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Diffraction of beams by infinite or finite amplitude-phase gratings
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In this paper a theory for the diffraction of beams by thin amplitude-phase gratings in the scalar diffraction regime is given. The grating can
be strictly periodic and therefore of infinite spatial extent (infinite grating) or can be a grating with a finite number of periods (finite grating).
The main result of this paper is that we can write down mathematical expressions for the diffraction of beams by these kinds of gratings.
General expressions for the diffraction patterns at the far-field region are derived. As a numerical application of the theory presented in this
paper the diffraction of Hermite-Gaussian and distorted beams by a Ronchi ruling (infinite and finite) is studied.
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En este aftulo se presenta una téapara la difracén de haces por redes de difrantidelgadas de amplitud y fase en la tegéscalar. La
red puede ser pdrilica y de extenén infinita (redes infinitas) o puede ser una red coniumero finito de periodos (red finita). El principal
resultado de este &tilo es que es posible obtener expresiones ntteas para la difrach por este tipo de redes6fnulas generales
para los patrones de difraéei en el campo lejano son obtenidas. Como una apéinawinerica de la teda de este aitulo estudiamos la
difraccion de haces Hermite-Gauss y haces distorsionados por una red de diifde&onchi (finita e infinita).

Descriptores: Difraccion; redes de difracén.

PACS: 42.25.Fx; 42.10.H.C.

1. Introduction the diffraction of Hermite-Gaussian and distorted beams by a

. ) _ Ronchi ruling (infinite and finite) is treated.
In the present paper the diffraction of beams by thin

amplitude-phase gratings is theoretically considered. The

grating can be strictly periodic and therefore of infinite spa-2. Basic concepts

tial extent (infinite grating) or can be a grating with a fi-

nite number of periods (finite grating). In the past, theWe have a one-dimensional thin amplitude-phase grating

diffraction of beams by infinite gratings has been exten-modulated by a complex transmittance functigm). We

sively analyzed in the scalar regime. In particular, theconsider that the optical thickness of the recording medium is

diffraction by amplitude and phase gratings has been studiednuch less than the fringe spacing (thin holographic grating).

For instance, phase sinusoidal gratings [1-4], holographidhe grating can be strictly periodic and therefore of infinite

gratings [5-7], amplitude gratings consisting of equidistantspatial extent (infinite grating) or can be a grating with a fi-

slits [8], double-layer rectangular phase gratings [9], Ronchiite number of periods (finite grating). The grating is placed

gratings (grating with alternate clear and dark fringes ofin a vacuum, and the position of a point in space is given

square profile per period) [10], square and hexagonal phadgy its Cartesian coordinates y, andz. Our configuration

gratings [11-12], have been considered. More recently, atis illustrated in Fig. 1 for the particular case of an infinite

tention has been paid to the diffraction of beams by finite(a) and finite (b) Ronchi ruling made of alternate transparent

gratings. However, to the best of our knowledge, the ma{width !) and opaque zones (wid#). However, it is im-

jority of published papers are dedicated to the study of theportant to remember that in what follows a general transmit-

diffraction by amplitude finite gratings. Thus, the diffraction tance functiort(z) is considered. The thin amplitude-phase

by N equidistant slits [13-17] and finite strip grating [18] grating is illuminated by a beam independent of theoor-

has been analyzed. The existence of constant-intensity adinate (cylindrical incident wave). The complex representa-

gles in the far-field diffraction patterns &f equally spaced tion of field quantities is used, and the complex time term

slits, when the spot position of the incident beam is changedxp(—: wt) is omitted from now on.

on the screen, was shown [15]. Let E(z), E;(z) andt(z) be: the transmitted field, the
In this paper a general theory for the diffraction of two- input field or incident field, and the transmittance function,

dimensional beams by finite or infinite amplitude-phase gratrespectively, related as follows

ing in the scalar diffraction regime is given. We consider

one-dimensional thin amplitude-phase gratings where the op- E(z) =t(x)E;(x) . 1)

tical thickness of the recording medium is much less than the

fringe spacing [5]. The main result of this paper is that we  From this equation, the fielff(x) just below the grating

can write down analytical expressions for the diffraction ofcan be obtained. Since we are interested in incident beams of

beams by these kinds of gratings. As a numerical applicatiorfjnite cross section, then, the functidi(x) will be different
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FIGURE 1. A Ronchi ruling made of alternate opaque and trans- % 15
parent zones of widthg and!, respectively. (a) infinite ruling and £
(b) finite ruling. The ruling is parallel to th@z axis. The observa- §
tion point is given byP(zo, yo). E il
=
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% i FIGURE 3. Same as Fig. 2 but for Hermite-Gaussian beams of
£ i ordern=1, 2.
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107 The diffracted fieldE? for y < 0 can be expressed by
means of the following angular plane-wave expansion [13]:
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FIGURE 2. Diffraction pattern when a Gaussian beamsQ) isin-  Where we have the definitiof® = k% — o with 3 > 0 or
cident on an infinite Ronchi ruling. With the following parameters: 3/i > 0, andk = 27 /) is the module of the wave vector
L/l =15//2,2/1=0.1,00 = 25°,d/l = 1.5 and D/l = 2.5. in the vacuum. The terni(«) represents the amplitude of

the transmitted waves, composed of two parts: downward-
from zero within a finite intervala, b] and zero outside of it Propagating wavesgq| < ) and evanescent waves(>F).
(or very close to zero). It is interesting to mention that theSO that, the diffracted field is determined by means of the am-
theory presented in this section can be utilized not only foPlitude functionE(«). The determination of this function is
the particular case of finite or infinite gratings, but also forOUr main problem in what follows.
the general case of transmittance functiofrg, which could From Eg. (2) aty = 0 and utilizing the inverse Fourier
be periodic or not. transform, the amplitude functiofi(«) is given as follows:
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8 S. CRUZ-ARREOLA AND O. MATA-MENDEZ

Itis important to determine the general expression for the
far-field. As was mentioned, from Eq. (1) the fidi{x) just
below the amplitude-phase grating can be obtained. From
the knowledge of the fieldZ(z) and the two-dimensional
Rayleigh-Sommerfeld integral equation [19] the total field

n=3 E(x9,y0) at any point below the ruling can be obtained

20

oo

i
E(x0, o) =3 /E HO (kr)dz

—
o
|

e
o
|

i 0
=5 [ @By Bk ©)

— 00

Normalized intensity

wherer? = (x — )% +y with P(z0, yo) being the observa-
tion point as illustrated in Fig. 1H} is the Hankel function
0 ﬁgf}& 0 = " = flfg"ﬂ of the first kind and of order zero. From Eqg. (5) the far field
can be obtained by looking at the asymptotic behavior of the
rglei{dagres] field £ whenkr > 1 (Fraunhofer approximation). In this
approximation the expression for the far field is given by [20]

15 E(x0,y0) = f(0) exp(ikro)/v/T0, (6)

wheresin 6 = /g andcos = —yo/ro (see Fig. 1). This
104 is the expression of a cylindrical wave with the oblique fac-

tor f(6)

Y Axis Title

f(0) = VEexp(—ir/4) cos 0 E(ksin6) @)

with E(a) given by Eq. (4).
oL Jahy Do As we are now concerned with the scalar region, the po-
20 » 2 % 28 30 larization effects can be neglected. Then without loss of gen-
Angle{degree) erality we can assume that the incident beam is TE-polarized,
i.e, the incident electric field is parallel to thi¢z axis. Us-
ing the complex Poynting vector, we can straightforwardly
obtain from Eq. (6) that the mtensn&(e ) diffracted at an
angled (see Fig. 1) is given b¢' | f(#)|*, whereC is a con-
oo stant given by 1/Pyw, with g the magnetic permeability of
E(a) _ 1 / Ed(x70) exp(—iaz)dz . Q) the vacuum. In the TM polarizatio_n cases,, th_e incident
magnetic field is parallel to th@: axis, we obtain the same
result, but withC=1/2:qw, with ¢, the dielectric constant of
On the other hand, we have that (z,0) = E(z) at  the vacuum. So that, the diffracted intensity is given by
y = 0, then, from Egs. (1) and (3) we get that:

FIGURE 4. Same as Fig. 2 but for Hermite-Gaussian beams of
ordern=3, 4.

R 2
I(0)=Fk* cos® ‘E(k sin 9)‘

Ela ) ex iax)dx . 4
(@)= = / p(—iaz)d. (4 i 2
1 oo
This is a new result and it is the theoretical base of this :%/3 cos” 0 / t(z)Ei(z) exp(—iksin0x)dz| , (8)
paper. Then, the amplitude functid{«) can be determined o0

from the knowledge of the transmittance functite) and

the incident fieldE;(x). From this result and considering wherel () has been normalized (@ since we are interested
Eq. (2), the diffracted field can be determined anywhere. Sonly in relative quantities. Then the diffraction patterns can
that, our fundamental problem in what follows is to determinebe determined from Eq. (8) if the input field;(z) and the
the amplitude’ (a) in several interesting cases. transmittance functiof(z) are given.

Rev. Mex. .57 (1) (2011) 6-16
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3. Grating the far field of the incident wave [13,21]. For the particular

case of an incident plane wave, the amplitutiev) is given
Let us consider the case of a periodic transmittance funcpy the Dirac delta function. After replacing Eq. (15) into

tion ¢(x) with period D, which extends fromx = —co to Eq. (12) we get

x = 400, i.e, we have a traditional grating with an infinite

number of periods. 1 k

Now transform Eq. (4) as follows. From the periodicity Ui(z,a) = — /A(al)exp(ia/gr)

of the grating we have \/27r_k

n—oo (n+1)D n—oo
1
:\/T?n;oo / t(z)F;i(x) exp(—iax)dz; (9) X L_Z_OOGXP[ (o Oé)nD}] o’ (16)

- nD

but, if we consider the following property of the Dirac delta

if we takez’ = —nD + z, this equation becomes .
function
E(o) m n_z_oo/ 2’ +nD) n;m exp(i2m nx) n_z;oo d(x —n) a7
X Ei(z' + nD)exp [—ia(z’ + nD)]dz’, (10)  and the fact thai(kz) = 6(x)/ |k|, we obtain
but from the periodicity of(z) we havet(z’ +nD) = t(a'), Vor &
then Ui(z,a) = - > oA
I n=—oo
0/ "exp[—ia 2] <a + 217;71) exp [z (a + 2511) ;1:] . (18)
n=oo With these operations we have expressed the pseudoperiodic
X l Z E;(x' +nD)exp(—ianD)| . (11)  functionU;(z, «) given in Eq. (12) in terms of the spectral
n=—oo0 amplitudeA (/) of the incident field of Eq. (15). If we now

replace Eqg. (18) into Eq. (13) we get the amplitude of the
diffracted waves when a thin amplitude-phase grating is illu-
minated by a beam

Given this result, let us to define the auxiliary function
Ui(z, «) as follows

E;(z +nD) ianD) , 12 . > 2
n;w nD)exp(—ianD),  (12) E(a) :n;m Ala + %n)t_n, (19)
so that Eq. (9) takes the form ) o )
where the,, are the Fourier coefficients of the grating trans-

mittance functiont(z)

S () m/ (z,a) exp [—ioz] dz . (13) -

Z t, exp(i2m na /D), (20)

Before considering Eqg. (13) in detail let us to mention that n=-00

thg functiani(x, «) as defined in Eq. (12) is a pseudoperi- given by

odic function
D

Ui(z + D, a) = exp(ia D)U;(z, a). (14) : / exp {Zm} . (21)
In order to simplify Eq. (13) it is more convenient to 0

express the incident field as an angular spectrum of plane

waves [13], given by Finally, if we replace Eq. (19) into Eq. (2) the diffracted

field at any point below the grating can be obtained
k

1 1
Ei(z,y) A(a)exp [i(az — By)]da, (15) E¢ tn
0= i f erowies w7, L
wherea? + 3% = k? with 3 > 0 andA(«) is the spectral am- 2 _
plitude. We notice that no evanescent waves are considered x / Al a+on | explilaz — fy)lda, (22)
in Eq. (15) because they do not take part in the formation of —o0

Rev. Mex. .57 (1) (2011) 6-16



10 S. CRUZ-ARREOLA AND O. MATA-MENDEZ

in order to determine the meaning of this result, let us definé’hen, we have obtained the known result that the amplitude
the diffracted wave in the-orderE,, (z, y) as follows of each diffraction orden is given by the Fourier coefficient
t,, of the transmittance functiot(z) [5]. Finally, if we re-

1 7 place Eq. (19) into Eg. (8) the diffraction pattern can be
E,(z,y) = Wirs / A obtained
Vel e ,
> . 2w
<a + 217;”> expli(az — By)]da (23) I(0) = k?cos® 0 Z A(ksin + fn)t_” . (26)

so that Eq. (22) takes the simple form
~ A. Diffraction by a Ronchi ruling
Ed(z7y) = Z tn E_n(lﬂ, y) ) (24)

n=—oo

We have a periodic ruling made of alternate transparent and
o _ opaque zones. The functiefir) is null in the opaque zones
wheren has been changed by.- This is an important and  and has the unitary value in the transparent zones. The pe-
general result which gives the diffracted field when a beantiod of the ruling is given byD = [ + d, whered is the width

is incident on a thin amplitude-phase grating. Notice that theyf the opaque zones andhe width of the transparent zones.
transmittance function could be a complex function. Also,The Fourier coefficients, of the grating are given by:

we notice the influence of the Fourier coefficientsof the
transmittance functiot(z) into the process of diffraction.
The physical meaning of Egs. (23) and (24) is the follow- ty =
ing one: the form of the several transmission ordér$x, y)
is similar to the form of the incident field. In Sec. 5, of
Numerical Results, this conclusion is discussed in connec- _ L sin(mni/D) exp {_ZW] 27)
tion with the diffraction of Hermite-Gaussian and distorted D (mnl/D) D |’
beams. On the other hand, we are interested in incident . . . ) ]
beams of finite cross section, then the incident fiBldz) then_, for this particular ruling the pattern diffraction can be
will be different from zero within a finite interval [a,b] and OPtained from Eq. (26)
zero outside of it (or very close to zero). In consequence,
from Eq. (15) we get that the functiofi(a) will also be dif- 1(6) = LTIy
ferent from zero (or very close to zero) within a finite interval D?
[a1,a0] Wwhere—k < a7 < as < k. So that, due to the argu- (xnl/ D) )
ment of the functiom (a+ 27 n/D) in Eq. (23), only a finite . 27\ sin(mnl/D .l
number ofE,, (x, y) are different from zero. This last conclu- (k S 0+Dn> (mnl/D) P {ZD] ‘ - (28)
sion will be verified in Sec. 5, of Numerical Results, where
the diffraction of Hermite-Gaussian and distorted beams wilwhend = [ a Ronchi ruling is given and in this case Eq. (28)
be treated. To our knowledge, this is the first time that thigS considerably simplified.
concept of transmission order in the diffraction of beams is  Finally, we mention that with the theory given in Sec. 3
presented in the literature. other gratings can be considered, for instance, cosinu-
We consider Eq. (24) as the generalization for general insoidal amplitude grating, cosinusoidal modulation of the
cident beams of the particular case of incident plane wavesbsorbance grating, binary amplitude grating, cosinusoidal
on the grating at the angty, with the angle of incidencé, phase grating, and so forth. A numerical study of these grat-
measured from the normal. As is known, the result of this inings will be carried out in a future paper.
teraction is the generation of plane waves propagating at the
anglesd,,, given bysin§,, = sinfy + nA/D; this is the fa-
mous grating equation. From our theory we can obtain thesB. Diffraction by an amplitude-phase grating
facts as follows. For incident plane waves we have the spec-
tral amplitudeA (o) = v/27 §(a — ap), whereag = ksin 6y, Let us consider a complex transmittance functipr), given

1

=]

l
2
/exp[—i%nm]dm
0

S 4

n=—oo

so that, from Eq. (24) we have by
El(z,y) = i tnexpi(anz — Gny)],  (25) t(x) = t1(x) exp [ip(x)] = t1(2)t2(z), (29)

wheret; (z) andty(z) are periodic functions with the same
with  a,=ap+(2mn/D) (grating equation) and periodD. Whent,(z) = 1 orts(z) = 1, a phase or ampli-
Bn=+/k?>—c2. This is the very well-known expression of tude grating is considered, respectively. In the general case,
the Rayleigh expansion for thin amplitude-phase gratingswe have a thin amplitude-phase grating.

Rev. Mex. .57 (1) (2011) 6-16



DIFFRACTION OF BEAMS BY INFINITE OR FINITE AMPLITUDE-PHASE GRATINGS 11

We have the following Fourier expansion fai(x)
andts ()

ti(z) = Z t1; exp(i2mjz/D);

j=—o00
ta(x) = Z tom exp(i2mma /D), (30)

from these results the Fourier transfotpia) and#,(«) of
t1(z) andts(x), respectively, are given by

Ztlﬂ (a — j)
V2r Y " tamd (a - m> (31)

m

then, the Fourier transfortfa) of ¢(z) is obtained

i) = —=(
27 .
= mztlthTrL5 <Oé - B(m +.])> ’ (32)
j,m

tAl ® 7?2) (a)

where® means the convolution product.
On the other hand, from Eq. (15) we hakle = A(«) at
y = 0 and from Eq. (4) we get

- 1

where the amplitude of each diffraction ordeis given by
the unknown coefficienti,,. Then, after comparing Eqgs. (36)
and (37) we get the important result

D>

j,m
n=m+j

tljtgm. (38)

It is interesting to mention that in Ref. 5 the particular
case of a cosinusoidal amplitude-phase grating was treated,
where only three diffracted orders are assumed, and only
the coefficientsdy, and A; have been obtained. Now, from
Eq. (38) we have a general equation for the calculation of the
coefficientA,,, for any value ofn. The diffraction efficiency
of ordern for this grating is given by

2

cos 6
Jom 0
n=j+m

4. Finite grating

In this section the case of a periodic transmittance function

t(x) with N periods will be considered,e., a grating with

a finite number of periods. The finite grating extends from

x =atox =a+ ND, with t(z) null outside this interval.
From Eq. (4) we have

B(a) = ——=(f® A)(a). (33) | Nz oD
2n — Z / t(z) E;(x) exp[—iazx]dx;
Finally, from Eqgs. (32) and (33) the amplitude of the T o= atnD
diffracted waves when a thin amplitude-phase grating is il- (40)
luminated by a beam is obtained _ . o
if we takez’ = —nD + x and we consider the periodicity
2 . N — ’ .
a) = ZtlthmA (a _ %(m +j)) ’ (34) t(z") = t(2’ + nD), we get:
Jm a+D
and the diffracted intensity is given by E(a) \ﬁ / NUN (2, a) exp[—iaa']da’, (41)

2

=k? cos® 0 . (35)

2
Z t1jtomA (k sin 9—% (m+3))

jm

It is interesting to consider the particular case of an inci-
dent plane wave with the angle of incidenge Keeping in

mind thatA(a) = v27d(a — ap), With ag = ksin 6y; from
Egs. (2) and (34) we have

E(z,y) = Z t1jtom expli(am

Jm

- ﬁm-‘rjy)]: (36)
whereay, + j=ao+(27/d)(m+j) and(cm ;)
given by

Elz,y) = Z Ay expli(anz — Gny)],  (37)

n=—oo

2 N2 f2
+(ﬂm+j) .
As it is known, the Rayleigh expansion in transmission is

where the auxiliary functiotv} (z, ), equivalent to Eq. (12)

for the infinite grating, is given by
N-1
UN(z,0) = Z Ei(x 4+ nD) exp[—ianD] . (42)
n=0
We can express the auxiliary functiéff¥ in terms of the
spectral amplitudel(«). From Egs. (15) and (42) we have

Ul (z,0)

1 /
= \/ﬂ_é Ala
x expli(a’z — (a — /) (N —1)D/2)]

sin[(a — a')ND/2]
sin[(a — o) D /2]

do’; (43)

Rev. Mex. .57 (1) (2011) 6-16
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FIGURE 5. Same as Fig. 2 but for distorted Hermite-Gaussian
beams of ordera=1 and 2.

after replacing Eq. (43) into Eq. (41) we get the amplitude of,
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FIGURE 6. Diffraction pattern of a Gaussian beamw=Q) incident

on a finite Ronchi ruling. Same parameters as that of Fig. 2 but for

a finite Ronchi ruling with 20 periods.

periodic transmittance functior{z) and the spectral ampli-
tude A(«).
Finally, the diffracted intensity is given by

2

= k— cos? 6

1(0) 472

/ do/T(ksin6,a’)
x A(a) exp[—i(ksing — o) (N —1)D/2]

sin[(ksinf — o/)ND /2] |?

sin[(ksinf — a’)D /2] (46)

we must to remember that the functioA$«) andt(x) are
arbitrary functions, for instance(z) may be a finite cosinu-
soidal amplitude grating, a finite binary amplitude grating, a
finite cosinusoidal phase grating, and so forth. A numerical
study of these kinds of finite gratings will be carried out in a
future paper.

the diffracted waves when a finite amplitude-phase grating is

illuminated by a beam

oo

/ do/ T, ')

— 00

1

2

E(a)=

x A(a/) exp[—i(a—a’)(N=1)D/2]
sin[(a—a/)ND/2]

44
sin[(a—a’)D /2] ’ (44)
where the functio'(«, ') is defined as follows
a+D
T(a,a) = / t(x') expli(a/ — a)x'|da’; (45)

a

if we replace Eq. (44) into Eq. (2) the diffracted field can be
determined anywhere, for this, it is necessary to know the

Rev. Mex. 5. 57 (

A. Diffraction by a finite Ronchi ruling

For a finite Ronchi Ruling (N identical clear fringes of
width [) the functionT’(«, ") of Eq. (45) is given by

sin [(a'—a)l/2]

T(a,a’)=lexp [i(a/—a)(a+1/2)] (@'=a)l/2

(47)
from this result and Eq. (46) the diffraction pattern when a
beam is incident on a finite Ronchi ruling can be obtained.
When the beam is a plane wave with the angle of incidence
0o, we obtain from Eq. (44)

E(a):\/% exp|—i(a—ao)(N=1)D/2]
sin[(a—ag)ND/2]

sin[(a—ap)D/2] (48)

T(o, ap),

1) (2011) 6-16



DIFFRACTION OF BEAMS BY INFINITE OR FINITE AMPLITUDE-PHASE GRATINGS 13
5. Numerical results

10 s In this section, as a numerical application of the theory pre-
- sented in this paper, the diffraction of Hermite-Gaussian
and distorted beams by a Ronchi ruling (infinite and fi-

nite, see Fig. 1) is studied. The Hermite-Gaussian beams
are described by the product of Hermite polynomials and

Gaussian functions. The two-dimensional Hermite-Gaussian

beams can easily be excited with an end-pumped solid-sate

i laser [23]. These beams have been considered in relation to
some diffraction problems [15-16, 24-25]. For a more com-

plete list of references about the applications of these beams

Norrmalized intensity
=

2 see [26].
On the screen and at normal incidence, the field of the
I S S T SN W T . W Hermite-Gaussian beam of ordefs given by
20 22 24 26 28 30
Angle (degree)

. 2
By = 0=, | £ a-0)| exn |- 25 (50)
whereH,, is the Hermite polynomial of ordet andL /2 the
local 1/e intensity Gaussian beam radius. The position of the
incident Hermite-Gaussian beam with respect toeaxis
is fixed by parametdr. This parameter enables us to displace
the beam along the screen.

In order to numerically consider Hermite-Gaussian
beams at oblique incidenag, it is convenient to deter-
mine the spectral amplitudé(«) for normal incidence from

6 n=2

Normalized intensity
.
|

. Egs. (15) and (50), and to perform a rotation of an angle
0o about theOz axis. In this procedure the following iden-
2 tity [27] must to be utilized

1-] / exp(izy) exp(—z?/2) H,, (x)dx

20 22 2 2 28 30 s )
Angle (degree) = (2m) / (i)™ exp(—y~/2) H,(y); (51)

FIGURE 7. Same as Fig. 3 but for a finite Ronchi ruling with 20 fipally, by a t_ranSIat,ion to the point = b the following am-
periods. Hermite-Gaussian beams of orded, 2 are considered. plitude A(«) is obtained
L \N
Ala) = 5 ()" Hn [~Lq1(00)/2] 42(60)
whereay = ksinfy. Then, from Eqs. (47) and (48) we get
the amplitude of the diffracted waves when a plane wave is x exp(—iab) exp [—q1(60)>L?/8],  (52)

incident on a finite Ronchi ruling
where 0, is the angle of incidence of the beam with re-

! spect to theDy axis andg; (6p) = acosfy — Bsin by, and
E(a) = N exp [—i(a— ) {(N —1)D/24+ a+1/2}] g2(6o) = cosby + (/) sin by.

T For distorted incident waves we take the field whose spec-
" sin[(a — ag)ND/2] sin[(a — a)l/2] tral amplitudeA, is given by
sin[(a —ap)D/2] (o —ap)l/2

(49)
Aq(a) = A(a) exp(a), (53)

where the last term gives the contribution of the diffraction

by one slit and the penultimate term is the interference o hereA(a) is given by Eq. (52). The nonsymmetrical fac-

. 2 or exp(a)) modifies the angular spectrum of plane waves of
N sources with period. If the function ‘E(Oé)‘ is calcu-  Eq. (15) in such a way that distorted Hermite-Gaussian beams
lated from Eq. (48) and it is normalized tdN?/2r, then, take place. These distorted beams are very interesting and,
Eq. (2.25) of [34] is obtained. they show the potential of our theory.
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FIGURE 8. Same as Fig. 4 but for a finite Ronchi ruling with 20
periods. Hermite-Gaussian beams of orde8, 4 are considered. FIGURE 9. Same as Fig. 5 but for a finite Ronchi ruling with 20
periods. Distorted Hermite-Gaussian beams of ordet, 2 are
In what follows we consider the diffraction of Hermite- considered.
Gaussian and distorted beams for the particular case of infi-

nite and finite Ronchi rulings made of alternate transparenjye|| separated (angularly). These orders resemble those of
(width /) and opaque zones (width), as illustrated in Fig. 1. the diffraction of plane waves by infinite gratings, where the

Some other gratings will be treated in a future paper. angular positions are determined by means of the classical
grating equation given byin 6,,, = sinfy + mA/D, m=0,
A. Infinite Ronchi ruling +1, +£2,... By using the parameters of our ruling Ronchi

and the grating equation, the following angular positions are
In Fig. 2, the diffraction pattern when a Gaussian bean®j obtained: 6_, = 20.0364°, 6_1 = 22.4959°, 6, = 25°,
is incident on an infinite Ronchi ruling is shown. We have thef, = 27.5561° andf, = 30.1733°. From Fig. 2, the an-
following parametersi./l = 15/+/2, A/l = 0.1, and the an-  gular positions of the several orders (determined by our the-
gle of incidencedy = 25°. A Ronchi ruling withd/l = 1.5 ory) are: _s = 20.0369°, 0_; = 22.4990°, 6y = 25°,
and periodD/l = 2.5 is considered. In this case the diam- 6; = 27.5590°, andfy; = 30.1763°. We have compared the
eter ratio of the spot/period of the ruling (L/D) is 4.4&,, angular positions of the several orders of Fig. 2 with those
the beam is very far from a plane wave. From Fig. 2 severatalculated directly from the grating equation and a maximum
transmission orders (five orders are shown in figure) can beelative error of 0.013% is found. Then, the agreement is very
observed; the existence of these orders has been predicted §god. In order to explain this agreement it is convenient to
Egs. (23) and (24). We note that the several orders are vergxpress the grating equation in terms of parametefhus,
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we havek sin 0,, = k sin 6y +m2x /D, which can be written  differences with respect to the case of an infinite Ronchi rul-
in terms of the parameter as followsca,,, = o + 27 m/ D, ing, as shown in Fig. 2, are observed. In Fig. 2 the several
then, the incident wave determined by is “translated” to  orders are very well separated (angularly), but in Fig. 6 an
the several orders determined by, by means of the term interaction between them is noted (see bottom of figure).
2rm/D. Then, after comparing Egs. (15) and (23), we see  Figures 7 and 8 are similar to Fig. 3 and 4 but for a finite
that the incident wave determined by means of the amplitud®onchi ruling. The center of the incident Hermite-Gaussian
A(«) is “translated” to the several orders determined by thebeams is placed on the edge of the finite ruling (point A in
amplitudeA(a + 27 n/D) by means of the terr2m n/D. Fig. 1b). The parameters are the same as those of Fig. 2 but
In Figs. 3 and 4 the diffraction patterns when Hermite-for a finite Ronchi ruling with 20 periods. We observe that
Gaussian beams are incident on an infinite Ronchi ruling, fothe dips of Figs. 3 and 4 for an infinite ruling have suffered a
n=1, 2, andn=3, 4, respectively, are plotted. We have usedgreat change when a finite ruling is considered. We note also
the same parameters as in Fig. 2. In these figures the etaat the number of dips in these figures is different from the
istence of one, two, three and four dips at each maximunordern of the Hermite polynomial. With these results it is
(transmission order), which reach the bottom (null intensity) shown that the infinite ruling case is very different to that of
are shown. Also, we observe that the number of deep dips ahe finite ruling case. It was a surprise to verify that the an-
the maxima is the same as the ordesf the Hermite polyno-  gular positions of the several transmission orders for a finite
mial in the incident beam. In fact, these dips in the diffractionruling are in accord once with the grating equation. These
patterns are caused by the zeros of the Hermite polynomialgonclusions will be analyzed in a future paper.
It is interesting to mention that Kojima [28] has considered  Figure 9 is similar to Fig. 5 but for a finite Ronchi rul-
the scattering of TE-polarized Hermite-Gaussian beams adhg with 20 periods. The center of the distorted Hermite-
only order one« = 1) from a sinusoidal conducting grat- Gaussian beams is incident on point A of Fig. 1b. We have
ing, and one deep dip at each of the maxima in the reflectiogonsidered the same parameters as Fig. 2 but for a finite
patterns were found. So that our results for transmission rulRonchi ruling with 20 periods. Again, very big changes are
ing extend the result of Kojima far = 1 to higher orders observed among Fig. 9 for a finite ruling and Fig. 5 for an
of the Hermite-Gaussian beam. It is interesting to see thahfinite ruling.
the several orders of Figs. 3 and 4 are similajg” calcu-
lated from Eq. (50)j.e., the transmission orders and the in- )
cident beam as the same form as was established in Egs. (8) Conclusions
and (24). Finally, we mention that the angular position of the . . . .
trans(miésion or)(/jers are in accord ance with the grating equ%ye present a the_ory fo_r the d|ﬂ‘ract|on_ of two-d|men5|o_nal
tion; in a future paper we will analyze in more detail this last eams by_ one-dlmen_5|onal thin ar_nphtu_de-phase gratings.
result. Mathematical expressmns_for the .dllffracnon. of_ b_eams were
Figure 5 s also similar to Fig. 2 but for distorted Hermite- proposed. We have considered finite and infinite gratings.

Gaussian beams of orders 1 and 2. In this figure the effect In the case of infinite gratings the existence of transmission

of the exponential function in Eq. (53) is evident; each trans—Orders of diffraction, whose form is similar to the form of

mission order of the diffraction pattern is also distorted. Wethe incident beam, are shown. As a numerical application of

believe that it is the first time that this kind of beam is treatedtgzutgggrny Ségifsnfnd d”;i;r::frtz?jpt?égr]r?sdt;f;rzclgggcﬂi ':f“rrgt(em
in the i re of diffraction of beams. 2 . . i
in the literature of diffraction of beams finite and finite) is studied. We have obtained the result that

the classical grating equation predicts very well the angular

B. Finite ronchi ruling positions of the transmission orders predicted by our theory.

In Fig. 6 the diffraction pattern of a Gaussian beam()
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