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A mapping between Lorentz-violating and conventional electrodynamics
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The Chern–Simons-type term in the photon sector of the Lorentz- and CPT-breaking minimal Standard-Model Extension (mSME) is con-
sidered. It is argued that under certain circumstances this term can be removed from the mSME. In particular, it is demonstrated that for
lightlike Lorentz violation a field redefinition exists that maps the on-shell free Chern–Simons model to conventional on-shell free electro-
dynamics. A compact explicit expression for an operator implementing such a mapping is constructed. This expression establishes that the
field redefinition is non-local.
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Se considera el término de tipo Chern–Simons en el sector fotónico de la extensión ḿınima del modelo estándar con rompimiento de Lorentz
y de CPT. Se discuten las circunstancias bajo las cuales este término se puede remover del modelo. En particular, se demuestra que para una
violación de Lorentz parametrizada por un cuadrivector tipo luz existe una redefinición de campo que proyecta el modelo de Chern–Simons
libre en la capa de masas a la electrodinámica convencional libre en la capa de masas. Se construye una expresión compacta, explı́cita para
un operador implementando tal proyección. Esta expresión establece que la redefinición de campo es no local.
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1. Introduction

Despite its phenomenological successes, the present frame-
work for fundamental physics—the Standard Model of parti-
cle physics together with the General Theory of Relativity—
leaves unanswered various conceptual questions. For this
reason, a substantial amount of theoretical work is currently
being devoted to the search for an underlying theory that pro-
vides a quantum description of gravity. Experimental tests of
such ideas face, however, a considerable obstacle of practical
nature: most quantum-gravity predictions in virtually every
leading candidate model are expected to be extremely small
due to the anticipated Planck-scale suppression.

During the last two decades, a variety of theoretical
investigations have suggested the possibility of spacetime-
symmetry breakdown in leading candidate models for un-
derlying physics. Examples of such investigations involve
string field theory [1], realistic field theories on noncom-
mutative spacetimes [2], cosmologically varying scalars [3],
various quantum-gravity models [4], four-dimensional space-
times with a nontrivial topology [5], random-dynamics mod-
els [6], multiverses [7], and brane-world scenarios [8]. Al-
though the dynamical structures underlying the above models
typically remain Lorentz symmetric, Lorentz and CPT viola-
tion can nevertheless occur in the ground state at low ener-
gies. These ideas provide a key motivation for Lorentz- and
CPT-violation searches in the context of quantum gravity.

At energies that can currently be reached in experimental
situations, the effects resulting from Lorentz and CPT viola-
tion in underlying physics can be described by the Standard-
Model Extension (SME), which is an effective-field-theory
framework containing the usual Standard Model [9] and Gen-

eral Relativity [10] as limiting cases. The minimal SME
(mSME), which only contains relevant and marginal opera-
tors, has provided the basis for numerous experimental in-
vestigations of Lorentz- and CPT-symmetry [11]. Specific
studies include, for instance, ones with photons [12,13],
neutrinos [14], electrons [15], protons and neutrons [16],
mesons [17], muons [18], and gravity [19]. Several of the ob-
tained experimental limits can be regarded as testing Planck-
scale physics.

Internal consistency and a thorough theoretical under-
standing are of key importance for test models, such as the
SME. For this reason, a number of SME investigations have
addressed such questions [20-22]. Some of these studies have
shed light on various conceptual questions, but so far none
have suggested any internal inconsistencies. It nevertheless
remains necessary to keep illuminating the internal structure
of the SME, both to gain insight into Lorentz and CPT viola-
tion and to solidify further the theoretical basis of the SME.
In this context, the theory of free particles is of particular
interest: They correspond to external legs in Feynman dia-
grams and are therefore an important theoretical ingredient
in perturbative QFT. Moreover, many experimental studies,
such as kinematical cosmic-ray tests of Lorentz symmetry,
rely to a large extent on free-particle physics. This work
aims at illuminating various aspects of the Chern–Simons-
type term contained in the free-photon sector of the mSME.
More specifically, we will show that this term can be removed
on-shell from this sector under certain conditions.

The outline of this work is as follows. The Chern–Simons
limit of the mSME is briefly reviewed in Sec. 2. Section 3
argues that for lightlike Lorentz violation, the Chern–Simons
term can be removed on-shell from the free model, and the
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idea behind the associated mapping is illustrated. Section 4
derives a compact expression for this field-redefinition map-
ping. A summary and a brief outlook are contained in Sec. 5.

2. Basics

A particularly popular limit of the mSME is the Lorentz- and
CPT-violating Chern–Simons extension of electrodynamics.
This limit will be the focus of the subsequent discussion in
this work, so we begin by reviewing various known results
pertaining to Chern–Simons electrodynamics. Adopting nat-
ural unitsc = ~ = 1 and the metric signature(+,−,−,−),
the free model Lagrangian is given by [26]

LMCS = −1
4
F 2 + (kAF )µAνF̃µν , (1)

whereFµν = ∂µAν − ∂νAµ and F̃µν = (1/2)εµνρσFρσ,
as usual. The nondynamical fixed(kAF )µ selects a preferred
direction in spacetime explicitly breaking Lorentz and CPT
symmetry. In what follows, we will drop theAF subscript
for brevity. Although this Lagrangian is gauge dependent,
the corresponding action integral, and therefore the physics,
are invariant under gauge transformations.

The Euler–Lagrange equations associated with the La-
grangian (1) yield the following equations of motion for the
potentialsAµ = (A0, ~A):

(¤ηµν − ∂µ∂ν − 2 εµνρσkρ∂σ)Aν = 0 . (2)

From Eq. (2), the Chern–Simons modified Maxwell equa-
tions

∂µFµν + 2 kµF̃µν = 0 (3)

can be derived, which put into evidence the gauge invariance
of the model. For completeness, we also exhibit the modified
Coulomb and Amp̀ere laws, which are contained in Eq. (3):

~∇· ~E − 2~k · ~B = 0 ,

−~̇E + ~∇× ~B − 2k0
~B + 2~k× ~E = 0 . (4)

The homogeneous Maxwell equations are left unchanged be-
cause the relationship between the fields and potentials is the
conventional one.

Paralleling the ordinary Maxwell case,A0 is nondynam-
ical, and gauge symmetry eliminates another mode ofAµ, so
that Eq. (2) contains only two independent degrees of free-
dom. It is often convenient to fix a gauge, and we will ac-
tually do so in the next section. It turns out that any of the
usual conditions onAµ, such as Lorentz or Coulomb gauge,
can be imposed. We remark, however, that there are some
differences between conventional electrodynamics and the
Chern–Simons model regarding the equivalence of certain
gauge choices. A more detailed discussion of the degrees
of freedom and the gauge-fixing process can be found in the
second paper of Ref. [9].

The plane-wave dispersion relation can be obtained with
the ansatzAµ(x) = εµ(λ) exp(−iλ·x), whereλµ ≡ (ω,~λ).
This ansatz and the equations of motion (2) give

λ4 + 4λ2k2 − 4(λ ·k)2 = 0 . (5)

This equation determines the wave frequencyω as a function
of the wave 3-vector~λ.

Examples of non-standard effects caused by the inclusion
of the Chern–Simons term into electrodynamics are vacuum
birefringence [26] and vacuum Cherenkov radiation [13]. We
also mention that for a timelikekµ, the magnitude of the
group velocity determined by the dispersion relation (5) can
in certain circumstances exceed the light speedc. This is
consistent with previous analyses [26,27], which have estab-
lished theoretical difficulties associated with instabilities and
causality violations fork2 > 0. Such issues do not arise for
k2 ≤ 0. In what follows, we focus primarily on the case of a
lightlike kµ. We remark in passing that the lightlike case pos-
sesses more residual spacetime symmetries than the timelike
and spacelike cases [22].

3. General idea behind the mapping

Our goal is to establish that a lightlikekµ can be removed
from the (free) equations of motions (2) by an on-shell field
redefinition. This section discusses certain features of the so-
lutions to Eq. (2) that give some intuition as to whykµ is
removable, thereby motivating the form of the field redefini-
tion.

For a lightlikekµ, the dispersion relation (5) can be cast
into the form [

λµ + (−1)akµ
]2 = 0 , (6)

wherea = 1, 2. This equation possesses the roots

(λ±a )µ =
(
(λ±a )0(~λ), ~λ

)
(7)

with

(λ±a )0(~λ) = ±∣∣~λ± (−1)a~k
∣∣∓ (−1)ak0 . (8)

Here, kµ = (k0,~k) is lightlike |k0| = |~k|, and we have
chosen a more convenient labeling of these solutions than
that given in Eq. (6). The roots(λ±a )µ may alternatively be
parametrized as

(λ±a )µ = pµ
± ∓ (−1)akµ . (9)

Here,pµ
± ≡ (±|~p |, ~p) satisfies the conventional photon dis-

persion relation(p±)2 = 0, where the subscripts+ and−
label the positive- and negative-frequency solutions, respec-
tively. This result is immediately evident from Eq. (6) when
the expression inside the square brackets is identified with the
appropriatepµ

±.
Equation (7) determines four roots labeled bya = 1, 2

and the subscript±, which are seemingly independent. This
reflects the fact that the dispersion relation (5) is quartic inλ0.
One might then wonder whether this is consistent with the
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previous statement in Sec. 2 that our Chern–Simons model
contains two independent degrees of freedom, just like con-
ventional electrodynamics. To resolve this apparent contra-
diction, the two negative-frequency roots must be properly
interpreted. To this end, recall that in QFT the negative-
energy solutions are regarded as positive-energy reversed-
momentum states corresponding to antiparticles. Defin-
ing (λ±a )0(~λ) ≡ ±ωa(±~q) leaves unaffected the positive-
frequency roots in Eq. (7)

ωa(~q) =
∣∣ ~q + (−1)a~k

∣∣− (−1)ak0 . (10)

The negative-valued roots given by the lower sign in Eq. (7)
take the form

−ωa(~q) = −∣∣ − ~q − (−1)a~k
∣∣ + (−1)ak0 . (11)

Inspection shows that with this conventional reinterpretation
Eqs. (9) and (10) are identical. Moreover, there are only two
independent polarization vectors (A0 is non-dynamical, and a
choice of gauge places an additional constraint onAµ). This
establishes that the physics described by the two negative-
energy solutions must be identical to the physics contained
in the two positive-energy solutions, as expected. In what
follows, we may therefore focus solely on the positive-
frequency solutions and omit the subscript± from now on.
We remark thata = 1, 2 labels the two helicity-type polar-
izations states of plane waves.

The above reparametrization (8) may then be taken to
read(λa)µ = pµ − (−1)akµ, wherepµ ≡ pµ

+ has a positive-
valued zeroth component and continues to satisfypµpµ = 0.
This reparametrization is the key to an intuitive understand-
ing of the field redefinition that removeskµ from the equa-
tions of motion: up to polarization vectors, any plane-wave
exponential that solves Eq. (2) is of the form

exp(−iλa ·x) = exp(−ip·x) exp[+(−1)aik ·x] . (12)

Note that exp(−ip · x) corresponds to Lorentz-symmetric
massless plane waves; the Lorentz-violating contribution
exp[+(−1)aik ·x] can be removed via a field redefinition

(plane wave) → (plane wave) exp [−(−1)aik ·x] . (13)

We remark that this field redefinition depends only on the
plane-wave labela; it is independent of the plane-wave mo-
mentum. In other words, any superpositions of plane-wave
exponentials with labela = 1 can be redefined by remov-
ing the commonexp(−ik · x) factor, and superpositions of
plane-wave exponentials with labelsa = 2 can be redefined
by removing the commonexp(+ik ·x) factor.

To make this idea more precise, consider the general ex-
plicit solution to the free equations of motions:

Aµ(x) =
∫

d3~λ

(2π)3

×
∑

a=1,2

[
εµ
a(~λ)e−iλa·x + εµ

a
∗(~λ)e+iλa·x]

. (14)

The polarization vectorsεµ
a(~λ) are constrained by the

equations of motion, the gauge choice, and—in cases of
degeneracy—by the requirement of linear independence. We
have absorbed the relativistic normalization factor of the in-
tegration measure into the definition of theεµ

a(~λ), so that they
do not transform as 4-vectors. In what follows, we will nev-
ertheless continue to refer to these quantities as polarization
vectors.

With Eq. (8) at hand, we may change integration variables
from ~λ to ~p in Eq. (13). Note that this is just a linear shift, so
that the Jacobian is trivial. The exponentials will now con-
tain a~p-independent piece, which can be pulled out of the
integral:

Aµ(x) = Aµ(x) exp(−ik·x) +Aµ∗(x) exp(+ik·x) , (15)

where

Aµ(x) ≡
∫

d3p

(2π)3
[
ξµ
1 (~p)e−ip·x + ξµ

2
∗(~p)e+ip·x]

. (16)

In this expression, the new polarization vectorsξµ
a (~p) are

given in terms of the old polarization vectorsεµ
a(~λ) simply

by a shift in the argumentξµ
a (~p) = εµ

a(~p− [−1]a~k).
The Definition (15) reveals that the fieldsAµ(x) are su-

perpositions of plane waves with Lorentz-symmetric disper-
sion relationpµpµ = 0. This fact implies that¤Aµ(x) = 0.
Note that this equation resembles the conventional Maxwell
equations in Lorentz gauge. As advertised above, this field
is obtained from the original solutionAµ by first splitting off
all exponentials with the common factorexp(−ik ·x) to find
Aµ(x) and subsequently removing this factor. An analogous
procedure must be performed forAµ∗(x).

The complex-valuedAµ(x) field gives rise to a real-
valued vector fieldAµ(x) in a natural way:

Aµ(x) = Aµ(x) +Aµ∗(x)

=
∫

d3~p

(2π)3
∑

a=1,2

[
ξµ
a (~p)e−ip·x + ξµ

a
∗(~p)e+ip·x]

. (17)

This field also obeys an equation that is consistent with the
conventional Maxwell theory in Lorentz gauge:

¤Aµ(x) = 0 . (18)

We therefore see that a given solutionAµ(x) of the Chern–
Simons modified electrodynamics leads to a fieldAµ(x) that
obeys a Klein–Gordon-type equation in each component, so
at least the plane-wave exponentials are Lorentz symmetric.

Equation (17) essentially governs the spacetime depen-
dence of the redefined fieldAµ(x) via the plane-wave expo-
nentials, but it leaves undetermined the polarizations vectors.
This is consistent with the gauge invariance of the Chern–
Simons model: we have not yet selected a gauge forAµ,
but the field redefinition gives a fieldAµ satisfying Eq. (17),
which looks gauge fixed (Lorentz gauge). This is, of course,
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not the case precisely because of the above issue that the po-
larizations vectors are still undetermined. ForAµ to obey the
usual Maxwell equations in Lorentz gauge, we not only need
Eq. (17), but also the additional Lorentz condition∂µAµ = 0.
This condition constrains the polarization vectorsξµ

a (~p) to be
transverse.

Suppose we select Lorentz gauge in the Chern–Simons
model∂µAµ = 0. Then, the question arises as to whether
our field redefinition leaves unchanged this gauge condition.
This is, in fact, not the case. We obtain

∂µAµ = 0 → ∂µAµ = −2 Im (k ·A) (19)

for the redefined condition. Since Im(Aµ) cannot be freely
chosen (it is determined by Re(Aµ) to yield plane-wave ex-
ponentials), the redefined fieldAµ fails to obey the Lorentz
condition. Let us instead select the gauge

∂µAµ(x) = 2 Im [ k ·A(x) exp(−ik ·x) ] (20)

for the solution of the Chern–Simons model. Substitut-
ing Eq. (15) on the left-hand side of Eq. (20) then gives
Re[ exp(−ik ·x) ∂ ·A(x) ] = 0. Using the plane-wave expan-
sion ofAµ(x), one can verifyi that this essentially implies
∂ ·A(x) = ∂ ·A∗(x) = 0, and therefore

∂µAµ(x) = 0 . (21)

This result establishes that with a carefully selected gauge
for solutionsAµ in the Chern–Simons model, the field re-
definition discussed above yields a solutionAµ of conven-
tional electrodynamics in Lorentz gauge. It follows that such
a mapping, defined on-shell, removes Lorentz and CPT vio-
lation from the Chern–Simons model.

4. Compact expression for the mapping

In the previous section, we have discussed the possibility
of removing a lightlike Lorentz- and CPT-violatingkµ from
Chern–Simons electrodynamics. We have illustrated why
and how this can be achieved. The basic idea has been the
following. The first step is to decompose an arbitrary solution
Aµ of the Chern–Simons model into two pieces, one contain-
ing the plane waves with dispersion relation shifted by+kµ

and the other containing those with the opposite shift−kµ. In
the second step, the Lorentz-violating shift is undone with a
simple multiplicative field redefinition involvingexp(+ik·x)
in one of these pieces andexp(−ik ·x) in the other.

We now set out to find a more compact form for such
an on-shell mapping from the set of solutions in the Chern–
Simons model to the set of solutions in ordinary electrody-
namics. Clearly, the more challenging step in the field redefi-
nition is the first one, which decomposes a given solutionAµ

according to the shift direction inkµ yielding bothAµ and
Aµ∗. In principle, this task can be performed with Fourier
methods that simply project out the desired pieces. This sec-
tion gives closed-form expressions for suitable projectors.

We begin by characterizing the set of solutionsAµ to
Eq. (2), which we take as the domain for our field-redefinition
mapping. As before, we fixkµ to be lightlikekµkµ = 0, and
we consider all well-behaved fields of the form displayed in
Eq. (13). Note that all plane-wave momenta in the exponen-
tials satisfy the dispersion relation (6). In particular, any field
Aµ obeying Eq. (13) therefore also satisfies

[
¤2 + 4(k ·∂)2

]
Aµ(x) = 0 . (22)

We remark that all other solutions to Eq. (2) can differ from
Eq. (13) only by a total derivative, a quantity that leaves unaf-
fected the physics. Note that we are not committing ourselves
to a definite gauge because of the remaining freedom in the
choice of polarization vectors in Eq. (13).

Consider the operatorsP+ andP− defined by

P± ≡ 1
2

(
1± 2i

k ·∂
¤

)
. (23)

When these operators act on our set of solutionsAµ charac-
terized above, we find the following: the operators are com-
plete in the sense thatP+ + P− = 1, they are orthogonal in
the senseP±P∓ = 0, and they are idempotentP 2

± = P±.
To arrive at these results, we have employed Eq. (21). It is
apparent thatP+ andP− are operators that project onto two
disjoint subsets of solutions. Moreover, the union of these
subsets is equal to our full set of solutions.

Applying P± to the plane-wave exponentials occurring in
the general solution (13) yields

P+ e±iλa·x =
1
2

[1± (−1)a] e±iλa·x,

P− e±iλa·x =
1
2

[1∓ (−1)a] e±iλa·x. (24)

Employing these relations, one can then show that

P+ Aµ(x) = Aµ(x),

P−Aµ(x) = Aµ∗(x). (25)

With the above results at hand, we are now in the position to
give a more concise form of our field-redefinition mapping:

Aµ(x) = e−ik·x P+ Aµ(x) + e+ik·x P−Aµ(x) . (26)

We mention that with the field redefinition (25) and the equa-
tions of motion (21) one can verify Eq. (17) directly without
using plane-wave expansions. We also remark that a similar
field redefinition exists for the closely related Lorentz- and
CPT-violatingbµ parameter for SME fermions [21].

5. Summary and outlook

The electrodynamics sector of the SME contains a Chern–
Simons-type operator contracted with a Lorentz- and CPT-
violating four-vector couplingkµ. Such a coupling can, for
example, arise through a nontrivial spacetime topology or
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in certain cosmological supergravity models as a result of
varying scalar fields. Ifkµ is lightlike, the free solutions of
this model can be mapped to the solutions of conventional
Maxwell electrodynamics. The specific form of this field re-
definition is determined by Eq. (25). This mapping is nonlo-
cal, and it applies on-shell. The existence of such a mapping
doesnot imply that the Chern–Simons term is unphysical and
cannot be measured: both off-shell physics and interactions
will typically lead to observable effects.

There are still a few open questions regarding this field
redefinition that need to be addressed in the future. It is,
for instance, interesting to determine whether this mapping
is one-to-one and onto. If so, there would be a direct corre-
spondence between the Lorentz- and CPT-violating Chern–
Simons model and ordinary Lorentz- and CPT-symmetric
electrodynamics. Certain known results in the conventional
Maxwell model, could then simply be translated to the more
complex Chern–Simons model via the field-redefinition map.

Other open issues concern the question as to whether such
types of field redefinitions can also be found for timelike and
spacelikekµ or for interacting models. An additional impor-
tant aspect we have left largely unaddressed is gauge sym-
metry. Although we have discussed the example of Lorentz
gauge, a more detailed analysis of how gauge conditions are
affected by the mapping could yield valuable insight into the
mathematical structure of the Chern–Simons model and the
field redefinition.
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