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Diffraction of beams by infinite or finite amplitude-phase gratings
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In this paper a theory for the diffraction of beams by thin amplitude-phase gratings in the scalar diffraction regime is given. The grating can
be strictly periodic and therefore of infinite spatial extent (infinite grating) or can be a grating with a finite number of periods (finite grating).
The main result of this paper is that we can write down mathematical expressions for the diffraction of beams by these kinds of gratings.
General expressions for the diffraction patterns at the far-field region are derived. As a numerical application of the theory presented in this
paper the diffraction of Hermite-Gaussian and distorted beams by a Ronchi ruling (infinite and finite) is studied.
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En este artı́culo se presenta una teorı́a para la difraccíon de haces por redes de difracción delgadas de amplitud y fase en la región escalar. La
red puede ser periódica y de extensión infinita (redes infinitas) o puede ser una red con un número finito de periodos (red finita). El principal
resultado de este artı́culo es que es posible obtener expresiones matemáticas para la difracción por este tipo de redes. Fórmulas generales
para los patrones de difracción en el campo lejano son obtenidas. Como una aplicación nuḿerica de la teorı́a de este artı́culo estudiamos la
difracción de haces Hermite-Gauss y haces distorsionados por una red de difracción de Ronchi (finita e infinita).

Descriptores: Difracción; redes de difracción.

PACS: 42.25.Fx; 42.10.H.C.

1. Introduction

In the present paper the diffraction of beams by thin
amplitude-phase gratings is theoretically considered. The
grating can be strictly periodic and therefore of infinite spa-
tial extent (infinite grating) or can be a grating with a fi-
nite number of periods (finite grating). In the past, the
diffraction of beams by infinite gratings has been exten-
sively analyzed in the scalar regime. In particular, the
diffraction by amplitude and phase gratings has been studied.
For instance, phase sinusoidal gratings [1-4], holographic
gratings [5-7], amplitude gratings consisting of equidistant
slits [8], double-layer rectangular phase gratings [9], Ronchi
gratings (grating with alternate clear and dark fringes of
square profile per period) [10], square and hexagonal phase
gratings [11-12], have been considered. More recently, at-
tention has been paid to the diffraction of beams by finite
gratings. However, to the best of our knowledge, the ma-
jority of published papers are dedicated to the study of the
diffraction by amplitude finite gratings. Thus, the diffraction
by N equidistant slits [13-17] and finite strip grating [18]
has been analyzed. The existence of constant-intensity an-
gles in the far-field diffraction patterns ofN equally spaced
slits, when the spot position of the incident beam is changed
on the screen, was shown [15].

In this paper a general theory for the diffraction of two-
dimensional beams by finite or infinite amplitude-phase grat-
ing in the scalar diffraction regime is given. We consider
one-dimensional thin amplitude-phase gratings where the op-
tical thickness of the recording medium is much less than the
fringe spacing [5]. The main result of this paper is that we
can write down analytical expressions for the diffraction of
beams by these kinds of gratings. As a numerical application,

the diffraction of Hermite-Gaussian and distorted beams by a
Ronchi ruling (infinite and finite) is treated.

2. Basic concepts

We have a one-dimensional thin amplitude-phase grating
modulated by a complex transmittance functiont(x). We
consider that the optical thickness of the recording medium is
much less than the fringe spacing (thin holographic grating).
The grating can be strictly periodic and therefore of infinite
spatial extent (infinite grating) or can be a grating with a fi-
nite number of periods (finite grating). The grating is placed
in a vacuum, and the position of a point in space is given
by its Cartesian coordinatesx, y, andz. Our configuration
is illustrated in Fig. 1 for the particular case of an infinite
(a) and finite (b) Ronchi ruling made of alternate transparent
(width l) and opaque zones (widthd). However, it is im-
portant to remember that in what follows a general transmit-
tance functiont(x) is considered. The thin amplitude-phase
grating is illuminated by a beam independent of thez coor-
dinate (cylindrical incident wave). The complex representa-
tion of field quantities is used, and the complex time term
exp(−i ω t) is omitted from now on.

Let E(x), Ei(x) and t(x) be: the transmitted field, the
input field or incident field, and the transmittance function,
respectively, related as follows

E(x) = t(x)Ei(x) . (1)

From this equation, the fieldE(x) just below the grating
can be obtained. Since we are interested in incident beams of
finite cross section, then, the functionE(x) will be different
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FIGURE 1. A Ronchi ruling made of alternate opaque and trans-
parent zones of widthsd andl, respectively. (a) infinite ruling and
(b) finite ruling. The ruling is parallel to theOz axis. The observa-
tion point is given byP (x0, y0).

FIGURE 2. Diffraction pattern when a Gaussian beam (n=0) is in-
cident on an infinite Ronchi ruling. With the following parameters:
L/l = 15/

√
2, λ/l = 0.1, θ0 = 25◦, d/l = 1.5 andD/l = 2.5.

from zero within a finite interval[a, b] and zero outside of it
(or very close to zero). It is interesting to mention that the
theory presented in this section can be utilized not only for
the particular case of finite or infinite gratings, but also for
the general case of transmittance functionst(x), which could
be periodic or not.

FIGURE 3. Same as Fig. 2 but for Hermite-Gaussian beams of
ordern=1, 2.

The diffracted fieldEd for y < 0 can be expressed by
means of the following angular plane-wave expansion [13]:

Ed(x, y) =
1√
2π

∞∫

−∞
Ê(α) exp[i(α x− β y)] dα, (2)

where we have the definitionβ2 = k2 − α2 with β ≥ 0 or
β/i > 0, andk = 2π/λ is the module of the wave vector
in the vacuum. The term̂E(α) represents the amplitude of
the transmitted waves, composed of two parts: downward-
propagating waves (|α| ≤ k) and evanescent waves (|α|>k).
So that, the diffracted field is determined by means of the am-
plitude functionÊ(α). The determination of this function is
our main problem in what follows.

From Eq. (2) aty = 0 and utilizing the inverse Fourier
transform, the amplitude function̂E(α) is given as follows:
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FIGURE 4. Same as Fig. 2 but for Hermite-Gaussian beams of
ordern=3, 4.

Ê(α) =
1√
2π

∞∫

−∞
Ed(x, 0) exp(−iαx)dx . (3)

On the other hand, we have thatEd(x, 0) = E(x) at
y = 0, then, from Eqs. (1) and (3) we get that:

Ê(α) =
1√
2π

∞∫

−∞
t(x)Ei(x) exp(−iαx)dx . (4)

This is a new result and it is the theoretical base of this
paper. Then, the amplitude function̂E(α) can be determined
from the knowledge of the transmittance functiont(x) and
the incident fieldEi(x). From this result and considering
Eq. (2), the diffracted field can be determined anywhere. So
that, our fundamental problem in what follows is to determine
the amplitudeÊ(α) in several interesting cases.

It is important to determine the general expression for the
far-field. As was mentioned, from Eq. (1) the fieldE(x) just
below the amplitude-phase grating can be obtained. From
the knowledge of the fieldE(x) and the two-dimensional
Rayleigh-Sommerfeld integral equation [19] the total field
E(x0, y0) at any point below the ruling can be obtained

E(x0, y0) =
i

2

∞∫

−∞
E(x)

∂

∂ y0
H1

0 (kr)dx

=
i

2

∞∫

−∞
t(x)Ei(x)

∂

∂ y0
H1

0 (kr)dx (5)

wherer2 = (x−x0)2+y2
0 with P (x0, y0) being the observa-

tion point as illustrated in Fig. 1.H1
0 is the Hankel function

of the first kind and of order zero. From Eq. (5) the far field
can be obtained by looking at the asymptotic behavior of the
field E whenkr À 1 (Fraunhofer approximation). In this
approximation the expression for the far field is given by [20]

E(x0, y0) = f(θ) exp(ikr0)/
√

r0 , (6)

wheresin θ = x0/r0 andcos θ = −y0/r0 (see Fig. 1). This
is the expression of a cylindrical wave with the oblique fac-
tor f(θ)

f(θ) =
√

k exp(−iπ/4) cos θ Ê(k sin θ) (7)

with Ê(α) given by Eq. (4).

As we are now concerned with the scalar region, the po-
larization effects can be neglected. Then without loss of gen-
erality we can assume that the incident beam is TE-polarized,
i.e., the incident electric field is parallel to theOz axis. Us-
ing the complex Poynting vector, we can straightforwardly
obtain from Eq. (6) that the intensityI(θ) diffracted at an
angleθ (see Fig. 1) is given byC |f(θ)|2, whereC is a con-
stant given by 1/2Γ0ω, with µ0 the magnetic permeability of
the vacuum. In the TM polarization case,i.e., the incident
magnetic field is parallel to theOz axis, we obtain the same
result, but withC=1/2ε0ω, with ε0 the dielectric constant of
the vacuum. So that, the diffracted intensity is given by

I(θ)=k2 cos2 θ
∣∣∣Ê(k sin θ)

∣∣∣
2

=
1
2π

k2 cos2 θ

∣∣∣∣∣∣

∞∫

−∞
t(x)Ei(x) exp(−ik sin θx)dx

∣∣∣∣∣∣

2

, (8)

whereI(θ) has been normalized toC since we are interested
only in relative quantities. Then the diffraction patterns can
be determined from Eq. (8) if the input fieldEi(x) and the
transmittance functiont(x) are given.
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3. Grating

Let us consider the case of a periodic transmittance func-
tion t(x) with periodD, which extends fromx = −∞ to
x = +∞, i.e., we have a traditional grating with an infinite
number of periods.

Now transform Eq. (4) as follows. From the periodicity
of the grating we have

Ê(α)=
1√
2π

n=∞∑
n=−∞

(n+1)D∫

nD

t(x)Ei(x) exp(−iαx)dx; (9)

if we takex′ = −nD + x, this equation becomes

Ê(α) =
1√
2π

n=∞∑
n=−∞

D∫

0

t(x′ + nD)

× Ei(x′ + nD) exp [−iα(x′ + nD)] dx′ , (10)

but from the periodicity oft(x) we havet(x′+nD) = t(x′),
then

Ê(α) =
1√
2π

D∫

0

dx′ t(x′) exp [−iα x′]

×
[

n=∞∑
n=−∞

Ei(x′ + nD) exp(−iα nD)

]
. (11)

Given this result, let us to define the auxiliary function
Ui(x, α) as follows

Ui(x, α) =
n=∞∑

n=−∞
Ei(x + nD) exp(−iαnD) , (12)

so that Eq. (9) takes the form

Ê(α) =
1√
2π

D∫

0

t(x)Ui(x, α) exp [−iαx] dx . (13)

Before considering Eq. (13) in detail let us to mention that
the functionUi(x, α) as defined in Eq. (12) is a pseudoperi-
odic function

Ui(x + D,α) = exp(iα D)Ui(x, α). (14)

In order to simplify Eq. (13) it is more convenient to
express the incident field as an angular spectrum of plane
waves [13], given by

Ei(x, y) =
1√
2π

k∫

−k

A(α) exp [i(α x− β y)] dα , (15)

whereα2 +β2 = k2 with β ≥ 0 andA(α) is the spectral am-
plitude. We notice that no evanescent waves are considered
in Eq. (15) because they do not take part in the formation of

the far field of the incident wave [13,21]. For the particular
case of an incident plane wave, the amplitudeA(α) is given
by the Dirac delta function. After replacing Eq. (15) into
Eq. (12) we get

Ui(x, α) =
1√
2π

k∫

−k

A(α′) exp(iα′x)

×
[

n=∞∑
n=−∞

exp [i(α′ − α)nD]

]
dα′ , (16)

but, if we consider the following property of the Dirac delta
function

∞∑
n=−∞

exp(i2π nx) =
∞∑

n=−∞
δ(x− n), (17)

and the fact thatδ(kx) = δ(x)/ |k|, we obtain

Ui(x, α) =
√

2π

D

∞∑
n=−∞

A

(
α +

2π

D
n

)
exp

[
i

(
α +

2π

D
n

)
x

]
. (18)

With these operations we have expressed the pseudoperiodic
functionUi(x, α) given in Eq. (12) in terms of the spectral
amplitudeA(α′) of the incident field of Eq. (15). If we now
replace Eq. (18) into Eq. (13) we get the amplitude of the
diffracted waves when a thin amplitude-phase grating is illu-
minated by a beam

Ê(α) =
∞∑

n=−∞
A(α +

2π

D
n)t−n , (19)

where thetn are the Fourier coefficients of the grating trans-
mittance functiont(x)

t(x) =
∞∑

n=−∞
tn exp(i2π nx/D), (20)

given by

tn =
1
D

D∫

0

t(x) exp
[
−i

2π

D
nx

]
dx. (21)

Finally, if we replace Eq. (19) into Eq. (2) the diffracted
field at any point below the grating can be obtained

Ed(x, y) =
1√
2π

∞∑
n=−∞

t−n

×
∞∫

−∞
A

(
α +

2π

D
n

)
exp[i(αx− βy)]dα , (22)

Rev. Mex. F́ıs. 57 (1) (2011) 6–16
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in order to determine the meaning of this result, let us define
the diffracted wave in then-orderEn(x, y) as follows

En(x, y) =
1√
2π

∞∫

−∞
A

(
α +

2π

D
n

)
exp[i(αx− βy)]dα (23)

so that Eq. (22) takes the simple form

Ed(x, y) =
∞∑

n=−∞
tn E−n(x, y) , (24)

wheren has been changed by -n. This is an important and
general result which gives the diffracted field when a beam
is incident on a thin amplitude-phase grating. Notice that the
transmittance function could be a complex function. Also,
we notice the influence of the Fourier coefficientstn of the
transmittance functiont(x) into the process of diffraction.

The physical meaning of Eqs. (23) and (24) is the follow-
ing one: the form of the several transmission ordersEn(x, y)
is similar to the form of the incident field. In Sec. 5, of
Numerical Results, this conclusion is discussed in connec-
tion with the diffraction of Hermite-Gaussian and distorted
beams. On the other hand, we are interested in incident
beams of finite cross section, then the incident fieldEi(x)
will be different from zero within a finite interval [a,b] and
zero outside of it (or very close to zero). In consequence,
from Eq. (15) we get that the functionA(α) will also be dif-
ferent from zero (or very close to zero) within a finite interval
[α1,α2] where−k ≤ α1 < α2 ≤ k. So that, due to the argu-
ment of the functionA(α+2π n/D) in Eq. (23), only a finite
number ofEn(x, y) are different from zero. This last conclu-
sion will be verified in Sec. 5, of Numerical Results, where
the diffraction of Hermite-Gaussian and distorted beams will
be treated. To our knowledge, this is the first time that this
concept of transmission order in the diffraction of beams is
presented in the literature.

We consider Eq. (24) as the generalization for general in-
cident beams of the particular case of incident plane waves
on the grating at the angleθ0, with the angle of incidenceθ0

measured from the normal. As is known, the result of this in-
teraction is the generation of plane waves propagating at the
anglesθn, given bysin θn = sin θ0 + nλ/D; this is the fa-
mous grating equation. From our theory we can obtain these
facts as follows. For incident plane waves we have the spec-
tral amplitudeA(α) =

√
2π δ(α−α0), whereα0 = k sin θ0,

so that, from Eq. (24) we have

Ed(x, y) =
∞∑

n=−∞
tn exp [i(αnx− βny)] , (25)

with αn=α0+(2πn/D) (grating equation) and
βn=

√
k2−α2

n. This is the very well-known expression of
the Rayleigh expansion for thin amplitude-phase gratings.

Then, we have obtained the known result that the amplitude
of each diffraction ordern is given by the Fourier coefficient
tn of the transmittance functiont(x) [5]. Finally, if we re-
place Eq. (19) into Eq. (8) the diffraction pattern can be
obtained

I(θ) = k2 cos2 θ

∣∣∣∣∣
∞∑

n=−∞
A(k sin θ +

2π

D
n)t−n

∣∣∣∣∣

2

. (26)

A. Diffraction by a Ronchi ruling

We have a periodic ruling made of alternate transparent and
opaque zones. The functiont(x) is null in the opaque zones
and has the unitary value in the transparent zones. The pe-
riod of the ruling is given byD = l + d, whered is the width
of the opaque zones andl the width of the transparent zones.
The Fourier coefficientstn of the grating are given by:

tn =
1
D

l∫

0

exp[−i
2π

D
nx]dx

=
l

D

sin(πnl/D)
(πnl/D)

exp
[
−i

πnl

D

]
, (27)

then, for this particular ruling the pattern diffraction can be
obtained from Eq. (26)

I(θ) =
l2

D2
k2 cos2 θ

∣∣∣∣∣
∞∑

n=−∞
A

(
k sin θ+

2π

D
n

)
sin(πnl/D)
(πnl/D)

exp
[
i
πnl

D

]∣∣∣∣
2

, (28)

whend = l a Ronchi ruling is given and in this case Eq. (28)
is considerably simplified.

Finally, we mention that with the theory given in Sec. 3
other gratings can be considered, for instance, cosinu-
soidal amplitude grating, cosinusoidal modulation of the
absorbance grating, binary amplitude grating, cosinusoidal
phase grating, and so forth. A numerical study of these grat-
ings will be carried out in a future paper.

B. Diffraction by an amplitude-phase grating

Let us consider a complex transmittance functiont(x), given
by

t(x) = t1(x) exp [iϕ(x)] = t1(x)t2(x) , (29)

wheret1(x) andt2(x) are periodic functions with the same
periodD. Whent1(x) = 1 or t2(x) = 1, a phase or ampli-
tude grating is considered, respectively. In the general case,
we have a thin amplitude-phase grating.

Rev. Mex. F́ıs. 57 (1) (2011) 6–16
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We have the following Fourier expansion fort1(x)
andt2(x)

t1(x) =
∞∑

j=−∞
t1j exp(i2πjx/D);

t2(x) =
∞∑

m=−∞
t2m exp(i2πmx/D), (30)

from these results the Fourier transform̂t1(α) and t̂2(α) of
t1(x) andt2(x), respectively, are given by

t̂1(α) =
√

2π
∑

j

t1jδ

(
α− 2π

D
j

)
;

t̂2(α) =
√

2π
∑
m

t2mδ

(
α− 2π

D
m

)
, (31)

then, the Fourier transform̂t(α) of t(x) is obtained

t̂(α) =
1√
2π

(
t̂1 ⊗ t̂2

)
(α)

=
√

2π
∑

j,m

t1jt2mδ

(
α− 2π

D
(m + j)

)
, (32)

where⊗ means the convolution product.
On the other hand, from Eq. (15) we haveÊi = A(α) at

y = 0 and from Eq. (4) we get

Ê(α) =
1√
2π

(t̂⊗A)(α). (33)

Finally, from Eqs. (32) and (33) the amplitude of the
diffracted waves when a thin amplitude-phase grating is il-
luminated by a beam is obtained

Ê(α) =
∑

j,m

t1jt2mA

(
α− 2π

D
(m + j)

)
, (34)

and the diffracted intensity is given by

I(θ)=k2 cos2 θ

∣∣∣∣∣∣
∑

j,m

t1jt2mA

(
k sin θ−2π

D
(m+j)

)∣∣∣∣∣∣

2

. (35)

It is interesting to consider the particular case of an inci-
dent plane wave with the angle of incidenceθ0. Keeping in
mind thatA(α) =

√
2πδ(α− α0), with α0 = k sin θ0; from

Eqs. (2) and (34) we have

Ed(x, y) =
∑

j,m

t1jt2m exp[i(αm+jx− βm+jy)], (36)

whereαm+j=α0+(2π/d)(m+j) and(αm+j)2+(βm+j)2=k2.
As it is known, the Rayleigh expansion in transmission is
given by

Ed(x, y) =
∞∑

n=−∞
An exp[i(αnx− βny)], (37)

where the amplitude of each diffraction ordern is given by
the unknown coefficientAn. Then, after comparing Eqs. (36)
and (37) we get the important result

An =
∑

j, m
n = m + j

t1jt2m. (38)

It is interesting to mention that in Ref. 5 the particular
case of a cosinusoidal amplitude-phase grating was treated,
where only three diffracted orders are assumed, and only
the coefficientsA0 andA1 have been obtained. Now, from
Eq. (38) we have a general equation for the calculation of the
coefficientAn, for any value ofn. The diffraction efficiency
of ordern for this grating is given by

en =

∣∣∣∣∣∣∣∣∣

∑

j, m
n = j + m

t1jt2m

∣∣∣∣∣∣∣∣∣

2

cos θn

cos θ0
. (39)

4. Finite grating

In this section the case of a periodic transmittance function
t(x) with N periods will be considered,i.e., a grating with
a finite number of periods. The finite grating extends from
x = a to x = a + ND, with t(x) null outside this interval.

From Eq. (4) we have

Ê(α) =
1√
2π

N−1∑
n=0

a+(n+1)D∫

a+nD

t(x)Ei(x) exp[−iαx]dx;

(40)

if we takex′ = −nD + x and we consider the periodicity
t(x′) = t(x′ + nD), we get:

Ê(α) =
1√
2π

a+D∫

a

t(x′)UN
i (x′, α) exp[−iαx′]dx′, (41)

where the auxiliary functionUN
i (x, α), equivalent to Eq. (12)

for the infinite grating, is given by

UN
i (x, α) =

N−1∑
n = 0

Ei(x + nD) exp[−iα nD] . (42)

We can express the auxiliary functionUN
i in terms of the

spectral amplitudeA(α). From Eqs. (15) and (42) we have

UN
i (x, α) =

1√
2π

∞∫

−∞
A(α′)

× exp[i(α′x− (α− α′)(N − 1)D/2)]

× sin[(α− α′)ND/2]
sin[(α− α′)D/2]

dα′; (43)

Rev. Mex. F́ıs. 57 (1) (2011) 6–16
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FIGURE 5. Same as Fig. 2 but for distorted Hermite-Gaussian
beams of ordersn= 1 and 2.

after replacing Eq. (43) into Eq. (41) we get the amplitude of
the diffracted waves when a finite amplitude-phase grating is
illuminated by a beam

Ê(α)=
1
2π

∞∫

−∞
dα′T (α, α′)

×A(α′) exp[−i(α−α′)(N−1)D/2]

× sin[(α−α′)ND/2]
sin[(α−α′)D/2]

, (44)

where the functionT (α, α′) is defined as follows

T (α, α′) =

a+D∫

a

t(x′) exp[i(α′ − α)x′]dx′; (45)

if we replace Eq. (44) into Eq. (2) the diffracted field can be
determined anywhere, for this, it is necessary to know the

FIGURE 6. Diffraction pattern of a Gaussian beam (n=0) incident
on a finite Ronchi ruling. Same parameters as that of Fig. 2 but for
a finite Ronchi ruling with 20 periods.

periodic transmittance functiont(x) and the spectral ampli-
tudeA(α).

Finally, the diffracted intensity is given by

I(θ) =
k2

4π2
cos2 θ

∣∣∣∣∣∣

∞∫

−∞
dα′T (k sin θ, α′)

× A(α′) exp[−i(k sin θ − α′)(N − 1)D/2]

× sin[(k sin θ − α′)ND/2]
sin[(k sin θ − α′)D/2]

∣∣∣∣
2

(46)

we must to remember that the functionsA(α) and t(x) are
arbitrary functions, for instance,t(x) may be a finite cosinu-
soidal amplitude grating, a finite binary amplitude grating, a
finite cosinusoidal phase grating, and so forth. A numerical
study of these kinds of finite gratings will be carried out in a
future paper.

A. Diffraction by a finite Ronchi ruling

For a finite Ronchi Ruling (N identical clear fringes of
width l) the functionT (α, α′) of Eq. (45) is given by

T (α, α′)=l exp [i(α′−α)(a+l/2)]
sin [(α′−α)l/2]

(α′−α)l/2
; (47)

from this result and Eq. (46) the diffraction pattern when a
beam is incident on a finite Ronchi ruling can be obtained.
When the beam is a plane wave with the angle of incidence
θ0, we obtain from Eq. (44)

Ê(α)=
1√
2π

exp[−i(α−α0)(N−1)D/2]

× sin[(α−α0)ND/2]
sin[(α−α0)D/2]

T (α, α0), (48)
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FIGURE 7. Same as Fig. 3 but for a finite Ronchi ruling with 20
periods. Hermite-Gaussian beams of ordern=1, 2 are considered.

whereα0 = k sin θ0. Then, from Eqs. (47) and (48) we get
the amplitude of the diffracted waves when a plane wave is
incident on a finite Ronchi ruling

Ê(α) =
l√
2π

exp [−i(α− α0) {(N − 1)D/2 + a + l/2}]

× sin[(α− α0)ND/2]
sin[(α− α0)D/2]

sin[(α− α0)l/2]
(α− α0)l/2

, (49)

where the last term gives the contribution of the diffraction
by one slit and the penultimate term is the interference of

N sources with periodD. If the function
∣∣∣Ê(α)

∣∣∣
2

is calcu-

lated from Eq. (48) and it is normalized tol2N2/2π, then,
Eq. (2.25) of [34] is obtained.

5. Numerical results

In this section, as a numerical application of the theory pre-
sented in this paper, the diffraction of Hermite-Gaussian
and distorted beams by a Ronchi ruling (infinite and fi-
nite, see Fig. 1) is studied. The Hermite-Gaussian beams
are described by the product of Hermite polynomials and
Gaussian functions. The two-dimensional Hermite-Gaussian
beams can easily be excited with an end-pumped solid-sate
laser [23]. These beams have been considered in relation to
some diffraction problems [15-16, 24-25]. For a more com-
plete list of references about the applications of these beams
see [26].

On the screen and at normal incidence, the field of the
Hermite-Gaussian beam of ordern is given by

Ei(x, y = 0)=Hn

[
2
L

(x−b)
]

exp
[
−2(x− b)2

L2

]
, (50)

whereHn is the Hermite polynomial of ordern andL/2 the
local 1/e intensity Gaussian beam radius. The position of the
incident Hermite-Gaussian beam with respect to theOy axis
is fixed by parameterb. This parameter enables us to displace
the beam along the screen.

In order to numerically consider Hermite-Gaussian
beams at oblique incidenceθ0, it is convenient to deter-
mine the spectral amplitudeA(α) for normal incidence from
Eqs. (15) and (50), and to perform a rotation of an angle
θ0 about theOz axis. In this procedure the following iden-
tity [27] must to be utilized

∞∫

−∞
exp(ixy) exp(−x2/2)Hn(x)dx

= (2π)1/2(i)n exp(−y2/2)Hn(y); (51)

finally, by a translation to the pointx = b the following am-
plitudeA(α) is obtained

A(α) =
L

2
(i)nHn [−Lq1(θ0)/2] q2(θ0)

× exp(−iαb) exp
[−q1(θ0)2L2/8

]
, (52)

where θ0 is the angle of incidence of the beam with re-
spect to theOy axis andq1(θ0) = α cos θ0 − β sin θ0, and
q2(θ0) = cos θ0 + (α/β) sin θ0.

For distorted incident waves we take the field whose spec-
tral amplitudeAd is given by

Ad(α) = A(α) exp(α), (53)

whereA(α) is given by Eq. (52). The nonsymmetrical fac-
tor exp(α) modifies the angular spectrum of plane waves of
Eq. (15) in such a way that distorted Hermite-Gaussian beams
take place. These distorted beams are very interesting and,
they show the potential of our theory.
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FIGURE 8. Same as Fig. 4 but for a finite Ronchi ruling with 20
periods. Hermite-Gaussian beams of ordern=3, 4 are considered.

In what follows we consider the diffraction of Hermite-
Gaussian and distorted beams for the particular case of infi-
nite and finite Ronchi rulings made of alternate transparent
(width l) and opaque zones (widthd), as illustrated in Fig. 1.
Some other gratings will be treated in a future paper.

A. Infinite Ronchi ruling

In Fig. 2, the diffraction pattern when a Gaussian beam (n=0)
is incident on an infinite Ronchi ruling is shown. We have the
following parameters:L/l = 15/

√
2, λ/l = 0.1, and the an-

gle of incidenceθ0 = 25◦. A Ronchi ruling withd/l = 1.5
and periodD/l = 2.5 is considered. In this case the diam-
eter ratio of the spot/period of the ruling (L/D) is 4.24,i.e.,
the beam is very far from a plane wave. From Fig. 2 several
transmission orders (five orders are shown in figure) can be
observed; the existence of these orders has been predicted by
Eqs. (23) and (24). We note that the several orders are very

FIGURE 9. Same as Fig. 5 but for a finite Ronchi ruling with 20
periods. Distorted Hermite-Gaussian beams of ordern=1, 2 are
considered.

well separated (angularly). These orders resemble those of
the diffraction of plane waves by infinite gratings, where the
angular positions are determined by means of the classical
grating equation given bysin θm = sin θ0 + mλ/D, m=0,
±1, ±2,... By using the parameters of our ruling Ronchi
and the grating equation, the following angular positions are
obtained: θ−2 = 20.0364◦, θ−1 = 22.4959◦, θ0 = 25◦,
θ1 = 27.5561◦ andθ2 = 30.1733◦. From Fig. 2, the an-
gular positions of the several orders (determined by our the-
ory) are: θ−2 = 20.0369◦, θ−1 = 22.4990◦, θ0 = 25◦,
θ1 = 27.5590◦, andθ2 = 30.1763◦. We have compared the
angular positions of the several orders of Fig. 2 with those
calculated directly from the grating equation and a maximum
relative error of 0.013% is found. Then, the agreement is very
good. In order to explain this agreement it is convenient to
express the grating equation in terms of parameterα. Thus,
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we havek sin θm = k sin θ0 +m2π/D, which can be written
in terms of the parameterα as followsαm = α0 + 2π m/D,
then, the incident wave determined byα0 is “translated” to
the several orders determined byαm by means of the term
2π m/D. Then, after comparing Eqs. (15) and (23), we see
that the incident wave determined by means of the amplitude
A(α) is “translated” to the several orders determined by the
amplitudeA(α + 2π n/D) by means of the term2π n/D.

In Figs. 3 and 4 the diffraction patterns when Hermite-
Gaussian beams are incident on an infinite Ronchi ruling, for
n=1, 2, andn=3, 4, respectively, are plotted. We have used
the same parameters as in Fig. 2. In these figures the ex-
istence of one, two, three and four dips at each maximum
(transmission order), which reach the bottom (null intensity),
are shown. Also, we observe that the number of deep dips at
the maxima is the same as the ordern of the Hermite polyno-
mial in the incident beam. In fact, these dips in the diffraction
patterns are caused by the zeros of the Hermite polynomials.
It is interesting to mention that Kojima [28] has considered
the scattering of TE-polarized Hermite-Gaussian beams of
only order one (n = 1) from a sinusoidal conducting grat-
ing, and one deep dip at each of the maxima in the reflection
patterns were found. So that our results for transmission rul-
ing extend the result of Kojima forn = 1 to higher orders
of the Hermite-Gaussian beam. It is interesting to see that
the several orders of Figs. 3 and 4 are similar to|Ei|2 calcu-
lated from Eq. (50),i.e., the transmission orders and the in-
cident beam as the same form as was established in Eqs. (23)
and (24). Finally, we mention that the angular position of the
transmission orders are in accord ance with the grating equa-
tion; in a future paper we will analyze in more detail this last
result.

Figure 5 is also similar to Fig. 2 but for distorted Hermite-
Gaussian beams of ordersn= 1 and 2. In this figure the effect
of the exponential function in Eq. (53) is evident; each trans-
mission order of the diffraction pattern is also distorted. We
believe that it is the first time that this kind of beam is treated
in the literature of diffraction of beams.

B. Finite ronchi ruling

In Fig. 6 the diffraction pattern of a Gaussian beam (n=0)
incident on a finite Ronchi ruling (see Fig. 1b) is considered.
The parameters considered are the same as those of Fig. 2 but
for a finite Ronchi ruling with 20 periods. We have placed the
center of the incident Gaussian beam on the edge of the finite
ruling (point A in Fig. 1b) by means of parameterb. Great

differences with respect to the case of an infinite Ronchi rul-
ing, as shown in Fig. 2, are observed. In Fig. 2 the several
orders are very well separated (angularly), but in Fig. 6 an
interaction between them is noted (see bottom of figure).

Figures 7 and 8 are similar to Fig. 3 and 4 but for a finite
Ronchi ruling. The center of the incident Hermite-Gaussian
beams is placed on the edge of the finite ruling (point A in
Fig. 1b). The parameters are the same as those of Fig. 2 but
for a finite Ronchi ruling with 20 periods. We observe that
the dips of Figs. 3 and 4 for an infinite ruling have suffered a
great change when a finite ruling is considered. We note also
that the number of dips in these figures is different from the
ordern of the Hermite polynomial. With these results it is
shown that the infinite ruling case is very different to that of
the finite ruling case. It was a surprise to verify that the an-
gular positions of the several transmission orders for a finite
ruling are in accord once with the grating equation. These
conclusions will be analyzed in a future paper.

Figure 9 is similar to Fig. 5 but for a finite Ronchi rul-
ing with 20 periods. The center of the distorted Hermite-
Gaussian beams is incident on point A of Fig. 1b. We have
considered the same parameters as Fig. 2 but for a finite
Ronchi ruling with 20 periods. Again, very big changes are
observed among Fig. 9 for a finite ruling and Fig. 5 for an
infinite ruling.

6. Conclusions

We present a theory for the diffraction of two-dimensional
beams by one-dimensional thin amplitude-phase gratings.
Mathematical expressions for the diffraction of beams were
proposed. We have considered finite and infinite gratings.
In the case of infinite gratings the existence of transmission
orders of diffraction, whose form is similar to the form of
the incident beam, are shown. As a numerical application of
the theory presented in this paper the diffraction of Hermite-
Gaussian beams and distorted beams by a Ronchi ruling (in-
finite and finite) is studied. We have obtained the result that
the classical grating equation predicts very well the angular
positions of the transmission orders predicted by our theory.
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