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A model of irreversible Carnot-like power plant withCarnot-like cycles is optimized. The irreversibilities of each cycle are: finite rate heat
transfer between the working fluid and the external heat sources, internal dissipation of the working fluid, and heat leak between reservoirs; is
extended to two or more of this combined model. Applying the Bellman’ Principle, we find the optimal recurrence relations for the allocation
of the heat exchangers for thes power plants. The optimal allocation or effectiveness is determined by two design rules, applied alternatively:
internal thermal conductance fixed or areas fixed. The optimal recurrence relations obtained for this combined model are invariant to the
power and efficiency and to the heat transfer law.
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Se optimiza un modelo de planta de potencia irreversiblercoitlos tipo Carnot. Las irreversibilidades de cada uno de los ciclos son:
transferencia finita de calor entre el fluido de trabajo y losOdiéps de temperatura, disipanidel fluido de trabajo y fuga de calor entre
ambos defpsitos; es extendido a dos camde este ciclo combinado. Aplicando el Principio de Bellman, encontramos las relaciones de
recurrenciabptimas para la dimer@n y efectividad de los intercambiadores de calor para modelo combinadéptiaa dimengin y
efectividad se determina mediante dos reglas déidisplicadas alternativamente: conductané@gsicas restringidasarea total constante.

Las relacione$ptimas para la dimertn 0 efectividad obtenidas para este modelo combinado son invariantes a la potencia y eficienciay a
la ley de transferencia de calor.

Descriptores:Irreversibilidades; Carnot; dimeidsi; efectividad; conductanciarea;optima.

PACS: 01.40G; 05.70.-a; 64.70.F

1. Introduction like cyclic model, have been discussed in several works, [18-
23], and so on.

Recently in [1], a methodology of optimization was applied  On the other handy-stage combined Carnot cycle has
to an irreversible Carnot-like power plant, where the charqeen presented, by the law of heat conduction, in [24-26] op-
acteristic parameters were: the allocation or effectiveness @fmizing the specific power and efficiency for the characteris-
the heat exchangers of this plant. Although this methodologyic parameters: isentropic temperature ratios , and effective-
is applicable to any Carnot-like power plant, a standard irreness (other combined cycles can be found in [27-36], cou-

versible Carnot-like cycle was chosen because of its simplicpjed heat devices in [37-38]; see also the references therein
ity to account for the main irreversibilities that usually arisejncluded).

in real heat engines [2]: “finite rate heat transfer between the

working fluid and the external heat sources, internal dissipa- N this paper we extend the results of allocation or ef-
tion of the working fluid, and heat leak rate between reserfectiveness for one cycle to two or more combined cycles
voirs”. The above standard irreversible Carnot-like cycle ha®f the same irreversible Carnot-like power plant using iter-
been studied at length for many objective functions, differ-atively the Bellman’ Principle [39] which has been success-

ent transfer heat laws and several characteristic parameteit4ly applied in Refs. 13 and 14. We found optimal recur-
(see [2-24] for more details). rence relations remarkable for the irreversible power plant

e{vith n Carnot-like cycles for two constraints (design rules):

The maximum power and efficiency have been obtaine . . !
. L .. constrained internal thermal conductance or fixed total area
in [3-6]. In general, these optimizations were performed with .
of the heat exchangers from hot and cold side.

respect to only one characteristic parameter: internal isen-
tropic temperature ratioc] including the time too [18]. How- This paper is organized as follows. In Sec. 2 we present
ever, Bejan and Lewins [15,20] have considered the optimizathe irreversible power plant model and the functional relation
tion with respect to other parameters (see also the reviewsetween power and efficiency which extends to the corollary
of [17-18] for more details): “the allocation, cost and effec- presented in [1] to the irreversible power plant. Section 3
tiveness of the heat exchangers of the hot and cold sides”. Quresents the optimization of the allocation and effectiveness,
the other hand, effects of heat transfer laws or when a propy two design rules, of heat exchangers for the Carnotsike

erty is independent of the heat transfer law for this Carnotcycles of the power plant. Section 4 is devoted Conclusions.
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2. Power plant with n Carnot-like cycles

The power plant withn Carnot-like cycles is shown in = )P0 (1)
Fig. 1. Each cycle satisfies the conditions expressed in [2,4]:

leak heat ratg) and finite heat transfer rate@; and in-  wherex; = Ty;/T5;_1 corresponds to the isentropic temper-
ternal dissipations of the working fluid expressed by con-ature ratio for each cyclg: = 1, ....,n), P is the power of
stantsl;(i=1...n) such thatl; = (AS;11/AS;) > 1;i = the plantQ is the leak heat rate and the function

1...n [4] which make the Claussius inequality to become 1

equality (for more details see [1,24]). Each cycle of the power -

plant consists of two isothermal and two adiabatic processes. 1= (ITizy Los)

Denoting, for each cycle, the temperatures of the working e Eq. (1) is obtained of the following way: accord-

)

fluid in the hot and cold isothermal processesias ; and

Ty (i = 1...n), respectively, and the end temperatures a%(: 1.2

Ty andTL .

Following to [1,25], the thermal efficiency of the power
plant is given by (this functional form for only a cycle has

appeared in Refs. 1, 2, and 17):
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FIGURE 1. A power plant withn Carnot-like cycles, with heat

ing to the second Law of the Thermodynamics, for each
,.--,n), we have (cfr. with [25]),

Qiv1 = Lz Qs 3

Thus,

Qn+l = nann = .. = szzQz
= ... = lelQl (4)
Now, using the Egs. (3) and (4), the efficiency is given by,

P Qu—-Qr G1—Qnn
Qu Qu Qu

(1 Qe N@ (1. ) ) @
(%) g (1 @“”)) on

From the Eq. (5)@)1 is equal to:

P
1- (H?:llixi)

And from the Eqg. (6), (1) is obtained.

The Eqg. (1) extends to the Eq. (6) of [1]. Therefore, we
can seek, as in [1], invariant optimal relations, by following
the spirit of Carnot’'s work, for other characteristic parame-
ters, which can be independent from the heat transfer law, of
the irreversible power plant.

Also, the Eg. (1) say us that it is enough analyzes only for
power and efficiency (for other operation regimesg. alge-
braic combination of power and/or efficiency that have ther-
modynamic meaning and satisfy imposed power conditions:
see Eq. (7) below and for more details see [1]). For instance,
the functional expression of the efficiency, power and the heat
transfer, without require of algebraic explicit expressions,
have been used in [2], for two constraints (design rules): con-
strained internal thermal conductance or fixed total area of
the heat exchangers from hot and cold side. The isentropic
temperature ratio do not has this condition [1,2,3,13,24-26].

Now, if we takez # x;(i = 1,2....n) as other indepen-
dent variable the Corollary given at [1] can be paraphrased
as:

“The powerP achieves a maximum value i), if and

n=

Q1= (6)

leak rate, finite heat transfer rates, and internal dissipations of thednly if the efficiencyp achieves a maximum value in the

working fluid in each cycle.

value: zp,p = Zme
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Thus, in the optimization of power plant, with respectto 3. Universal optimal relations for the alloca-
z itis enough to find the maximum power by, tion and effectiveness of the heat exchang-

op 92 p ers of the power plant
— =0 and —— <0 @)
0z 022

Zmp=Zme Zmp=Zme

The optimization of power and efficiency with respect to is
well known for combined cycles [13,24-26]. Henceforxh,
The optimization performed, with respect to will be: a prop- will be fixed and we will assume that the law of heat transfer
erty independent from the heat transfer law. This a remarkrate can be any law, included also the heat leak rate. Essen-
able conclusion of the Eq. (1) is that it can find the maximumtially, we will treat the following two design rules: internal
for one and only one the power (see the criterion of [2]). Forthermal conductance fixed; or areas fixed for heat exchang-
example the power, for power plant model, by ers; which will be applied alternatively.

The first design rule is that the internal conductance of
the Carnot-like cycle is constrained ;" ; o; = I'; where
I' is a constant, which is applied to the allocation of the heat
exchangers from hot and cold side with the same overall heat
We show the above as follows: Let# z;(i = 1,2....n) and transfer coefficient/ by unit of areaA in both ends of the cy-
the vectorz = (21, ...., 2,) andz,,, the point in which the =~ cleianda;, a1 (1 = 1,2....n — 1) are the thermal conduc-
power achieves a maximum value, then, tance correspondent to the finite heat transfers of the hot/cold
sides for this cycle. Thus,

0?P
=0 and el

opP
0z

<0 (8)

Zmp=Z2Zme Zmp=Z2Zme

0?P

op op
0z2

9 =0 and

Zmp=Zmp

<0. S u4; =1 (11)
=1

Zmp

The power and the efficiency satisfy the functional relation-where A;, A;,, are heat transfer areas on hot/cold sides of

ship given by the Eq. (1). Deriving (1) with respect to: the cyclei(i = 1,2....n — 1).
op Alternatively, the second design rule is that the total area
@ _ Q(z) ©) is constrained by:Z?:1 A; = A; whereA;, A;1, are heat

0z [f(x)P+QJ? transfer areas on cold and hot side for the cycldlow, the
total area f) is fixed, but when distributed it has distinct

since, we can suppose th@tdoes not depend of the variable overall heat transfer coefficients and hence different effec-

Z tiveness on each one of the hot and cold sideswAs U; A;
Therefore, (see [1 and 12]), then,
0z Zme -0 9z zmp7 ; i=1 Ui

whereU;, U,;1 are the overall heat transfer coefficients on
cold/hot sides of the cycl&i = 1,2.....n). From the result
%f the Sec. 2, it is enough to foundHe maximum power
of each Carnot-like cyclé(i = 1,2.....n) for the two design

wherez,,. is the point in which the efficiency achieves a
maximum value which implies that their roots are the sam
Zmp = Zme. AlSO, it is easily seen that fof,,, = 2., the

efficiency reach a maximum since rules (11) and (12)
Indeed, the dimensionless power output (Eq. (2.5) for one
Q <«?;123 ) cycle in [3]) for each cyclé is given by:
827] ‘ Zme=2%
v — me me 10 i h(xl)
o=, ., uwwrree 00 pi= = 13)

1
;T 1 ot

In all the above calculations none transfer heat law has beetere 1(z;) is a function which depends on the heat trans-
used. fer law sincex; = Tb;/T»;—;1 is the isentropic tempera-
Therefore, it is enough to have one, and only one, alture ratio of the cyclei ([1,2,3,13,24-26]); andv;, ;i1
gebraic expression of the power aady heat transfer law  i(: = 1,2.....n — 1) are the thermal conductance correspon-
We choose for our convenience the power and the condudent to the finite heat transfers of the cold/hot sides for this
tion heat transfer Law since they are algebraically the simsame cycle.
plest. In the optimization of the power of the plant for two Next, applying the Bellman’ Principle [39], in form itera-
constraints (design rules): constrained internal thermal cortive, we can obtain the optimal relations for the allocation of
ductance £ = ¢) or fixed total area{ = ¢) of the heat ex- the heat exchangers of the power plant (Fig. 1). This prin-
changers from hot and cold side of the heat exchangers fromiple will be applied as it is indicated in [20]:td state that
hot and cold side. every part of an optimum path is optimal
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3.1. Constrained internal thermal conductance

The n thermal conductance can be written ag: = UAq;
i = 1...n+ 1 whereU is overall heat transfer coefficient

andA4;; i =1...n -+ 1 are the available areas for heat trans-

fer. Thus, for the first optimization we can take for this first
design rule:

o +ay =1

wherel'; =T'—3"" . «; is supposed to be a constant. Equiv-
alently,

a1 + a9
I}

=1

Fixing the temperaturg;(j = 3...n+1) and applying only
for the first cycle:

a0y + Qg

=1
I ’

a1:1

In parameterizing,

According to the Eq. (13), in optimizing

)

1

<¢%+

I
l1—a1¢

with respect tap; we obtain:

1
o= +VT
sincea; = 1. Solving,
1—-a1¢ /= Qo
®1 YT

Qg = 11051.

Continuing of this way we arrive to the following optimal
recurrence relation:

ap\/In_10q, n=23... (14)
and
n—1
Ay = Z \/E, IO =1.
j=0

From the Eqgs. (11) and (14) we have: the areas de transfer-

ence of heat decreases frdm to 77,
(15)

and the equality is fulfilled if there is not internal dissipation
in then cycles.

G. ARAGON-GONZALEZ AND A. LE ON-GALICIA

3.2. Constrained areas of heat exchangers

For simplicity, we supposé& = 1(i = 1....n), without inter-
nal irreversibilities. Applying the design second design rule
(Eq. (12)),

A1+ Ay =4
whered; = A— " . A; is supposed a constant and fixing
the temperaturé;(j = 3......n + 1). How,

(&%)

A = _ 22
1 i

A

then
Ay = ar0q Furan

whereu; = U, /Us; a; = 1. In parameterizing,

b=l aw= ¢
From according to the Eq. (13):

_r
the first optimization with respect o, gives:
N

1 = 14+ a1y

Then,

1—ayn
U1

_ 1+ V(e —1)
N

Solving,
Ay
v/ a1uy

and, the results of [1] are recovered.
Continuing of this way arrive us to the following optimal
recurrence relation:

1+ \/un—l(an—l - 1)
An = Ay
1+ Up—1+/Un—1

A

(16)

with
Un—1 =U1/Up;  an—1 = a2+ ap_2,
> 2 1+ 1 1
n ;o A = ;oap = L.
\/ai1uy

3.3. Some special cases

To illustrate the optimal relations (14 and 16) we can choose
a power plant with 2 or 3 like-like-Carnot cycles:
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a). Case constrained internal thermal conductance b). Constrained areas:

az = Vhoi; az = v/Iar anday = v/Iza, foronly three  ¢yjes,
cycles. IfI; = 1; j = 1,2,3 (without internal irreversibil-

ities). Then, the optimal conductance without internal irre- N A

AT . _ . . A = A; Ay = .
versibilities are obtainedys = a3 = ay = a3 = (1/4)Ty. 1+ iy 1+ var
For two cycles:az = as = a3 = (1/3)T'3 only and so on.
This last result was reported in [13] using only the heat con- Ay = u1 + ury/u2 .
duction law. Thus, the expressions obtained from (14) are (V1 + Juguy + (fuz)(1 + \/ur)

extended to any heat transfer law.
|  And for three cycles,

1 Jul 4 /us
Ay = ——=A1; Az= Ay
/U1 VUL T+ A SU2U + /U
A A/ U1 +\/U2+\/’U12U1 +\/U3U1 +\/U3’LL2
4

= A
VUl + A Su + Jur + 2\/U3U1 + 2\/U3’LL2 + \/U3UQ’U,1

whereu;_, = U1/U;; I; = 1; j = 2,3,4; and so on. The
expressions obtained by (16) are extended for any heat tranls- asay + as
fer law. -, !

withas =1+ +T; T2 =T —>""_, a; aconstant and fixing
the temperatur@}; (j = 4....n + 1) and applying only for the

4. Conclusions second cycle. In parameterizing,

« Qs

We have found and determined the optimal allocation of heat ¢ = ITI; 1—axp= ITS

exchangers of a power plant with n Carnot-like cycles. We . 2 2

must note that the optimal recurrence relations (Eqs. (14 Similarly,

and 16)) found for this model are valid for any heat transfer ( 1 )
G+

in optimizing

law and have not been reported in the literature previously;
specially the Eq. (16). Thus, following the spirit of Carnot’s
work, we have found invariant optimal relations for power with respect tap; we obtain:
and efficiency maximum which are valid for any heat transfer 1
law. Moreover, these relations can be satisfied for other op- o= ——=
. . . . . as + \/E
eration regimesg.g. algebraic combination of power and/or )
efficiency that have thermodynamic meaning and satisfy the©/Ving
conditions imposed to the power (Eq. (7)) which can be car- 1 —asps ﬁ a3
ried out as in [1]. Nevertheless, the optimal isentropic tem- b - vViR= s
perature ratios depend on the heat transfer law and the opergg,
tion regime of the engine as is discussed in [1,2,3,13,24-26].
Finally, the above equations can be extended to n Carnot-
like cycles presented here including other heat transfer ratg@ndas = 1 + /T, + +/I>. Continuing of this form arrive us
laws by the substitution of either of (14) or (16) in the ob- to the Eq. (14).
jective function (algebraic combination of power and/or effi-  We can show the relation (14) by Mathematical Induc-
ciency) and optimize only for the isentropic temperature ration [38]. Indeed forn = 2 is true. We suppose that for
tio. However, the latter requires a comprehensive study of thg, = £ is true and we must show far= & + 1. From the hy-
implications for the power plant considered. We will study pothesis of induction the following is fulfilled. For the— th

Iy
1—a2¢>

aq

az =/ Iyay

such implications as future work. optimization, the constraint is now,
apQ + Qg1 _1
'y
Appendix _ .
PP wherea;, = Z?Zé \/1;. In parameterizing
For the second optimization of the first design rule, the con- ¢ = e apd = Oht1
straint is now: Iy’ L'y

Rev. Mex. Fis63(2017) 553-559
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In optimizing
( : )
a I ?
?k + 1_:k¢
we obtain:
1
P
Solving,
1 —agpdr Okl
o1 ¥ (€3]
Therefore,
Opt1 = V Ipon
and

k
Ak+1 = Z \/E
j=0

And the proof is complete.

G. ARAGON-GONZALEZ AND A. LE ON-GALICIA

is a constant and fixing the temperatigj = 4...n + 1).
In parameterizing,

=Sl ag = 22
where
as =1+ L .
Vai Uy
From (13)
1

b

az 1
P + (1—az29)usz

the optimization with respect to, gives,

For the second optimization of the second design rule, the

constraint is now,

A
agAy + =2 = A,

U2

where

U2 )
Vaiuy Us

Ay :A—Zn:Ai
i=4

1+ aur Ui

ag

1/) — ﬂ
T 1+taayu
and
1—@2’[/)2 _ 1+\/172(a2—1)
po 1+ ag\/uz

Thus,

1 —1
Ay = LV ),
Vg
Continuing of this form arrive us to the Eq. (15). In analo-

gous form, the proof of the relations (15) can be carry out by
Mathematical Induction.
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