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A mapping between Lorentz-violating and conventional electrodynamics
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The Chern-Simons-type term in the photon sector of the Lorentz- and CPT-breaking minimal Standard-Model Extension (mMSME) is con-
sidered. It is argued that under certain circumstances this term can be removed from the mSME. In particular, it is demonstrated that for
lightlike Lorentz violation a field redefinition exists that maps the on-shell free Chern—Simons model to conventional on-shell free electro-
dynamics. A compact explicit expression for an operator implementing such a mapping is constructed. This expression establishes that the
field redefinition is non-local.
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Se considera eétmino de tipo Chern—Simons en el sectobfoto de la extenséin minima del modelo eénhdar con rompimiento de Lorentz

y de CPT. Se discuten las circunstancias bajo las cualesesti|b se puede remover del modelo. En particular, se demuestra que para una
violacion de Lorentz parametrizada por un cuadrivector tipo luz existe una redafinieicampo que proyecta el modelo de Chern—Simons
libre en la capa de masas a la electradiica convencional libre en la capa de masas. Se construye una exm@sipacta, expita para

un operador implementando tal proyduti Esta expreéin establece que la redefirboi de campo es no local.

Descriptores: Violacion de Lorentz; violadéin CPT; Modelo Estndar Extendido; redefinian de campo.
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1. Introduction eral Relativity [10] as limiting cases. The minimal SME
(mSME), which only contains relevant and marginal opera-

Despite its phenomenological successes, the present fram@'s, has provided the basis for numerous experimental in-
work for fundamental physics—the Standard Model of parti-vestigations of Lorentz- and CPT-symmetry [11]. Specific
cle physics together with the General Theory of Relativity—studies include, for instance, ones with photons [12,13],
leaves unanswered various conceptual questions. For thfteutrinos [14], electrons [15], protons and neutrons [16],
reason, a substantial amount of theoretical work is currentlyn€sons [17], muons [18], and gravity [19]. Several of the ob-
being devoted to the search for an underlying theory that prot@ined experimental limits can be regarded as testing Planck-
vides a quantum description of gravity. Experimental tests ofcale physics.
such ideas face, however, a considerable obstacle of practical |nternal consistency and a thorough theoretical under-
nature: most quantum-gravity predictions in virtually everystanding are of key importance for test models, such as the
leading candidate model are expected to be extremely smaliME. For this reason, a number of SME investigations have
due to the anticipated Planck-scale suppression. addressed such questions [20-22]. Some of these studies have
During the last two decades, a variety of theoreticalshed light on various conceptual questions, but so far none
investigations have suggested the possibility of spacetimdiave suggested any internal inconsistencies. It nevertheless
symmetry breakdown in leading candidate models for unfemains necessary to keep illuminating the internal structure
derlying physics. Examples of such investigations involveof the SME, both to gain insight into Lorentz and CPT viola-
string field theory [1], realistic field theories on noncom- tion and to solidify further the theoretical basis of the SME.
mutative spacetimes [2], cosmologically varying scalars [3]In this context, the theory of free particles is of particular
various quantum-gravity models [4], four-dimensional spaceinterest: They correspond to external legs in Feynman dia-
times with a nontrivial topology [5], random-dynamics mod- grams and are therefore an important theoretical ingredient
els [6], multiverses [7], and brane-world scenarios [8]. Al-in perturbative QFT. Moreover, many experimental studies,
though the dynamical structures underlying the above modelBuch as kinematical cosmic-ray tests of Lorentz symmetry,
typically remain Lorentz symmetric, Lorentz and CPT viola- rely to a large extent on free-particle physics. This work
tion can nevertheless occur in the ground state at low enefims at illuminating various aspects of the Chern-Simons-
gies. These ideas provide a key motivation for Lorentz- andype term contained in the free-photon sector of the mSME.
CPT-violation searches in the context of quantum gravity. More specifically, we will show that this term can be removed

At energies that can currently be reached in experiment:ﬂn'She" from this sector under certain conditions.

situations, the effects resulting from Lorentz and CPT viola-  The outline of this work is as follows. The Chern—-Simons
tion in underlying physics can be described by the Standardimit of the mSME is briefly reviewed in Sec. 2. Section 3
Model Extension (SME), which is an effective-field-theory argues that for lightlike Lorentz violation, the Chern—Simons
framework containing the usual Standard Model [9] and Genterm can be removed on-shell from the free model, and the
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idea behind the associated mapping is illustrated. Section 4 The plane-wave dispersion relation can be obtained with
derives a compact expression for this field-redefinition mapthe ansatzA*(x) = e#(\) exp(—iA-x), whered* = (w, ).
ping. A summary and a brief outlook are contained in Sec. 5This ansatz and the equations of motion (2) give

M+ AN2k2 —4(N-k)2 =0. (5)

2. Basics . . . .
This equation determines the wave frequeaas a function

A particularly popular limit of the mSME is the Lorentz- and ©f the wave 3-vectoh.

CPT-violating Chern—Simons extension of electrodynamics. Examples of non-standard effects caused by the inclusion
This limit will be the focus of the subsequent discussion in0f the Chern—Simons term into electrodynamics are vacuum
this work, so we begin by reviewing various known resultsPirefringence [26] and vacuum Cherenkov radiation [13]. We

pertaining to Chern—Simons electrodynamics. Adopting natalso mention that for a timeliké”, the magnitude of the

ural unitsc = % = 1 and the metric signaturer, —, —, —),  9roup velocity determined by the dispersion relation (5) can
the free model Lagrangian is given by [26] in certain circumstances exceed the I|ght Spe.ECﬂ—hiS is
consistent with previous analyses [26,27], which have estab-
1 ~ X i I, h o -
Laos = —~F2 + (kap)" A", ) lished theoretical difficulties associated with instabilities and

causality violations fok? > 0. Such issues do not arise for
- oo k? < 0. In what follows, we focus primarily on the case of a
where £y, = 0,A, — 0,A, and F* = (1/2)e""*?Fyo, jightlike k. We remark in passing that the lightlike case pos-

as usual. The nondynamical fixeds )" selects a preferred gogges more residual spacetime symmetries than the timelike
direction in spacetime explicitly breaking Lorentz and CPT ;4 spacelike cases [22].

symmetry. In what follows, we will drop thel ' subscript
for brevity. Although this Lagrangian is gauge dependent, . . i
the corresponding action integral, and therefore the physicss- General idea behind the mapping

T e with e L.OU 008150 esabish it gt can e emoue

grangian (1) yield the following equations of motion for theafrom .th_e- (free) equations O.f motions (2) t_)y an on-shell field

potentialsA” = (A2, A): redefinition. This section discusses certain features of the so-
P lutions to Eg. (2) that give some intuition as to why is

(O — 9H9” — 2eMP7,0,) Ay = 0 ) removable, thereby motivating the form of the field redefini-
prestr tion.
From Eq. (2), the Chern—Simons modified Maxwell equa- For a lightlikek*, the dispersion relation (5) can be cast
tions into the form ,
0, M 4+ 2k, FM = 0 @3) M+ (=1)"k#]" =0, (6)

. . . _ i . wherea = 1, 2. This equation possesses the roots
can be derived, which put into evidence the gauge invariance

of the model. For completeness, we also exhibit the modified ()\(f)# — (()\j)o(X)7 X) (7)
Coulomb and Ampre laws, which are contained in Eq. (3):
Lo o with
| VTl ) = £ S (-)°F| F (). (®)
E+VxB = 2kB + 2kxE =0. @ Here, k* = (k°,k) is lightlike |x°| = |k|, and we have
The homogeneous Maxwell equations are left unchanged bé‘,hose.n a more convenient labeling of these soI_utions than
cause the relationship between the fields and potentials is tHBat given in Eq. (6). The roots\;")* may alternatively be
conventional one. parametrized as
. Paralleling the ordinary l\./la.xwell casd? is nondynam- () = plt F (—1)%k" . )
ical, and gauge symmetry eliminates another modé*gfso
that Eq. (2) contains only two independent degrees of freeHere,p!, = (£|p], p) satisfies the conventional photon dis-
dom. It is often convenient to fix a gauge, and we will ac-persion relationp..)? = 0, where the subscripts and —
tually do so in the next section. It turns out that any of thelabel the positive- and negative-frequency solutions, respec-
usual conditions om#, such as Lorentz or Coulomb gauge, tively. This result is immediately evident from Eq. (6) when
can be imposed. We remark, however, that there are sonibe expression inside the square brackets is identified with the
differences between conventional electrodynamics and thappropriatey; .
Chern-Simons model regarding the equivalence of certain Equation (7) determines four roots labeled by= 1,2
gauge choices. A more detailed discussion of the degreeand the subscript, which are seemingly independent. This
of freedom and the gauge-fixing process can be found in theeflects the fact that the dispersion relation (5) is quartidin
second paper of Ref. [9]. One might then wonder whether this is consistent with the
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-

previous statement in Sec. 2 that our Chern—Simons moddlhe polarization vectors”(\) are constrained by the
contains two independent degrees of freedom, just like conequations of motion, the gauge choice, and—in cases of
ventional electrodynamics. To resolve this apparent contradegeneracy—nby the requirement of linear independence. We
diction, the two negative-frequency roots must be properlyhave absorbed the relativistic normalization factor of the in-
interpreted. To this end, recall that in QFT the negativetegration measure into the definition ofﬂZE{X), so that they
energy solutions are regarded as positive-energy reversede not transform as 4-vectors. In what follows, we will nev-
momentum states corresponding to antiparticles. Definertheless continue to refer to these quantities as polarization
ing (A£)°(X) = +w,(£q) leaves unaffected the positive- vectors.

frequency roots in Eqg. (7) With Eg. (8) at hand, we may change integration variables
. ur a0 from X\ to p'in Eq. (13). Note that this is just a linear shift, so
wa(@) = [q+ (=1)"k ] = (=1)"k" . (20)  that the Jacobian is trivial. The exponentials will now con-
The negative-valued roots given by the lower sign in Eq. (7)fIn @p-independent piece, which can be pulled out of the
take the form integral:
—wa() =—| —7— (71)“E| +(=D%°.  (@11) At (z) = A*(z) exp(—ik-z) + A** (z) exp(+ik-z) , (15)

Inspection shows that with this conventional reinterpretationyhere
Egs. (9) and (10) are identical. Moreover, there are only two
independent polarization vectord{ is non-dynamical, and a A () :/ d®p [f#«(p*)efip-x +£H*(me+ip-x] (16)
choice of gauge places an additional constraindéi. This ! 2 '
establishes that the physics described by the two negative- | _ o

energy solutions must be identical to the physics contained! this expression, the new polarization vectafsp) are

in the two positive-energy solutions, as expected. In wha@Ven in terms of the old polarization vector;g()\) simply
follows, we may therefore focus solely on the positive-PY @ shiftin the argumer; (p) = ¢ (7 — [-1]k).

(2m)?

frequency solutions and omit the subscripfrom now on. The Definition (15) reveals that the field#'(x) are su-
We remark that: = 1,2 labels the two helicity-type polar- P€rpositions of plane waves with Lorentz-symmetric disper-
izations states of plane waves. sion relationp#p,, = 0. This fact implies thaJ.A*(z) = 0.

The above reparametrization (8) may then be taken t&lote 'Fhat this equation resembles the cpnventional Mfaxvyell
read(\, )" = p* — (—1)%k*, wherep = p/{ has a positive- equations in Lorentz gauge. As _advertls_ed abo_V(_a, this field
valued zeroth component and continues to safiéfy, = 0. IS obtained f_rom the original solutiad* by first spllttlng_ off
This reparametrization is the key to an intuitive understand@ll €xponentials with the common factatp(—ik-x) to find
ing of the field redefinition that removésg' from the equa- A" (z) and subsequently removing this factor. An analogous
tions of motion: up to polarization vectors, any plane-waveProcedure must be performed tdr'* ().

exponential that solves Eq. (2) is of the form The complex-valued4”(z) field gives rise to a real-
valued vector fieldd” (x) in a natural way:
exp(—iAg-x) = exp(—ip-x) exp[+(—1)%ik-z]. (12)

, o AM(z) = A(x) + A (2)
Note thatexp(—ip - z) corresponds to Lorentz-symmetric

massless plane waves; the Lorentz-violating contribution dp
exp[+(—1)%ik-x] can be removed via a field redefinition ) (2m)3

3 [et@)e T + et ). (1)

a=1,2

(plane wavg — (plane wave exp [—(—1)"tk-z] . (13)  1pic field also obeys an equation that is consistent with the

We remark that this field redefinition depends only on theconventional Maxwell theory in Lorentz gauge:
plane-wave labet; it is independent of the plane-wave mo- i
mentum. In other words, any superpositions of plane-wave OA*(z) = 0. (18)

exponentials with label = 1 can be redefined by remov- We theref h . \utid f the Ch
ing the commorexp(—ik - ) factor, and superpositions of € therefore see that a given solutidfi(x) of the Chern—

plane-wave exponentials with labels= 2 can be redefined Simons moQified electrodynamics _'ea‘,"s to a fidf(z) that
by removing the commoexp(-+ik-z) factor obeys a Klein—Gordon-type equation in each component, so
To make this idea more precise, consider the general ot least the plane-wave exponentials are Lorentz symmetric.

plicit solution to the free equations of motions: Equation (17) essentially governs the spacetime depen-
dence of the redefined field” (x) via the plane-wave expo-

L d3X nentials, but it leaves undetermined the polarizations vectors.

At(z) = /W This is consistent with the gauge invariance of the Chern—

- e i Simons model: we have not yet selected a gaugeAfor
X [ (Ve e L eh™(N)e™ e ®] . (14)  put the field redefinition gives a field” satisfying Eq. (17),
a=1,2 which looks gauge fixed (Lorentz gauge). This is, of course,
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not the case precisely because of the above issue that the po- We begin by characterizing the set of solutioAs8 to

larizations vectors are still undetermined. Eotto obey the  Eq. (2), which we take as the domain for our field-redefinition

usual Maxwell equations in Lorentz gauge, we not only neednapping. As before, we fik* to be lightlikek*k,, = 0, and

Eq. (17), but also the additional Lorentz conditignd” = 0.  we consider all well-behaved fields of the form displayed in

This condition constrains the polarization vectgfép) tobe  Eq. (13). Note that all plane-wave momenta in the exponen-

transverse. tials satisfy the dispersion relation (6). In particular, any field
Suppose we select Lorentz gauge in the Chern—-Simond* obeying Eq. (13) therefore also satisfies

model 9, A* = 0. Then, the question arises as to whether

our field redefinition leaves unchanged this gauge condition. (0% + 4(k-0)%] A*(2) = 0. (22)

This is, in fact, not the case. We obtain . .
We remark that all other solutions to Eqg. (2) can differ from

AP =0 —  9,A" = —21m (k- A) (19) Eqg. (13) only by a total derivative, a quantity that leaves unaf-
i niz . e
fected the physics. Note that we are not committing ourselves
for the redefined condition. Since If@#) cannot be freely to a definite gauge because of the remaining freedom in the
chosen (it is determined by Rel*) to yield plane-wave ex- choice of polarization vectors in Eq. (13).
ponentials), the redefined field” fails to obey the Lorentz Consider the operatoid, andP_ defined by

condition. Let us instead select the gauge 1 5.
Pi_2<1j:2i>. (23)

0 At () = 2Im[k-A(x) exp(—ik-x)] (20) U

for the solution of the Chern—Simons model. Substitut-Wen these operators act on our set of solutidficharac-
ing Eq. (15) on the left-hand side of Eq. (20) then givesterized above, we find the following: the operators are com-
Re|exp(—ik-z) 8- A(z)] = 0. Using the plane-wave expan- plete in the sense th&t, + P_ =1, 'ghey are ort?ogonal in
sion of A (x), one can verify that this essentially implies 1€ Sense’+Px = 0, and they are idempotedty = P.

9-A(z) = 9-A*(x) = 0, and therefore To arrive at these results, we have employed. Eqg. (22). ltis
apparent thaP, and P_ are operators that project onto two
0, AM(x) = 0. (21) disjoint subsets of solutions. Moreover, the union of these

subsets is equal to our full set of solutions.
This result establishes that with a carefully selected gauge Applying P4 to the plane-wave exponentials occurring in
for solutions A* in the Chern—Simons model, the field re- the general solution (13) yields
definition discussed above yields a solutidt of conven-

tional electrodynamics in Lorentz gauge. It follows that such Py etirew = 1 [1 £ (—1)2] eFta,

a mapping, defined on-shell, removes Lorentz and CPT vio- 2

lation from the Chern—Simons model. P etidaw _ % [ (—1)%] eFiraa, (24)
4. Compact expression for the mapp|ng Employing these relations, one can then show that

In the previous section, we have discussed the possibility Py A (z) = A (),

of removing a lightlike Lorentz- and CPT-violatirig* from P_ AR (x) = AP (). (25)

Chern—Simons electrodynamics. We have illustrated why

and how this can be achieved. The basic idea has been thgith the above results at hand, we are now in the position to

following. The first step is to decompose an arbitrary solutiongive a more concise form of our field-redefinition mapping:
A* of the Chern—Simons model into two pieces, one contain-

ing the plane waves with dispersion relation shiftedoy* Al (x) = e *T P Al (z) + TP P_AM(2).  (26)
and the other containing those with the opposite shift. In . _ _ o
the second step, the Lorentz-violating shift is undone with a/Ve mention that with the field redefinition (25) and the equa-

simple multiplicative field redefinition involvingxp(+ik-z) ~ tions of motion (21) one can verify Eq. (17) directly without
in one of these pieces awgp(—ik-z) in the other. using plane-wave expansions. We also remark that a similar

We now set out to find a more compact form for suchfield redefinition exists for the closely related Lorentz- and
an on-shell mapping from the set of solutions in the Chern-CPT-violatingb** parameter for SME fermions [21].
Simons model to the set of solutions in ordinary electrody-
namics. Clearly, the more challenging step in the field redefi5  Symmary and outlook
nition is the first one, which decomposes a given soludén
according to the shift direction ik* yielding both.A* and  The electrodynamics sector of the SME contains a Chern—
A**. In principle, this task can be performed with Fourier Simons-type operator contracted with a Lorentz- and CPT-
methods that simply project out the desired pieces. This searolating four-vector coupling:*. Such a coupling can, for
tion gives closed-form expressions for suitable projectors. example, arise through a nontrivial spacetime topology or
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in certain cosmological supergravity models as a result oDther open issues concern the question as to whether such
varying scalar fields. I&* is lightlike, the free solutions of types of field redefinitions can also be found for timelike and
this model can be mapped to the solutions of conventionaspacelike:* or for interacting models. An additional impor-
Maxwell electrodynamics. The specific form of this field re- tant aspect we have left largely unaddressed is gauge sym-
definition is determined by Eq. (25). This mapping is nonlo-metry. Although we have discussed the example of Lorentz
cal, and it applies on-shell. The existence of such a mappingauge, a more detailed analysis of how gauge conditions are
doesnotimply that the Chern—Simons term is unphysical andaffected by the mapping could yield valuable insight into the
cannot be measured: both off-shell physics and interactionsiathematical structure of the Chern—Simons model and the
will typically lead to observable effects. field redefinition.
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