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Some fundamental physical quantities are determined by solving the eigenvalue problem that comes from a system of N coupled second order
linear differential equations. An uncommon scenario evolves from the second order derivatives that appear in most multiband Hamiltonians,
which leads to wave function spaces with non orthogonal axes. This notorious property has often been ignored by many authors. In this paper
we discuss a possible criterion for the orthonormalization of eigenspinors (N×1) derived from the eigenvalue quadratic problem associated
to the differential equation system. Such eigenspinors are taken as the basis on which the propagating wave modes system is built. When the
norm of the new space is reformulated, the non-standard character of the weighted internal product comes to the forefront. This scheme has
been successfully applied to the study of hole tunneling as it is described by the (4×4) Kohn Lüttinger model.

Keywords: Quadratic eigenvalue problem; normalization; polynomial matricial equation.

Varias magnitudes fı́sicas fundamentales, son determinadas a través de la solución de problemas de autovalores, derivados de sistemas de
N ecuaciones diferenciales lineales, acopladas y de segundo orden. Un escenario inusual, es el que evoluciona a partir de las derivadas de
segundo orden, que aparecen, en la mayorı́a de los Hamilltonianos multibandas, lo cual conduce a espacios de Hilbert, de ejes no-ortogonales
para la funcíon de onda. Esta notoria propiedad, ha sido ignorada frecuentemente por muchos autores. En este artı́culo, discutimos un posible
criterio de ortonormalización de los auto-espinores (N×1), derivados del problema cuadrático de valores propios, asociado a la ecuación
diańamica del sistema. Tales autoespinores, son tomados como base para expandir los modos propagantes a través de una heteroestructura.
Cuando se reformula la norma del nuevo espacio, el cáracter no estándar del producto interno pesado -sobre el que descansa la nueva norma-,
pasa a un primer plano. El presente esquema, ha sido aplicado conéxito, en el estudio del tunelaje de huecos, cuyo marco teórico es el
modelo de dos bandas de Kohn-Lüttinger (4×4).

Descriptores: Problema cuadrático de autovalores; normalización; ecuacíon polinomial matricial.

PACS: 73.23-b; 02.60.Lj

1. Introduction

Several relevant physical quantities are convincingly deter-
mined through the solution to the eigenvalue problem that
stems from a second order differential system ofN cou-
pled equations. In this paper, we will briefly go through
the quadratic (QEP), generalized (GEP) and standard eigen-
value problems (SEP). Currently, the QEP is the one receiv-
ing more attention because of its applications to several fields
such as dynamic structural mechanism analysis, acoustic sys-
tems, electric circuit simulation, fluid mechanics, linear al-
gebra problems, signal processing and, lately, nano(micro)
electrical system modeling [1], and the study of hole quan-
tum transport [2,3]. These two last applications seem to be
the most enticing, because of their contribution to the emerg-
ing fields of Optoelectronics and Nanotechnology.

The benefits of the QEP we have just mentioned do not
include a comprehensive presentation of all the fields where
this complicated problem could be applied. As a matter of
fact, the number of practical applications persistently grows
as the methods to solve the QEP [4,5] and the GEP [4,5] in-
crease and become more diverse. This report is a contribution
to that trend, since it presents a criterion for the orthonormal-
ization of the eigenvectors (eigenspinors) of the SEP obtained
from ak · p multiband Hamiltonian.

The most relevant algebraic distinction between the
QEP and the GEP/SEP is that the quadratic problem has
2Neigenvalues, with their respective2N eigenvectors (left
and right) which, strictly speaking, do not form an indepen-
dent linear set. Within the wide range of problems whose
systems are properly described by the envelope function ap-
proximation (EFA), the QEP has hardly been explored to our
knowledge, and certainly it has not been dealt with as often as
the GEP and the SEP. Certainly, the orthonormalization pro-
cedure in relation to the EFA for multiband Hamiltonians is
not trivial, and its difference from routine procedures funda-
mentally comes from the presence of first derivative terms
(linear elements of momentum) in the Hamiltonian. This
difference is quite relevant when it comes to the electronic
problem within the effective mass approximation (EMA) to a
band.

Even if here we are addressing the general problem of
Ncoupled components, our implicit goal is dealing with the
QEP associated to the Kohn-Lüttinger model (KL) [6-9],
whereN =4.

2. QEP linearization

We understand linearization as the process whereby the QEP
(which is non-linear by definition) is transformed into its cor-
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responding GEP and SEP, that is, into equivalent linear prob-
lems with the same eigenvalues. The properties of second
order differential equation systems have been thoroughly an-
alyzed by Lancaster [10] and, later on, by Ghoberg, Lancaster
and Rodman [11]. In their studies, the algebraic problem
coming from the attempt to solve a system such as the ones
we have mentioned is dealt with from a mathematical per-
spective. In a later date, F. Tisseur and K. Meerbergen [1]
worked on a detailed study on this topic. They start by men-
tioning a wide range of technological and academic problems
leading to systems for which an associated QEP can be de-
fined, i.e. an eigenvalue problem where there is a square
eigenvalue and terms in a first derivative.

The movement equation in multiband systems, which
does not vary in relation to movements in the [x, y] plane
is [12,13]

d

dz

[
B(z)

dF(z)
dz

+ P(z)F(z)
]

+ Y(z)
dF(z)

dz
+ W(z)F(z) = ONx1, (1)

whereB(z), P(z), Y(z), W(z) are (N×N) matrices mostly
hermitian in the formal sense, and whose detailed form in
specific cases might be found in references [12-14]. Here
and in the rest of the paperON/IN , will represent theN
null/identity matrix. TheN unknown functions are called
envelopefunctions and may be collected in anN component
vector which we will represent asF(z) beingz the coordinate
in the quantization direction.

Thus, by proposing a solution to the differential prob-
lem (1) of the form

F(z) =
2N∑

j=1

αje
iλjzϕj =

2N∑

j=1

αjFj(z) (2)

whereαj contains the linear combination quotients and the
corresponding normalization constants of theFj(z) in the
configuration space,λj is real or complex andϕj is a (N×1)
spinor, we get the following algebraic problem which deter-
mines the QEP associated to (1)

Q(λ)ϕ = {λ2M + λC + K}ϕ = ONx1 (3)

whereλ is the eigenvalue, and theϕ spinors are the eigenvec-
tors (eigenspinors). HereM, C andK are (N× N) matrixes
which usually depend onz. The general properties of the
Eq. (3) are displayed in Table I of Ref. 1. We will focus to
the case whereM, C andK are hermitians and, therefore,λ
are real or appear in coupled pairs(λ, λ∗), since it is the one
that corresponds to the systems being studied by us; those
described by Hamiltonians in the different methods for the
widely-knownk · p approximation [8,15-28].

If {A− λB} is a linear (2N×2N) matrix inλ and is taken
as thelinearizationof Q(λ) [1,11]; a simple way to build the
linear form found in (3) with identical eigenvalues is using

the substitutionµ = λϕ in (3) and reformulating the equa-
tion as [1]

{λM + C}µ + Kφ = ONx1 (4)

which then leads to the associated GEP [1]

[
ON N
−K −C

] [
φ
µ

]
− λ

[
N ON

ON M

] [
φ
µ

]

= {A− λB}
[

φ
µ

]
= O2Nx1 (5)

Usually N = IN or one of its multiples are to be cho-
sen [1]. Other authors have used other ways to linearize the
matricial polynomialQ(λ) [10].

In order to obtain physical observable data associated
to (5) one must make the simultaneous diagonalization of ma-
tricesA andB. There is a known solution for this problem in
the case of vibrating mechanical systems, under a small oscil-
lation regime. [29]. Nevertheless, the test of the GEP (5) for
quantum systems described byk · p Hamiltonians may end
up being a failed procedure, even when powerful symbolic
calculation applications are used.

Therefore, the next step may be convenient. There, the
GEP would be reduced to a solvable SEP. In order to do this
B must be non-singular. Then, the following cases are possi-
ble:

(AB−1 − λI2N )B
[

ϕ
µ

]
= O2Nx1 (6)

(B−1A− λI2N )
[

ϕ
µ

]
= O2Nx1 (7)

The eigenvalues in (6) and (7) are the same as those in
the QEP (3). But, on the other hand, the eigenvectors in both
problems are different as it may be easily seen; nevertheless
it is easy to obtainφ from (6) and (7), whereφ is the eigen-
spinor of the original QEP.

It is worth noting that solutions to this problem have
proved to be quite stable. These solutions have been stud-
ied for vibrating systems with different parameters [5]. In
the case of quantum transport of carriers, which is one of the
problems we have taken into consideration for this study, sta-
bility is strongly determined by the properties of the QEP’s
eigenspinors (we will address this issue in the following sec-
tion) and by the features of the eigenvalues. The solutions ob-
tained within a certain range of energies are complex or, be-
ing real, lack physical meaning for the given problem. Nev-
ertheless, when studying tunneling phenomena both kinds of
solutions are valid, and the evanescent ones represent a de-
cisive contribution to channel interference mechanisms, both
for electrons [30] and for holes [2,9,31].
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3. QEP Eigenspinor orthonormalization

In order to get unitary flux solutions when a multichannel-
multiband quantum transport problem is being solved [2,9] it
is vital to build a space with orthogonal and normalized axes
where independent linear solutions may be expanded. Some
authors have invoked alternative procedures to face this ques-
tion [32,33]. We will address that problem in this section.

Once we have obtained the GEP associated to the QEP it
will be useful to define the right and left (2N×1) dimension
vectors, which will be noted asωi andψi respectively [1]

ωi =
[

ϕi

λiϕi

]
(8)

ψi =
[

ϑi

λ∗i ϑi

]
(9)

when substituting those in the QEP (3) and in the equations:

Q(λi)ϕi = ONx1,

ϑ†iQ(λi) = ONx1

after a first linearization has been made, we get

ψ†i (A− λiB)ωi = 0. (10)

This leads us to

ψ†i Aωi − λiψ
†
i Bωi = 0, (11)

whose simplest option

{
ψ†i Aωi = λi

ψ†i Bωi = 1

}
, (12)

can be generalized to the2N eigenvaluesλi. Let us introduce
first

Λ = diag(λ1, λ2, ..., λ2N )

= diag
(
ψ†1Aω1, ..., ψ

†
2NAω2N

)
, (13a)

and the identity matrix

I2N = diag
(
ψ†1Bω1, ψ

†
2Bω2, ..., ψ

†
2NBω2N

)
. (13b)

Next we represent

Ψ = diag(ψ1, ψ2, ..., ψ2N ), (13c)

Ω = diag(ω1, ω2, ..., ω2N ), (13d)

and also include the (4N2×4N2) diagonal matrices

Ã = diag(A,A, ...,A), (13e)

B̃ = diag(B,B, ...,B). (13f)

Finally, we may re-write (12) and conclude that the nor-
malization conditions imposed onΨ andΩ [1] can be quoted
as

Ψ†ÃΩ = Λ, (14)

Ψ†B̃Ω = I2N . (15)

Therefore it is straightforward for each eigenvector (left
and right) that

ψ†i Aωj = λiδij , (16a)

ψ†i Bωj = δij , (16b)

and we remark how Eqs. (14) and (15) entail a change of
base yielding simultaneously diagonalized matrices.

If we now substituteA andB in (16a) and (16b) by each
of their own linearization forms (5), then we can easily obtain
the conditions that should be satisfied by the eigenspinors in
the original QEP (3)

ϑ†i (λiIN − λiK + λiλjC)φj = ϑ†iL
〈ij〉φj = λiδij (17)

ϑ†i (IN + λiλjM)ϕj = ϑ†iD
〈ij〉ϕj = δij , (18)

with the particular outcome

L〈ij〉 = λjIN − λiK + λiλjC (18a)

D〈ij〉 = IN + λiλjM. (18b)

For the kind of systems we have defined in Section 1, the
formal hermitian character of the matrices of the correspond-
ing QEP establishes thatϑ†i = ϕ†j (∀λi,j ∈ R), therefore
the matricial arrangementsL〈ij〉 and determine the internal
product of the space we have generated departing from the
original QEP.

We should note that, when solving a multichannel-
multiband quantum transport problem, the matricial arrange-
mentsL〈ij〉 andD〈ij〉 determine the internal product of the
space we have generated departing from the original QEP.

We should note that, when solving a multichannel-
multiband quantum transport problem, the matricial arrange-
mentsL〈ij〉 andD〈ij〉 are not standard; since (18a) and (18b)
are explicitly dependent upon the eigenvalues and therefore
change along with them.

The expressions (17) and (18) have been deduced from
the QEP [1]. For the sake of simplicity, from this point on-
wards we will use the expression (18b) to reformulate the
norm of the new space, which will be justified further on.

In general, the norm for the new space will be established
by the weighted internal product defined by:

〈ϕj |ϕj〉 =
∑

kl

(ϕ†j)k(D〈ϕi|ϕj〉)kl(ϕj)l = ‖ϕi‖2 = 1 (19)

Where the superindexes〈ij〉 in the matricial arrange-
ments determine the labels of what we shall callspinorial
weighted internal product of associated eigenvalues. Notice
that the eigenspinors satisfy

〈ϕi|ϕj〉 = ϕ†iD
〈ij〉ϕj = δij ; ∀ i, j; i < j (20)
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If we assume, for completeness, that the weighted inter-
nal product (19) is non commutative

〈ϕj |ϕi〉 − 〈ϕi|ϕj〉 = ϕ†j
(
D〈ji〉

)
ϕi − ϕ†i

(
D〈ij〉

)
ϕj 6= 0,

given the character of the dynamic equation quotients and
the form of the matricial arrangement

(
D〈ij〉)† =

(
D〈ji〉)† ,

the condition for the commutability of the weighted internal
product should demand that

[
D〈ji〉 −

(
D〈ji〉

)†]
= 2iIm ‖λjλi‖M = ONx1, (21)

which is only fulfilled whenλi = λ∗j . Normalization (20)
is not affected by this mimicked “leak” in the orthogonality
of the ϕi –which we had assumed for completeness in our
analysis-, because of the features of the space that has been
built.

We should note that theD〈ij〉 matricial arrangement
(18b) is not only commutative as it has already been proved
above, but it is also defined as positive if:I2N+λiλjM>0,
for every vectorX 6= 0 with X ∈ R2N , that yields
X†D〈ji〉X > 0. SinceD〈ij〉 is hermitian, its eigenvalues
are real; and if we consider thatM is diagonal by construc-
tion, then

1 + λiλjmii > 0 → λiλj > −
(

1
mii

)
.

Despite the non-standard weighting-function (18b), the com-
mutability ofD〈ij〉, together with its positive-defined charac-
ter, assure a well-defined and non-degenerate weighted inter-
nal product for the spinorial space.

If we are dealing with electric charge conservation
processes for multiband-multicomponent quantum transport
of charge carriers, it would be convenient not to depart
from an orthonormal basis. We can orthonormalize the
{φ1, φ2, . . . φ2N} set of eigenvectors from the SEP (6), by
the Gram-Schmidt procedure; where the weighting-function
role is played by the matricial arrangement (18b) and
{Φ1,Φ2, . . .Φ2N} is a set of orthogonal eigenvectors,i.e.

Φ1 = ϕ1

Φ2 = ϕ2 − 〈ϕ2|Φ1〉
||Φ1||2

Φ1

Φ3 = ϕ3 − 〈ϕ3|Φ1〉
||Φ1||2

Φ1 − 〈ϕ3|Φ2〉
||Φ2||2

Φ2

Φi = ϕi − 〈ϕi|Φ1〉
‖Φ1‖2 Φ1 − 〈ϕi|Φ2〉

‖Φ2‖2 Φ2

− 〈ϕi|Φ3〉
‖Φ3‖2 − . . .− 〈ϕi|Φi−1〉

‖Φi−1‖ Φi−1. (22)

Since the (N×1) φi eigenvalues are linearly independent,
each orthonormalized (N× 1) eigenspinor has the following
shape

Φ̃i =
Φi

||Φi||2
; i = 1, 2, . . . 2N. (23)

The matricial arrangement (18b), we have chosen to dis-
cuss and reformulate the norm of the new spinorial space is
trustworthy; since there are known numerical results for sev-
eral physical phenomena which may be experimentally con-
fronted, as well as widely acknowledged theoretical predic-
tions which have been successfully obtained from (18b) in
the study of hole tunneling. For the sake of consistency, we
will briefly comment on this issue in short.

For instance, when Śanchez and Proetto [24] introduced
the so-called pseudo-unitarity of the scattering matrix as

S†JS = J,

they developed their problem departing from an orthonormal-
ized base in the configuration space only. However, when
a totally orthonormalized base is considered (configuration
space and spinorial space), the

S†S = IN

standard unitarity is fully recovered [2]. Experimentally E.
Méndez, Leo Esaki,et al. [34], had obtained the hole levels
of a quantum well embedded in a semiconductor heterostruc-
ture from photoluminiscence data. On the other hand, Wes-
sell and Altarelli [32] were able to appropriately determine
most of these levels through their model. Sometime later, L.
Diago-Cisneroset al. managed to reproduce those very lev-
els with more accuracy (some of them with extremely good
precision), through their multicomponent scattering approx-
imation (MSA) [2]. With their model, P. Mello, P. Pereyra,
and N. Kumar [35] obtained an expression for the probabil-
ity flux density within the effective mass approximation (case
N=1), in a model where the standard unitarity of the scatter-
ing matrix, was proved even for a stochastic metallic model.
It is possible to prove that the results of P. Melloet al. are
reproduced within the (N≥2) MSA, when uncoupled modes
are properly considered [36].

On the other hand D. Dragoman and M. Dragoman [37],
proposed a single–chip device involving electrons and holes.
In their experiment, they measured a 10−13 s order tunneling
time for light and heavy holes. Within the MSA [2], it can be
obtained the same order for the phase transmission time for
light and heavy holes where no external magnetic fields were
considered. A long time ago, T.E Hartman [38] had fore-
seen the autonomy of tunneling time, regarding the thickness
of the potential scatterer for almost opaque barriers. Experi-
mental evidences for Hartman’s classical prediction for pho-
tons and electrons have been published elsewhere. Numeri-
cal simulations for Hartman’s prediction have been obtained
within the MSA, for coupled [2] as well as for uncoupled
holes [6] by the phase time formalism. A. Kadigrobovet
al. [39], N.K. Allsop et al. [40], and P. Pereyra [41] have
also reported giant conductance conditions (maximum reso-
nant transmittance) in different physical systems. Evidences
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FIGURE 1. General scattering scheme of the system under study.
Noteworthy implicit cases are: (i) simple interface between lay-
ers L and R; (ii) compound layers directly on top of each other or
(iii) any intermediate embedded structure that might exist between
them.

of giant conductance for uncoupled holes have been obtained
in relation to the MSA [42] as well. Experimental measure-
ments by A.P. Heberleet al. [43] for electron and hole tunnel-
ing time through semiconductor layered system, have been
nicely reproduced for holes in the framework of the MSA [2].
Numerical evidences of superluminal events were obtained
for the transmitted phase time [44], while appealing phase
time dependencies for electrons traversing a simple cell, and
a superlattice were also reported [44]. That phenomenology
was found for the quantum transport of heavy and light holes,
modeling in the framework of the MSA [42].

4. Real eigenvalues

In this subsection we will present a study where we will take
the case of coupled incident/emerging states (see Fig. 1)i as
they are described in relation to the EFA as a point of depar-
ture. We will also explicitly demand the specific orthonor-
malization requirements adequate for the EFA case on the
base of linearly independent functions (LI). Therefore, we
will have to consider that the base has been fully orthonor-
malized. We will consider,a priori, that the LI solutions
have been orthonormalized in the configuration space. We
consider that the system is properly described at all times in
relation to the EFA.

Let us start by determining certain orthonormality condi-
tions in the function spinorial space which are far from being
the only possible ones as already mentioned above. If we call
Fj(z) the (N×1) LI vectors that form an orthonormal base to
represent an envelope state (2) of the system (1), we can take,
in particular

Fj(z) = Γje
iqjz, (24)

for the L and R regions (see Fig. 1) of constant parameters,
i.e. the matricial quotientsB(z), P(z),Y(z) andW(z) are
no longer dependent onz and are constant in certain seg-
ments. VectorsΓj are (N×1) spinors and they do not depend
on spatial coordinates, whileqj vectors are the corresponding
2N eigenvalues as a solution to the algebraic problem. If we
substitute (24) in (1) we obtain

−q2
jB · Γj + iqj (P + Y) · Γj + W · Γj = ONx1 (25)

This is a QEP [1] as the one we presented on (3), but has
been formulated in the terms of the matricial quotients of the
dynamic Eq. (1). Here we have introduced new symbols for
several relevant quantities to highlight the fact that the reader
should assume that these quantities coincide, in general, with
the case discussed in Subsec. 3.1.

If P is hermitian, there is not a coupling term for the
status in the first derivative in the field, and the analysis is
rather simplified as we will see further on. Nevertheless that
is not the case if that matrix is antihermitian

(
P = −P†

)
, and

thereforeP−P† = 2P. That is the case which is interesting
for us, because it keeps the coupling between propagating
modes departing from the existence of a linear term inqj .
That situation happens in systems such as Kohn-Lüttinger,
Kane and others where N≥ 2 [6]. If we also use the property
Y = −P†, then we can obtain from (25)

−q2
jB · Γj + 2iqjP · Γj + W · Γj = ONx1 (26)

If we apply the complex transconjugate operation to (26)
and using the properties of the matricial quotients of (1), we
get

Γ†j · [−(q2
j )∗B + 2i(qj)∗P + W] = O1xN . (27)

We multiply (26) byΓ†k on the left. Then we re-write (27)
for Γ†k and multiply (28) byΓj on the right. Subtracting the
new expressions, and doing a little algebra the result is

Γ†k ·
[{

(q2
k)∗ − (q2

j )
}
B− 2i(q∗k − qj)P

] · Γj = 0. (28)

If now we considerqiwith i = k, j as real and –in
general-, that (qj 6= qk), we may factorize this expression
dividing it by (qk − qj). We then get:

Γ†k · [{qk + qj}B− 2iP] · Γj = 0. (29)

Here, orthogonality conditions (29), suggest that the fol-
lowing orthonormalization conditions should be used:

Γ†k · [{qk + qj}B− 2iP] · Γj = δjkβ, (30)

for qiwith i = k, j being real, andβ an arbitrary constant.
It should be useful to note that the case in whichB = IN

andP = Y = ON corresponds to the uncoupled electronic
problem as it is described by one Schrödinger equation [32].
Under these particular conditions, Eq. (29) becomes

(qk + qj)Γ
†
k · Γj = 0, (31)

where LI solutions are orthogonal in every case except when
qi = −qk, where we know them to be equal [32] . This
scheme has been successfully used in the study of hole tun-
neling described by the KL model [2,6] as we have already
commented at the end of the previous section. In order to
do this we obtained a base of eigenspinors (4×1) on which
we built the envelopeF(z), whose flow is unitary within an
acceptable range of the physical parameters [2,32]. Unlike
what is stated in previous reports [33,34], the introduction
of arbitrary normalization constants in the transmission quo-
tients has not been necessary.
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5. Conclusions

Common QEP-GEP-SEP eigenvalues, along with the easy
correspondence between derived eigenvectors, allows us to
elaborate a useful way to associate these problems. The
largest and upmost direct benefit of this way of doing is a
less complicated SEP problem from the analytic and numeri-
cal perspectives to deal with.

The construction of an orthonormalized-metric solution
space associated to a mixed-multicomponent QEP, demands

a matrix weighting-function to be hermitian, and therefore
leading to real eigenvalues. The non-standard character of
the commutative weighted internal product, is highlighted as
the new space norm is systematically reformulated, due to
its explicit dependence on the QEP’s eigenvalues. However
this unusual scenario, weighted internal product is trustwor-
thy, since there are strike numerical results related to sev-
eral physical phenomena of hole tunneling described by the
MSA model, that can be compared with experiments and with
widely acknowledged theoretical predictions.
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