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A model of irreversible Carnot-like power plant withn Carnot-like cycles is optimized. The irreversibilities of each cycle are: finite rate heat
transfer between the working fluid and the external heat sources, internal dissipation of the working fluid, and heat leak between reservoirs; is
extended to two or more of this combined model. Applying the Bellman’ Principle, we find the optimal recurrence relations for the allocation
of the heat exchangers for thes power plants. The optimal allocation or effectiveness is determined by two design rules, applied alternatively:
internal thermal conductance fixed or areas fixed. The optimal recurrence relations obtained for this combined model are invariant to the
power and efficiency and to the heat transfer law.

Keywords: Irreversibilities; Carnot; allocation; conductance; effectiveness; area; optimal.

Se optimiza un modelo de planta de potencia irreversible conn ciclos tipo Carnot. Las irreversibilidades de cada uno de los ciclos son:
transferencia finita de calor entre el fluido de trabajo y los depósitos de temperatura, disipación del fluido de trabajo y fuga de calor entre
ambos deṕositos; es extendido a dos o más de este ciclo combinado. Aplicando el Principio de Bellman, encontramos las relaciones de
recurrenciaóptimas para la dimensión y efectividad de los intercambiadores de calor para modelo combinado. Laóptima dimensíon y
efectividad se determina mediante dos reglas de diseño, aplicadas alternativamente: conductancias térmicas restringidaśo área total constante.
Las relacioneśoptimas para la dimensión ó efectividad obtenidas para este modelo combinado son invariantes a la potencia y eficiencia y a
la ley de transferencia de calor.

Descriptores:Irreversibilidades; Carnot; dimensión; efectividad; conductancia;área;óptima.

PACS: 01.40G; 05.70.-a; 64.70.F

1. Introduction

Recently in [1], a methodology of optimization was applied
to an irreversible Carnot-like power plant, where the char-
acteristic parameters were: the allocation or effectiveness of
the heat exchangers of this plant. Although this methodology
is applicable to any Carnot-like power plant, a standard irre-
versible Carnot-like cycle was chosen because of its simplic-
ity to account for the main irreversibilities that usually arise
in real heat engines [2]: “finite rate heat transfer between the
working fluid and the external heat sources, internal dissipa-
tion of the working fluid, and heat leak rate between reser-
voirs”. The above standard irreversible Carnot-like cycle has
been studied at length for many objective functions, differ-
ent transfer heat laws and several characteristic parameters
(see [2-24] for more details).

The maximum power and efficiency have been obtained
in [3-6]. In general, these optimizations were performed with
respect to only one characteristic parameter: internal isen-
tropic temperature ratio (x) including the time too [18]. How-
ever, Bejan and Lewins [15,20] have considered the optimiza-
tion with respect to other parameters (see also the reviews
of [17-18] for more details): “the allocation, cost and effec-
tiveness of the heat exchangers of the hot and cold sides”. On
the other hand, effects of heat transfer laws or when a prop-
erty is independent of the heat transfer law for this Carnot-

like cyclic model, have been discussed in several works, [18-
23], and so on.

On the other hand,n-stage combined Carnot cycle has
been presented, by the law of heat conduction, in [24-26] op-
timizing the specific power and efficiency for the characteris-
tic parameters: isentropic temperature ratios , and effective-
ness (other combined cycles can be found in [27-36], cou-
pled heat devices in [37-38]; see also the references therein
included).

In this paper we extend the results of allocation or ef-
fectiveness for one cycle to two or more combined cycles
of the same irreversible Carnot-like power plant using iter-
atively the Bellman’ Principle [39] which has been success-
fully applied in Refs. 13 and 14. We found optimal recur-
rence relations remarkable for the irreversible power plant
with n Carnot-like cycles for two constraints (design rules):
constrained internal thermal conductance or fixed total area
of the heat exchangers from hot and cold side.

This paper is organized as follows. In Sec. 2 we present
the irreversible power plant model and the functional relation
between power and efficiency which extends to the corollary
presented in [1] to the irreversible power plant. Section 3
presents the optimization of the allocation and effectiveness,
by two design rules, of heat exchangers for the Carnot-liken-
cycles of the power plant. Section 4 is devoted Conclusions.
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2. Power plant with n Carnot-like cycles

The power plant withn Carnot-like cycles is shown in
Fig. 1. Each cycle satisfies the conditions expressed in [2,4]:
leak heat rateQ and finite heat transfer ratesQi and in-
ternal dissipations of the working fluid expressed by con-
stantsIi(i=1 . . . n) such thatIi = (∆Si+1/∆Si) ≥ 1; i =
1 . . . n [4] which make the Claussius inequality to become
equality (for more details see [1,24]). Each cycle of the power
plant consists of two isothermal and two adiabatic processes.
Denoting, for each cycle, the temperatures of the working
fluid in the hot and cold isothermal processes asT2i−1 and
T2i(i = 1 . . . n), respectively, and the end temperatures as
TH andTL.

Following to [1,25], the thermal efficiency of the power
plant is given by (this functional form for only a cycle has
appeared in Refs. 1, 2, and 17):

FIGURE 1. A power plant withn Carnot-like cycles, with heat
leak rate, finite heat transfer rates, and internal dissipations of the
working fluid in each cycle.

η =
P

f(x1, ....., xn)P + Q
(1)

wherexi = T2i/T2i−1 corresponds to the isentropic temper-
ature ratio for each cyclei(i = 1, ...., n), P is the power of
the plant,Q is the leak heat rate and the function

f(x1, ....., xn) =
1

1− (
∏n

i=1 Iixi)
(2)

The Eq. (1) is obtained of the following way: accord-
ing to the second Law of the Thermodynamics, for each
i(= 1, 2, ..., n), we have (cfr. with [25]),

Qi+1 = IixiQi (3)

Thus,

Qn+1 = InxnQn = .... = IixiQi

= ...... = I1x1Q1 (4)

Now, using the Eqs. (3) and (4), the efficiency is given by,

η =
P

QH
=

QH −QL

QH
=

Q1 −Qn+1

QH

=
(

1− Qn+1

Q1

)
Q1

Q1
=

(
1−

(
n∏

i=1

Iixi

))
Q1

QH
(5)

From the Eq. (5),Q1 is equal to:

Q1 =
P

1− (
∏n

i=1Iixi)
(6)

And from the Eq. (6), (1) is obtained.
The Eq. (1) extends to the Eq. (6) of [1]. Therefore, we

can seek, as in [1], invariant optimal relations, by following
the spirit of Carnot’s work, for other characteristic parame-
ters, which can be independent from the heat transfer law, of
the irreversible power plant.

Also, the Eq. (1) say us that it is enough analyzes only for
power and efficiency (for other operation regimes,e.g. alge-
braic combination of power and/or efficiency that have ther-
modynamic meaning and satisfy imposed power conditions:
see Eq. (7) below and for more details see [1]). For instance,
the functional expression of the efficiency, power and the heat
transfer, without require of algebraic explicit expressions,
have been used in [2], for two constraints (design rules): con-
strained internal thermal conductance or fixed total area of
the heat exchangers from hot and cold side. The isentropic
temperature ratio do not has this condition [1,2,3,13,24-26].

Now, if we takez 6= xi(i = 1, 2....n) as other indepen-
dent variable the Corollary given at [1] can be paraphrased
as:

“The powerP achieves a maximum value inzmp if and
only if the efficiencyη achieves a maximum value in the
value:zmp = zme”
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Thus, in the optimization of power plant, with respect to
z it is enough to find the maximum power by,

∂P

∂z

∣∣∣∣
zmp=zme

= 0 and
∂2P

∂z2

∣∣∣∣
zmp=zme

< 0 (7)

The optimization performed, with respect to will be: a prop-
erty independent from the heat transfer law. This a remark-
able conclusion of the Eq. (1) is that it can find the maximum
for one and only one the power (see the criterion of [2]). For
example the power, for power plant model, by

∂P

∂z

∣∣∣∣
zmp=zme

= 0 and
∂2P

∂z2

∣∣∣∣
zmp=zme

< 0 (8)

We show the above as follows: Letz 6= xi(i = 1, 2....n) and
the vectorx = (x1, ...., xn) andzmp the point in which the
power achieves a maximum value, then,

∂P

∂z

∣∣∣∣
zmp=zmp

= 0 and
∂2P

∂z2

∣∣∣∣
zmp

< 0.

The power and the efficiency satisfy the functional relation-
ship given by the Eq. (1). Deriving (1) with respect to:

∂η

∂z
=

Q(∂P
∂z )

[f(x)P + Q]2
(9)

since, we can suppose thatQ does not depend of the variable
z.

Therefore,

∂η

∂z

∣∣∣∣
zme

= 0 =
∂P

∂z

∣∣∣∣
zmp

;

wherezme is the point in which the efficiencyη achieves a
maximum value which implies that their roots are the same
zmp = zme. Also, it is easily seen that forzmp = zme, the
efficiency reach a maximum since

∂2η

∂z2

∣∣∣∣
zme=zme

=

Q

(
∂2P
∂z2

∣∣∣∣
zme=zme

)

[f(x)P + Q]2
< 0 (10)

In all the above calculations none transfer heat law has been
used.

Therefore, it is enough to have one, and only one, al-
gebraic expression of the power andany heat transfer law.
We choose for our convenience the power and the conduc-
tion heat transfer Law since they are algebraically the sim-
plest. In the optimization of the power of the plant for two
constraints (design rules): constrained internal thermal con-
ductance (z = φ) or fixed total area (z = ψ) of the heat ex-
changers from hot and cold side of the heat exchangers from
hot and cold side.

3. Universal optimal relations for the alloca-
tion and effectiveness of the heat exchang-
ers of the power plant

The optimization of power and efficiency with respect to is
well known for combined cycles [13,24-26]. Henceforth,x
will be fixed and we will assume that the law of heat transfer
rate can be any law, included also the heat leak rate. Essen-
tially, we will treat the following two design rules: internal
thermal conductance fixed; or areas fixed for heat exchang-
ers; which will be applied alternatively.

The first design rule is that the internal conductance of
the Carnot-like cycle is constrained to:

∑n
i=1 αi = Γ; where

Γ is a constant, which is applied to the allocation of the heat
exchangers from hot and cold side with the same overall heat
transfer coefficientU by unit of areaA in both ends of the cy-
cle i andαi, αi+1(I = 1, 2....n− 1) are the thermal conduc-
tance correspondent to the finite heat transfers of the hot/cold
sides for this cycle. Thus,

n∑

i=1

UAi = Γ (11)

whereAi, Ai+1 are heat transfer areas on hot/cold sides of
the cyclei(i = 1, 2.....n− 1).

Alternatively, the second design rule is that the total area
is constrained by:

∑n
i=1 Ai = A; whereAi, Ai+1 are heat

transfer areas on cold and hot side for the cyclei. Now, the
total area (A) is fixed, but when distributed it has distinct
overall heat transfer coefficients and hence different effec-
tiveness on each one of the hot and cold sides. Asαi = UiAi

(see [1 and 12]), then,

A =
n∑

i=1

Ai =
n∑

i=1

αi

Ui
(12)

whereUi, Ui+1 are the overall heat transfer coefficients on
cold/hot sides of the cyclei(i = 1, 2.....n). From the result
of the Sec. 2, it is enough to found “The maximum power
of each Carnot-like cyclei(i = 1, 2.....n) for the two design
rules (11) and (12)”

Indeed, the dimensionless power output (Eq. (2.5) for one
cycle in [3]) for each cyclei is given by:

pi =
pi

αiT2i−1
=

h(xi)
1

α1
+ Ii

α1+1

(13)

hereh(xi) is a function which depends on the heat trans-
fer law sincexi = T2i/T2i−1 is the isentropic tempera-
ture ratio of the cyclei ([1,2,3,13,24-26]); andαi, αi+1

i(i = 1, 2.....n − 1) are the thermal conductance correspon-
dent to the finite heat transfers of the cold/hot sides for this
same cycle.

Next, applying the Bellman’ Principle [39], in form itera-
tive, we can obtain the optimal relations for the allocation of
the heat exchangers of the power plant (Fig. 1). This prin-
ciple will be applied as it is indicated in [20]: “to state that
every part of an optimum path is optimal”.
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3.1. Constrained internal thermal conductance

The n thermal conductance can be written as:αi = UA1;
i = 1 . . . n + 1 whereU is overall heat transfer coefficient
andAi; i = 1 . . . n + 1 are the available areas for heat trans-
fer. Thus, for the first optimization we can take for this first
design rule:

α1 + α2 = Γ1

whereΓ1 = Γ−∑n
i=3 αi is supposed to be a constant. Equiv-

alently,

α1 + α2

Γ1
= 1

Fixing the temperatureTj(j = 3 . . . n+1) and applying only
for the first cycle:

a1α1 + α2

Γ1
= 1; a1 = 1

In parameterizing,

φ =
α1

Γ1
; 1− a1φ =

α2

Γ1

According to the Eq. (13), in optimizing
(

1
a1
φ + I1

1−a1φ

)

with respect toφ; we obtain:

φ1 =
1

1 +
√

I1

sincea1 = 1. Solving,

1− a1φ

φ1
=

√
I1 =

α2

α1
;

α2 =
√

I1α1.

Continuing of this way we arrive to the following optimal
recurrence relation:

αn

√
In−1α1, n = 2, 3...... (14)

and

an =
n−1∑

j=0

√
Ij ; I0 = 1.

From the Eqs. (11) and (14) we have: the areas de transfer-
ence of heat decreases fromTH to TL:

A1 ≥ A2 ≥ ........An−1 ≥ An (15)

and the equality is fulfilled if there is not internal dissipation
in then cycles.

3.2. Constrained areas of heat exchangers

For simplicity, we supposeIi = 1(i = 1....n), without inter-
nal irreversibilities. Applying the design second design rule
(Eq. (12)),

A1 + A2 = A1

whereA1 = A−∑n
i=3 Ai is supposed a constant and fixing

the temperatureTj(j = 3......n + 1). How,

A1 =
α1

U1
; A2 =

α2

U2

then

A1 = a1α1 + u1α2

whereu1 = U1/U2; a1 = 1. In parameterizing,

ψ =
α1

A1
; 1− a1ψ =

α2

A1

From according to the Eq. (13):

1
a1
ψ + 1

(1−a1ψ)u1

,

the first optimization with respect toψ, gives:

ψ1 =
√

u1

1 + a1
√

u1

Then,

1− a1ψ1

ψ1
=

1 +
√

u1(a1 − 1)√
u1

.

Solving,

A2 =
A1√
a1u1

and, the results of [1] are recovered.
Continuing of this way arrive us to the following optimal

recurrence relation:

An =
1 +√

un−1(an−1 − 1)
1 + an−1

√
un−1

A1 (16)

with

un−1 = U1/Un; an−1 = a2 + an−2,

n > 2; a2 = 1 +
1√

a1u1
; a1 = 1.

3.3. Some special cases

To illustrate the optimal relations (14 and 16) we can choose
a power plant with 2 or 3 like-like-Carnot cycles:
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a). Case constrained internal thermal conductance

In this case, from the Eq. (14), we obtain the conductance:
α2 =

√
I1α1; α3 =

√
I2α1 andα4 =

√
I3α1 for only three

cycles. IfIj = 1; j = 1, 2, 3 (without internal irreversibil-
ities). Then, the optimal conductance without internal irre-
versibilities are obtained:α2 = α3 = α4 = α1 = (1/4)Γ4.
For two cycles:α3 = α2 = α1 = (1/3)Γ3 only and so on.
This last result was reported in [13] using only the heat con-
duction law. Thus, the expressions obtained from (14) are
extended to any heat transfer law.

b). Constrained areas:

In this case, from the Eq. (16), we obtain the areas, for two
cycles,

A1 =
√

u1

1 +
√

u1
A; A2 =

A

1 +
√

u1
;

A3 =
u1 +

√
u1
√

u2

(
√

u1 +
√

u2u1 +
√

u2)(1 +
√

u1)
.

And for three cycles,

A2 =
1√
u1

A1; A3 =
√

u1 +
√

u2√
u1 +

√
u2u1 +

√
u2

A1

A4 =
√

u1 +
√

u2 +
√

u2u1 +
√

u3u1 +
√

u3u2√
u1 +

√
u2 +

√
u1 + 2

√
u3u1 + 2

√
u3u2 +

√
u3u2u1

A1

whereuj−1 = U1/Uj ; Ij = 1; j = 2, 3, 4; and so on. The
expressions obtained by (16) are extended for any heat trans-
fer law.

4. Conclusions

We have found and determined the optimal allocation of heat
exchangers of a power plant with n Carnot-like cycles. We
must note that the optimal recurrence relations (Eqs. (14
and 16)) found for this model are valid for any heat transfer
law and have not been reported in the literature previously;
specially the Eq. (16). Thus, following the spirit of Carnot’s
work, we have found invariant optimal relations for power
and efficiency maximum which are valid for any heat transfer
law. Moreover, these relations can be satisfied for other op-
eration regimes,e.g. algebraic combination of power and/or
efficiency that have thermodynamic meaning and satisfy the
conditions imposed to the power (Eq. (7)) which can be car-
ried out as in [1]. Nevertheless, the optimal isentropic tem-
perature ratios depend on the heat transfer law and the opera-
tion regime of the engine as is discussed in [1,2,3,13,24-26].

Finally, the above equations can be extended to n Carnot-
like cycles presented here including other heat transfer rate
laws by the substitution of either of (14) or (16) in the ob-
jective function (algebraic combination of power and/or effi-
ciency) and optimize only for the isentropic temperature ra-
tio. However, the latter requires a comprehensive study of the
implications for the power plant considered. We will study
such implications as future work.

Appendix

For the second optimization of the first design rule, the con-
straint is now:

a2α1 + α3

Γ2
= 1

with a2 = 1+
√

I1; Γ2 = Γ−∑n
i=4 αi a constant and fixing

the temperatureTj(j = 4....n + 1) and applying only for the
second cycle. In parameterizing,

φ =
α1

Γ2
; 1− a2φ =

α3

Γ2

Similarly, in optimizing
(

1
a2
φ + I2

1−a2φ

)

with respect toφ; we obtain:

φ2 =
1

a2 +
√

I2

Solving

1− a2φ2

φ2
=

√
I2 =

α3

α1

so,

α3 =
√

I2α1

anda3 = 1 +
√

I1 +
√

I2. Continuing of this form arrive us
to the Eq. (14).

We can show the relation (14) by Mathematical Induc-
tion [38]. Indeed forn = 2 is true. We suppose that for
n = k is true and we must show forn = k + 1. From the hy-
pothesis of induction the following is fulfilled. For thek− th
optimization, the constraint is now,

akα1 + αk+1

Γk
= 1

whereak =
∑k−1

j=0

√
Ij . In parameterizing

φ =
α1

Γk
; 1− akφ =

αk+1

Γk
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In optimizing
(

1
ak

φ + Ik

1−akφ

)
,

we obtain:

φk =
1

ak +
√

Ik

.

Solving,

1− akφk

φk
=

√
Ik =

αk+1

α1
.

Therefore,

αk+1 =
√

Ikα1

and

ak+1 =
k∑

j=0

√
Ij

And the proof is complete.
For the second optimization of the second design rule, the

constraint is now,

a2A1 +
A3

u2
= A2

where

a2 =
1 +

√
a1u1√

a1u1
; u2 =

U1

U3
;

A2 = A−
n∑

i=4

Ai

is a constant and fixing the temperatureTj(j = 4....n + 1).
In parameterizing,

ψ =
A1

A
; 1− a2ψ =

A3

A

where

a2 = 1 +
1√

a1U1

.

From (13)

1
a2
ψ + 1

(1−a2ψ)u2

,

the optimization with respect toψ, gives,

ψ2 =
√

u2

1 + a2
√

u2

and

1− a2ψ2

ψ2
=

1 +
√

u2(a2 − 1)
1 + a2

√
u2

Thus,

A3 =
1 +

√
u2(a2 − 1)√

u2
A1

Continuing of this form arrive us to the Eq. (15). In analo-
gous form, the proof of the relations (15) can be carry out by
Mathematical Induction.
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