1€stant, and finallg” is an integration constant. This equa-
scalar field, which is related to quasinormal mode oscillationdion can be manipulated to give a complete description of the

of the black hole and studies the polynomial tail decay of the!iCes:

amplitude of the scalar field; in such case we use mass-less P
scalar field and wave function indistinctly. W=——— = @) =Va+3% (8
This paper is organized as follows. In Sec. 2 we solve 1+ (k%)?

the conformally invariant wave equation on top of the 1+1

Minkowski space-time, and provide diagrams illustrating thewherea = 1//%. The space-time in these new coordinates is
results. In Sec. 3 we solve the conformally invariant wavedescribed with hyperboloidal constant mean curvature slices.
equation on top of a scri-fixing conformally compactified ver-  In order to compactify the space-time at the future null
sion of the Schwarzschild solution; we show the quasinormainfinity boundary it suffices to define a new spatial compact
mode oscillations and the tail decay of the scalar field, ana@oordinater: defined throught = x/€2. A convenient choice
compare with previous results. In Sec. 4 we present generalf the conformal factor i§) = 1 — z? because we want the
formulas useful to set up slicings with constant mean curiwo asymptotic end§ — +oo to correspond ta = +1
vature and scri-fixing conformal compactification for spher-in the compactified coordinate. This choice has been used,
ically symmetric and static space-times in spherical coordifor instance in Ref. 8, to construct the solution of the per-
nates; we show as an example the 3+1 Minkowski space-timiirbation equation of charged wormholes. In this way, using
in spherical coordinates. Finally, in Sec. 5 we summarize the = z/Q, with Q = 1 — 22, h(Z) = va? + 72, which im-

main results. pliesh’ = x/\/a%(1 — x2)2 + 22, and finally the conformal
metric reads
2. 1+1 Minkowski space-time 2
2z(1
- o ds? = —(1— g?)2at? — —20ET)
2.1. Foliation and scri-fixing a?(l —x2)? 4 22
We choose the coordinates of the space-tie= (¢, #) and a?(1+ 2?)? 5
i + 5 da”. 9)
the line element a2(1 — 22)% + 22
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a=1.0

FIGURE 3. Space-time diagrams for slicings with= 2, 1, 0.2 or equivalentlya = 0.5, 1, 5. Continuous (dashed) lines represent null rays
moving towardr = +1 (z = —1). These plots are constructed using (14) with various values. of

FIGURE 4. Conformal diagrams with hyperboloidal slices for= 2,1, 0.2 or equivalentlya = 0.5, 1, 5. Continuous lines represent curves
of constant whereas dotted lines represent curves of constant

In order to find the gauge functions, this conformal metric Ob = 0 (0477 er))
has to be identified with the standard 1+1 metric of type (5), ) “\v ’
where we remove the tildes because we deal with the confor-

mal metric. The identification implies the following gauge o = 0y (677 + aw) ,
functions: i
) 02 =1, (11)
a2:x—+(1—m2)2 .
a2 ) wherer = (v/«a)0:¢ — (v/a) 30,¢ andyy = 0,.¢. This sys-
5 5 5 tem of equations holds as long@as # 0. The third equation
g=_Ltva 1-2®)+a , is a definition ofy but it is also a constraint of the system that
a? 1+ 22 has to be satisfied. The value of the wave function is obtained
2 a?(14a?)? 10 from the definition ofr, that is,0;¢ = (a/~v)7+ (¢, and can
T 2(1—22)2 + 22 10)  pe integrated in time at the same timeraand. We define
the state vecton = (7, )T, so that the wave equation can
which are the ones used to describe the space-time on top be cast in a balance law fordyu + Ad,u = —0,(A)u,
which we solve the wave equation. where
A:—( 8 O‘”), (12)
2.2. The wave equation a/y B
and the characteristic speeds of the system are given by

We solve the conformally invariant wave equation. For the o
casen = 2 and R = 0, the wave operator is conformally — =AL=—-0+—. (13)
v

invariant, thus we solve the Eq. (2) dt
These eigenvalues are real and distinct and in fact correspond

1 to a complete set of eigenvectors. Then, this system of equa-
o ﬁ tions is symmetric hyperbolic, and together with initial data
for » andm it corresponds to a well posed initial value prob-
for the metric (9,10) as an initial value problem. lem. We define such problem in the domaine [—1,1],
It is straightforward to show that assuming= «(z), t € [0,00). We choose initial data corresponding to an ini-
B = B(z) andy = v(z), the wave equation can be written as tially time-symmetric wave function with Gaussian profile.
a first order system of equations given by In particular we use) = e~ /(0.)% ¥ = ¢ andm = 0.

Do Iulv=99"0,0] = 0,
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We solve this problem using a finite differences approx-3. Schwarzschild space-time
imation, with a method of lines using second order stencils
along the spatial direction and a third order Runge-Kutta3.1. Foliation and scri fixing
time integrator. The question about the boundary conditions
7(—1,t), ¥(=1,¢), 7(1,¢) andr(1,t) remains, and the an- We want to solve the wave equation on top of the
swer is that there is no need to apply boundary condition&chwarzschild background in coordinates with two important
(e.g.radiative boundary conditions) because we notice that ifproperties: i) the wave is allowed to enter the event horizon of
the continuum limit at: = —1 the characteristic speed cor- the black hole and ii) the wave is allowed to reach future null
responding to the mode moving to the right is zexg & 0), infinity. We then start with the Schwarzschild metric written
whereas the characteristic speed of the mode moving to th@s usual
leftatz = 1 is also zero X_ = 0), and then no signals are

propagated into the domain of the problem. ds? = (1 _ 2M> di2
The result is as expected, the initial Gaussian pulse will r
split into two pulses with half the initial amplitude and op- 72 T, )
posite directions, and the speed of propagation of each pulse ti e T (d6” + sin” fde”), (15)

depends on the gauge chosen. The results of the evolution for

three different values of the mean curvatérare shown in  and proceed to construct a hyperboloidal foliation and a scri-
Fig. 1, where the effects of the different gauge choices argyjng compactification.

illustrated. In Fig. 2 we show the self-convergence of the so-
lution, and the convergence of the constraipd = 1), which
validates our numerical results.

By introducing the change of coordinate= ¢ — h(7)
in (15) the line element takes the form

- 2M 2M

2.3. Space-time and conformal diagrams ds? = (1 - r) dt* — 21’ (1 - T) dtdr
In order to better illustrate the structure of the space-time we I IM
construct the light cone structure and conformal diagrams, for + (1 - f> (1 — r) B2\ di?
which we first estimate the radial null geodesics by solving
the conditionds = 0: + 72(d6? + sin® 0dp?), (16)

dt z(1+ 2?) 1+ 22

dr (1—22)2/a?2(1 — 222+ 22 (1—22)? whereh’ = dh/dr, and from which we read off the gauge

quantities
whose solution is
1
—\/a2(1—ac2 +12j:x a=-,
t=1tg+ I (14) ¥
2M

The result is shown in Fig. 3. What can be learned from this 3= _hl(l -5
figure is that for small values @fthe light cones become nar- 72 ’
row nearx = +1. The implication is that the pulses of the oM oM
initial data propagating outwards will slow down and squeeze (1 — T) <1 — T) h 2 a7

when they approach the boundaries in the case of gmall
In_order to obtain a better understanqllng of the nature ofo 1 \yhich the unit normal vector to the spatial hypersur-

the slices, we construct the conformal diagrams of the threg, ¢ pointing to the future is given by

cases studied. The conformal diagram is constructed using

the coordinates = £(¢, z) andz = i(t, z). Considering that W OM

h(z) = Va® + 2 andQ = 1 — 22, the physical spatial co- [% 5 < > 0 0}

ordinate read§ = z/1 — z?. With this information one has

the tilde coordinates given by: Now, the extrinsic mean curvature at the initial time slice

k = V,n* reads

(18)

2
b=\l + 755  T=15 aps
(1—22) 11—z E:i&z {m( 2]}4)]’ (19)
The results are depicted in Fig. 4. These diagrams are use- v r
ful to interpret the effects of the gauge used. For the case of
small the hypersurfaces used for the evolution, even if they?nd can be integrated for constant
reach.#*, are concentrated near spatial infinity, whereas in - =2
the cases of bigger values bflices are very separated near ke C = h (1 _ 2{\4) : (20)
#*, and allow the pulses arrive at the boundaries quickly. 3 gl

xT

T
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where de derivativé’ is with the tildes. We decide to solve the wave equation using
(;};3 C) the conformal metric because of various reasons: 1) the slices
B o— 3 (1) are hyperboloidal and reaclf ™ at infinity, 2) the spatial

v 2 _ coordinate is compactified, and therefore the wave function
(1_2M) ko +(1_M)T4 P
7 3 7 reaches future null infinity at the boundary= 1, 3) such
boundary is null and there is no need to impose boundary

In this case, it is not easy to firtdin a closed form as in the o .
. S . .._conditions there, because the characteristic speeg 0 on
previous case in this paper, and in order to have a descriptioh

i . . : . that boundary. In order to use these benefits the conformally
of the slices one has to integrate this function numerically; . . )
however, notice that is not required but only its derivative. Invariant wave equation needs to be solved:

On the other hand, in order to perform the scri-fixing 1
compactification we choose the conformal factor to be (D — 6R> or(t,r6,0) =0, (25)
Q=1-—r, and thus the compactifying coordinate is given by

7 = r/Q. Then, the Schwarzschild space-time using scriyyhere R is the Ricci scalar of the conformal metric and
fixing conformal compactification is described by the line el- 7 _ V#V, also corresponds to the conformal metric. In or-

ement [15] der to study non-radial modes, we separatét, r, 0, ) =

) IMQN\ o 2(kr3/3—CO3) o(t, 7)Y (0, ) with Y7, the spherical harmonics. We solve

ds”=—(1- WVdt” — ——5~———dtdr numerically this equation considering a domai 1
r P(r) y q g @ [rege, 1]-
We chooser,.. such that it lies inside the event horizon and
’1”4 . g .
n dr? + r2(d6? + sin? §dp?), (22) satisfies the need d?(r) being real.
P2(r) We solve (25) ford(¢, r, 6, ¢) as an initial value problem
where using a first order variable formulation. In terms of the line
. element given by the gauge (24) the system of equations to
P(r) = Q*P(r) be solved is
~ 2
3 (%
_ A _cqs) 41— 2MON o4 (23) oY = Oy <7r + ﬁ¢> ,
3 r v
_ 1 «

The values ok andC are restricted in such a way thB(r) oy = 72& <T2(/5’7T + ¢)> )
is real. Important features of these coordinates are that: i) the K
event horizon is located at= 2M /(1 + 2M), ii) the slices N leb n Il + 1)¢
penetrate the event horizon, iii) the slices do not avoid the "6 2 ’

singularity atr = 7 = 0, and iv) they reach the future null
infinity. Condition (ii) allows the practice of excision inside
the horizon, that is, a chunk of the domain is removed from

_ 2 _
the numerical domain which we know lies inside the horizonWhere. R - (1QQ/T ) (r + M(QT 1))'. The system (.)f
equations is again symmetric hyperbolic and we solve it us-

of the black hole, which means that the domaire ree ing initial data form and+ in the domainr € [r..s, 1] and

is removed and no need of boundary conditionsat are t € [0,00). As initial data we choose an approximately out-

needed as long as the speeds of the characteristic fields are: : L L
. going Gaussian pulse that on the initial hypersurface satisfies
negative at that boundary.

The gauge functions for this conformal metric are in this

8r¢ = d}a (26)

case Du(rd) + Ay 0r(r¢) = 0, (27)
20\ , , (CQ® — %l};;ﬁ)? where A, is the outgoing characteristic speed given by
a= (1 - x) 0+ 4 ) A+=—0+ (a/v). The initial data reads as follows
ﬁ = P(:) (CQS o ;,ffxg) ’ (b(ovr) = Ae_(r_ro) /e )
x
r—r
22 ¥(0,7) = ol 5 0>¢(0,r),
Y= P (24) g
) 60.7) (| B
, m(0,r) = =p(0,r) - ——= (1—-—]. (28)
3.2. The wave equation r @

Following our convention, the conformal metric is given by ~ The numerical methods consist again in a finite differ-
ds? = Q2d35%, meaning that the physical metric is the one ences approximation using the method of lines; however, this
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FIGURE 5. Snapshots of the wave function fer= 0.4, 0.1, left and right panels, respectively, for the wave equation on the space-time given
by (22) with M = 1. Again, slices with small curvature imply the outgoing pulse squeezes and slows down before it r&dghveisereas

for big curvature values the outgoing pulse reaches future null infinity quickly. The initial Gaussian is located(ag. The pulse splits

into two pulses: one moving toward scri plus and the other moving toward the horizon. We excise a part of the domain with.6.
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FIGURE 6. We show the light cones for the space-time (22) for the two values 0.1 (left) andk = 0.4 (right). It can be seen that for
small k the light cones stretch near the boundary, whereas for big valuethefcones are wide open.at™.

time we use more accurate stencils in order to track small amzurvature the pulse slows down and squeezes a little. To ex-
plitudes related to the tail decay behavior of the wave funcplain this effects we show in Fig. 6 the light cone structure
tion. We use now sixth order stencils along the spatial direcef the space-time for two values of the extrinsic curvature
tion and a fourth order Runge-Kutta integrator in time. of the slices. An important comment about the location of

We choose an excision radius,. < 2M/(1+2M)such  event horizons from Fig. 6 is also in turn. Event horizons
that in the numerical domaif(r) is real for the values o are located in numerical relativity via tracking null surfaces,
andk we have used. About the boundary at future null in-and the event horizon is calculated approximately as the sur-
finity » = 1, the characteristic speed of the mode moving toface from which the evolution of null 2-surfaces to the future
the leftA\_ = —3 — /v is zero, so that the wave propagatesdiverge toward inside the horizon and toward" [16]. In
along the boundary and not toward the numerical domainthis case, where hyperboloidal slices are compactified and
This implies that there is no need to apply boundary condithe causal structure is maintained even after the conformal
tions there. rescaling, we are sure that some of the null rays redch

In Fig. 5 we show the effects of the gauge parametergycated at- = 1; a fine tuned set of null rays in Fig. 6 would
chosen for the slices of the space-time for a spherical wavggcate the exact threshold between those outgoing rays (rays
In one case, when a large value of the curvature is used, thg this case of spherical symmetry) really escaping to future
light cones near* are wide open and the outgoing pulse of | infinity and those that reach the excision boundary, being

the scalar field arrives at such boundary without suffering &,ch threshold the location of the event horizon at 2/3.
considerable deformation, whereas for smaller values of the
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3 the location of the observer [19]. In this section we reproduce

% — the decay rates and quasinormal frequencies for a mass-less
scalar field with angular momentum on a fixed Schwarzschild
space-time background fér= 0, 1, 2. In order to do so, we
solve again the initial value problem for (26,27,28) and study
the amplitude ofs for large values of time.

IV
O
DSOS
TR
L~OS

0.0001 [

1606 |

19|

1e-08

3.4. Numerical results

1e-10

In order to study the oscillations and the tail decay it is
enough to track the behavior in time of the amplitude of
the physical scalar field, which reveals the oscillations and
. i : : i polynomial tail decay. Even though we are solving for the
o o, ® o L test scalar field on top of the conformal metric, the amplitude
FIGURE 7. We show the amplitude of the test scalar field in time, _Of t.he conformal spalar fielg V,V'" ShO_W,the same bghawor
including the oscillating and the polynomial tail decay stages for IN ime as the physical scalar field, this is why showing the re-
different values ofC' and k measured at/* on Schwarzschild ~ Sults for¢ suffices, since the conformal factor depends only
space-time foi = 2 andM = 1. We found that each observer 0N the spatial coordinate. We locate detectors of the scalar
measures the same decay expont different values of” andk field at various positions in the domain, and relate the physi-
and also the quasinormal mode frequencies measured are the sarcal and conformal positions via the definition of the compact
for different values ot andk. coordinate” = r/(1 — r) and its inverse = 7#/(1 + 7).

The typical behavior of the wave function amplitude at
late times is shown in Fig. 7, for various values of the gauge
TABLE |. Frecuecies and decay exponent of the test mass-lesparameters. At initial times we have the quasinormal mode
scalar field for an observer af* with | = 2, K = 0.4 and  gijjations, after which the polynomial tail decay appears.
¢ = 2.0. We fit the amplitude of the field with the function \ye aye also verified that the exponents are independent of

f(z)=ae™"" cos(cz+d) to estimate the frequencies= c using a . o . .
time domairt € [0, 60]. These values have an erdoy = +0.004. a.WIde range of mlt.lal data profiles, both, amplitudes and
widths of the Gaussian.

In order to obtain the polynomial tail decay exponent we fit the am-

1e-12

1e-14
0

plitude of the field with the functiorf (z) = a/z” + c and measure An important property that can be explored at this point is

p = bin the intervalt € [300,1000]; the values have an error the frequency of the quasinormal mode oscillations. In Fig.

dp = £0.09. 8 we show the amplitude of the scalar field for two differ-
v " » ent values of the black hole madg, in one case we use

M = 0.5, as usually done in previous papers; and in the

0.5 0.749336 4.15273 other case we use the valid¢ = 1, which is the one we
0.6 0.727702 4.15273 use in all our further calculations. A fit of the oscillations
0.8 0.687830 4.15273 shown in Fig. 8 reveals that the frequency of oscillation for
1.0 0.660004 4.15273 M = 0.5 isw = 0.7493, which is consistent with previous
101 0656431 415273 studies [20]. In Table | we illustrate the frequencies and tail

decay exponents for different values of the mass of the black
hole; these values are obtained via a fitting of the amplitude
3.3. Tails decay rates and quasinormal modes for the ©f the scalarfield. _ o

test scalar field on Schwarzschild space-time In order to validate our numerical results we s_how in Fig.

9 an example of the convergence of the constraint 0,.¢

The study of wave tails in general relativity was first stud-and a self convergence test of the scalar field. These tests in-
ied by Price and Pullin [17,18]. Polynomial tail decay showsdicate that the convergence of our results range between the
up after an oscillatory phase related to the quasinormal ringfourth and sixth order for quite a long time, which is con-
down frequencies of black holes and can be regarded as bsistent with the order of accuracy of our finite difference ap-
ing due to back-scattering of gravitational radiation off theproximation and our MoL time-integrator.
curved background space-time. It is estimated that polyno- We also measure the wave function for observers located
mial tail decay~ t? depends on the modethat is being at different positions from the event horizon. In Fig. 10 we
analyzed and on the trajectory of the observer, for instancehow how the polynomial tail decay exponent depends on the

p = —3 for time-like observers [17], whereas for null ob- location of the detector fol = 2, and similar behavior is
servers at¥/ * p = —2 [18], when/ = 0, and in general found for the other modes.
p = —2[ — 3 at finite distances and= — — 2 at # ™. An efficient way of calculating the exponeptconsists

Recent studies about the tail decay of a mass-less scalar using the fact that assumingz, t) ~ Bt?, with B a con-
field have been presented, which include the dependence @tant, the exponent is given py= dlog |¢|/dlog(t), as done
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FIGURE 8. We show the quasinormal modes and the tail decay rates of the wave function for different values of the mass of the black hole,
measured by an observer locatedst for I = 2, k = 0.4 andC = 2. We found that the frequencies are different for different ADM

masses and the decay exponents are the same. The figure in the left panel is a zoom of the plot in the right panel for two cases that shows
more clearly the dependence of the frequency on the mass of the black hole. It can also be noticed that the tail decay exponent is the same in
all cases.
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FIGURE 9. We show the typical convergence tests for one of our runs, in this cage #or0 and resolutionsAz; = 7.6 x 1074,

Azy = Az /2, andAzs = Az, /4. In the left panel we show the order of converge@ref the L, norm of the constrair€ = ¢ — 9,.¢ as

defined in Fig 2, and in the inset tie norm of the violation of the constraint for the three resolutions. In the right panel we show the order

of self-convergencé),. of ¢, using theL, norm of the differences between the value of the wave function for the various resolutions. We
calculate the convergence fact@t. as follows: given that, ¢2 and¢s represent the numerical scalar field calculated using, respectively,

Azy, Azs andAxs, then29sc = La(é1 — ¢2)/L2(d2 — ¢3). Notice that the convergence factor is near to 6, which is the accuracy of our
stencils along the spatial direction, and in general the criteria we use to trust our results is that the convergence factor must be bigger than 4,
which is the accuracy of the time integrator of the method of lines, the least accurate algorithm used in our calculations.

in Ref. 19, so that it is possible to track the time dependence d3?=—a?(7)di*+b*(7)di +72(d6+ sin® dp?),  (29)

of the exponent itself. In Fig. 11 we show the expongnt

for [ = 0,1, 2, measured at various positions and verify thewhereb and o are assumed to be known metric functions,
bounds of the exponents to be betwpen —2/ — 3 fortime-  and proceed to construct a hyperboloidal foliation and a

like observers and = — —2at.# . scri-fixing conformal compactification. By introducing the

change of coordinate= ¢ — h(7) the line element takes the
Lo form
4. General formulas for the scri-fixing confor-
mal compactification d&*=—a?(7)dt*—2h' (7)o (F)dtdF

We now develop the construction of the conformal compact- + [bQ(f)_QQ(f)(h’(f))ﬂ di?

ification for a static spherically symmetric space-time de- oo g )

scribed by the type of metric +77(dO7+ sin” 6do7), (30)
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FIGURE 10. Amplitude of the wave function measured at differ-
ent distances from the black hole for= 2. We use:A = 0.1,

zo = 0.8 ando = 0.1.

whereh’ = (dh/dr). Comparison of this metric with the 3+1
metric

ds? = (—a? + 726%)dt? + 26~ drdt
+ 72di? + 72 (d6? + sin® Odp?)

allows to read off the gauge and metric functions

_ . af)b(7)
D="5w

_ o 7h’(17)a2(r)

ﬁ(r) - ,72(7»;) )

(31)

In terms of these functions, the unit normal vector to the
spatial hypersurfaces pointing to the future is given by

. W (D) (i)
o GrG)

(7)

GUG) %2

,o,o]

Given a space-like slice, we can drag it along the time-

like Killing vector. This will give a slicing where the time
translation is along the Killing vector. Now, the mean curva-
ture at the initial time slice is given by

2R/ (7)o (F)
and can be integrated for constantwhich means the slices
are of constant mean curvature (CMC):

|

~ 1
k==

Pa()b(7) (33)

T

7(F)

i [ Ra@pidi — o — TH P (F)

k/r (F)b(F)dr — C = 50) ) (34)
where nowh/(7) is

W () = [1(r) — CIb(7) (35)

(@ [RI(F) - O + a2(7)
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FIGURE 11. We show the exponent of the polynomial tail decay
for I = 0,1, 2 measured by observers located at various distances
from the black hole. From top to bottom the curves correspond to
detectors located at = oo, 1000 M, 250 M, 110 M, 50 M, and

10 M, and the remaining curves (for the cdse 0) correspond to
detectors located even closer to the horizon.

and
I(7) = / 7o (F)b(F)dF. (36)
In general, it is not easy to finkl in a closed form, so in or-

der to have a description of the slices in general one has to
integrate this function numerically.
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On the other hand, in order to perform the scri-fixing wheret € (—oo,c0) and7 € [0,). The integral (36) im-
compactification, we define the compact coordinatey  plies I(7) = 73/3, which substituted into (35) witl' = 0
7 = r/§) and we rescale the original metric using the con-implies

formal factorQ2. The space-time using scri-fixing conformal -
T

compactification is finally given by the conformal line ele- = —, (40)
ment Va2 + 72
ds? — —QZ(T)QQ(T)dtQ _ 2h'(r)a2(r)(Q — QY )dtdr wherea is a constant that is given in terms of the curvature by
k = 3/a. Itis also possible to integrate again foand obtain
5 dr? a complete description of the slices with the height function

2 A2 / 2 _ l
+ [B7() = ()R ()] (2 - ) Q2%(r) h(z) = va? + 2, which completes the description of the

conformal metric of the space-time.
+ r2(d6* + sin® 0dp?), (37) P
where the functions.(r), b(r) and#’ (r) are functions of-. 4.3. A particular case of the 3+1 Minkowski space-time

;rehsilct;i?l nfigr?]?;:r?];tfgec:ﬁéermmes various properties of the In order to compactify this case we use a compact coordinate
9 : . . 7= (r/9). Unlike the 1+1 Minkowski case, one only needs
For instance, for the Schwarzschild space-time

02=1/b2 = (1 — (2M /7)), with which our expression (35), to regularize at = 1 for which various choices are evident:

e 2 3 .
usingQ2 = 1 — r is reduced to the expression fbf(7) ob- =1-rorQ=1-rinfactin Ref. 21 for the solution

. . . of the Klein-Gordon equation with &* potential, the con-
tained by Malec and Murchadha [15], and the final Version. -1 factor used i€) i (1—12)/2 awhri)ch is a conformal
of the conformally rescaled metric is (22). '

factor that shows a regular Ricci scaldrat the origin. For
the example developed here we choose the first choice and
the conformal metric then reads:

In general, from (37) we can read off again the gauge in terms ) 2

-li i ds® = —(1 —r)?dt* — dtdr
of the ADM-like metric ( ) a2(1—r)2 +12

4.1. The wave equation

di? = (=62 + 32 6%)dt? + 2652 drdt a2
+ 55— dr® + r?(d6? + sin® 0d®), (41)
+ 42dr? + r?(d6? + sin® Odp?) a*(1—r)*+r
and obtain the following gauge and metric functions from which we read off the gauge functions
~ P N 2
042(1") = Oéz(r)QQ + 62(7’)’}/2(7”), a2 — (1 — 7')2 + %,
Br) = 7042(7")h'(7')(9 —rQY) -
= 520r) ; 52_@ a2(1—1)2 + 12,
.2 (0%(r) = &®(r)h"™(r))(Q — rQ')? 2 a?
_ . (38 = .
y7(r) a7 (38) V= R e (42)

which are the final metric functions used to solve the wave
equation for a generic space-time. In order to solve (25) a6
a first order system, first order variables are define as previ-
ously: m = (5/4)8:¢ — (/&) (8,6 andiyp = 9,.¢. Then, the it ] .

system to be solved is (26) with the gauge (38) for given ini- — = <— RS + 1) , (43)

In order to visualize the space-time structure we calculate
null rays of the space-time which obéy= 0, that is

_ 2
tial data on a given spatial domain and appropriate boundary dr (1-7)
conditions. whose solution reads
4.2. Example: 3+1 Minkowski space-time V@ +1)(r—12+2r—1 1
t—ty = — il—r' (44)

As an extra example, we present the case of the Minkowski

space-time in spherical coordinates. We start with the line elThe results are presented in Fig. 12 for values 0.5,1,5
ement for the Minkowski space-time in spherical coordinater equivalentlyk = 6, 3,0.6. The corresponding conformal
zH = (,7,0, ¢) for the physical metric given by diagrams are shown in Fig. 13, where the embedding of the

~2 o o oo oo slices in the space-time depending on the value of the extrin-
d5” = —di” + dr” +77(d6” +sin” 0d¢%),  (39)  sjc curvature is manifest.
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a=10

FIGURE 12. Space-time diagrams described with hyperboloidal sliceskards, 3, 0.6, or equivalentlye = 0.5, 1, 5. Continuous (dotted)
lines indicate outgoing (in-going) null rays. As in the previous cases, the light cones close near the boundary for small values of the curvature.

FIGURE 13. Conformal diagrams of the spherically symmetric Minkowski space-time in spherical coordinates, using hyperboloidal slices
and conformal compactification with = 1 — » and various values af = 0.5,1,5 or k = 6,3,0.6. These diagrams are quite similar to

those of the 1+1 Minkowski space-time, however notice that we are using a different conformal factor and that the curvature of the slices is
different in terms of the parameter In fact, it has been found that a conformal facbr= (1 — r?)/2 is helpful to obtain a regular Ricci

scalar at the origin, which is useful to solve the conformally invariant wave equation [21,22].

5. Final comments Minkowski space-time in 1+1 is in fact the solution on the
physical metric because the wave operator is conformally in-
We presented the numerical solution of the wave equation oQriant. In the -four dimensional- Schwarzschild case we
top of particular space-times using hyperbolidal slices angyant to stress that we solve the wave equation on top of the
scri-fixing conformal compactification. We calculate the so-conformal space-time background. We studied the case of an
lution as an initial value problem using first order variables,Outgoing pulse and tracked the late-time behavior of the am-
and verified that the resulting constraints converge when thﬁlitude of the wave function, and were able to study the quasi-
first order variables are defined, and also that the numericg|ormal mode frequencies for various masses of the black hole
solutions self-converge. and modes = 0, 1,2, and the exponents of the tail decay.
We presented a detailed step-by-step construction ofie fitted the frequencies found previously and showed that

the foliation and conformal compactification for the 1+1 ne tail decay exponents obey the restrictions studied in the
Minkowski space-time. Following previous results we con-past.

structed the case of Schwarzschild. We generalized in detail

the scri-fixing conformal compactification for the case of a

spherically symmetric static space-time, and provide a recipAcknowledgments

to construct the adequate coordinates in that case. We illus-

trate each case with space-time and conformal diagrams iWe thank Anil Zenginoglu for providing important clues on

order to show the global structure of the space-time and howhe scri-fixing conformal compactification. This research is

the slices are embedded into the space-time. partly supported by grants CIC-UMSNH-4.9 and CONACYT
The solution of the wave equation for the case of thel06466.
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