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Some confined and unconfined (free) one–dimensional triple–well potentials are analyzed with two different numerical approaches. Con-
finement is achieved by enclosing the potential between two impenetrable walls. The unconfined (free) system is recovered as the positions
of the walls move to infinity. The numerical solutions of the Schrödinger equation for the symmetric and asymmetric potentials without con-
finement, are comparable in precision with those obtained anaylitically. For the symmetric triple–well potentials,V (x) = αx2 − βx4 + x6,
it is found that there are sets of two or three quasi-degenerate eigenvalues depending on the parametersα andβ. A heuristic analysis shows
that if the conditionsα = (β2/4)± 1 (with α > 0 andβ > 0) are satisfied, then there are sets of three eigenvalues with similar energy. An
interesting behavior is found when one impenetrable wall is fixed and the other is moved to different positions. In summary, the number of
local minima that the potential has in the confined region determines a two- or three-fold degeneracy.

Keywords: One–dimensional triple–well potentials; energy eigenvalues and eigenfunctions; confined quantum systems.

Analizamos algunos potenciales unidimensionales de triple pozo, libres y confinados, mediante dos métodos nuḿericos. El confinamiento
se realiza encajonando al potencial entre dos paredes impenetrables. El sistema libre se recobra cuando las posiciones de las paredes se
mueven a infinito. Las soluciones de la ecuación de Schr̈odinger, para estos potenciales simétricos y asiḿetricos libres de confinamiento,
que se obtienen mediante los métodos nuḿericos de este trabajo son comparables en presición con los resultados analı́ticos. Para potenciales
simétricos de triple pozo,V (x) = αx2 − βx4 + x6, se encuentran conjuntos de dos o tres valores propios casi degenerados dependiéndo de
los valores deα y β. Un ańalisis heuŕıstico muestra que si las condicionesα = (β2/4) ± 1 (conα > 0 y β > 0) se satisfacen, entonces
habŕa un conjunto de tres valores propios con energı́a similar. Se encuentra un comportamiento interesante cuando una de las paredes se
mantiene fija y la otra se mueve a diferentes posiciones. El número de ḿınimos locales que tiene el potencial en la región de confinamiento
determina una degeneración doble o triple

Descriptores:Potenciales unidimensionales con triple pozo; energı́as y funciones propias; sistemas cuánticos confinados.

PACS: 03.65.Ge

1. Introduction

Undoubtedly, the harmonic oscillator is a cornerstone in
Physics with broad implications and applications in so many
branches of Science that its impact is a well known fact even
to non-experts. Its simplicity allows an analysis that high-
lights the important underlying physical reasons behind many
problems in Physics, Chemistry and Biology. However, since
the harmonic approximation is in general the first term in
the expansion of a harmonic potential near a local minimum,
to gain further insight about many problems it is mandatory
to go beyond and include a harmonic corrections. Paradig-
matic examples of anharmonic potentials are the symmetric
and non-symmetric triple wells, which are useful models in
condensed matter applications to study photoluminescence,

the blue shift induced by the annealing in GaNAs/GaAs, the
spin-selective positioning of wave functions, just to mention
a few [1-9]. In some of these and other problems, spatial con-
finement plays a crucial role and, consequently, a model that
incorporates this restriction will contribute to a better under-
standing of the interplay between anharmonicity and confine-
ment.

The most general one–dimensional anharmonic potential
of polynomial kind can be represented as

V (x) =
M∑

n=1

bnxn, −∞ < x < ∞ (1)

with M an even integer, and where theb0 term is omitted be-
cause it is only an additive constant. There are several stud-
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ies [10-22] devoted to the solution of the Schrödinger equa-
tion for the one–dimensional symmetric double–well poten-
tial, considerably less regarding the symmetric triple-well,
and very few have focused on the non–symmetric double-
well.

Several methods have been developed to study symmet-
ric potentials forM > 1. Some of them are: semiclassical
methods [12,28,30], Rayleigh-Schrödinger (RS) perturbation
theory [20,25,27,29], Hill determinant [19,26], linear varia-
tional method [10,11,14,17,18,22], Rayleigh-Ritz variational
method [15,16,24], asymptotic series [13], Bogoliuvov trans-
formations [21], among others [23,31,32].

There are only few examples of anharmonic potentials
with exact analytical solutions [19], and in a general situa-
tion it is necessary to use an approximate technique, analyti-
cal or numerical, to solve the Schrödinger equation. The most
common approach to study the one–dimensional triple–well
potential is perturbation theory, even though it is well known
that sometimes this approach does not converge [23]. This
has led to some discrepancies between different solutions re-
ported in the literature for the triple-well potential, strongly
encouraging the use of more reliable methods to solve this
interesting problem.

Recently, the authors of this work have developed two
different numerical approaches to solve the one–dimensional
Schr̈odinger equation with Dirichlet boundary conditions
(DBC), allowing the reliable treatment of the so-called con-
fined quantum systems in one–dimension. One of these
methods is based on Numerov’s discretization [32] and the
other relies on the the Runge–Kutta (RK) integration of the
differential equation [34-36]. Both methods have shown
their capabilities to solve confined one–dimensional prob-
lems dealing with the Schrödinger equation for different po-
tentials [34-36], and even to study confined many-electron
atoms [33].

The aim of the present work is to study symmetrical and
non-symmetrical triple–well potentials in different confining
situations, including the free or unconfined case, and using
the two methods mentioned in the previous lines to solve the
one–dimensional Schrödinger equation for this combination
of potential and boundary conditions.

The organization of this work is as follows: In Sec. 2 the
methodology is briefly described. The results for free (un-
confined) and confined triple–well potentials and its discus-
sion is presented in Sec. 3. Finally, the conclusions are given
in Sec. 4.

TABLE I. The ground state and the first nine excited state energies for three-well potentials. The exact values were obtained by using
supersymmetric quantum mechanics and are taken from Ref. 19. Herea andb represent the positions of the infinite walls.

V1(x) = x2 − 4x4 + x6, (a = −3.8, b = 3.8)

Present Reference [19] Exact [19]

-2.00000000000000000000000000000 -1.999 999 -2

-1.77272669899135033045091723749 -1.772 725

2.07827989176859536136953799601 2.078 281

5.60402834238201365449040754998 5.504 034

9.95144225554478526626900059221

15.24628869168371597520212742217

21.29705442126673121815663275493

28.02628350545253912302062135658

35.38684546239308465427040686793

43.33876994172305097810219816825

V2(x) = 4x2 − 6x4 + x6, (a = −4.0, b = 4.0)

Present Reference [19] Exact [19]

-9.00172023852771971583658796288 -9.001 244

-9.00000000000000000000000000000 -8.999 758 -9

0.63939426286533328043958667549 0.639 810

1.93662922492638060727206369639 1.937 489

4.69641332508490208190037401082

9.09693171117991148914597145454

14.03149458916847432684323132559

19.65150328517363328331586093201

25.93970883046441318552981155827

32.83102325075282647212704334551
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FIGURE 1. In Figures 1(a) and 1(b) we plot the ground state and
the first excited state for the symmetric potencials V1(x) and V2(x),
respectively. The horizontal lines represent its energy eigenvalues.
In these potencials these states are almost degenerate.

FIGURE 2. Plot of the asymmetric potential
V4(x) = 8x2 + 0.3x3 − 6x4 + x6.

TABLE II. Energy eigenvalues for the potentialV3(x)=224x2

− 30x4 + x6. This table shows few different triplet states con-
tained in this triple well potential. All figures are significant. To
obtain this precision Method I was used with the UBASIC soft-
ware and 40 figures in floating point variables. Here the position of
the infinite walls area = −5.4 andb = 5.4, respectively.

state n Energy

1 14.865142639869404974664258699316

2 14.865142639869404974664415093047

3 14.865142639869404974664571486779

4 44.388850779725923528814763346457

5 73.493285567721654092365670334284

6 73.493285567721654093042351890314

7 73.493285567721654093719033446345

8 102.165649441285255955070801984071

9 130.391936872438506833916064513823

10 130.391936872438507604578273044361

11 130.391936872438508375240481574900

12 158.156735114528082345504829055516

13 185.442976187872563130147199467468

14 185.442976187872972479297372722890

15 185.442976187873381828447546015417

16 212.231623705625027861106650387636

2. Methodology

The numerical approaches used in this work solve efficiently
the one–dimensional (1–D) Schrödinger equation. In units
where~ = m = 1, the 1–D Schr̈odinger equation can be
written as

−d2ψ

dx2
+ U(x)ψ = εψ, (2)

with U(x) defined as

U(x) =
{

V (x), if a < x < b;
+∞, if x ≤ a or x ≥ b,

, (3)

whereV (x) is given by Eq. (1). By imposing the DBC, the
solutions of the Schrödinger equation (2) are different from
zero only in the interval(a, b). At the boundaries, the wave
function takes the following values:

ψ(a) = 0, ψ(b) = 0. (4)

As it was mentioned above, to gain confidence on the re-
sults, two different numerical approaches are used to solve
the confined problem. The first is based on the numerical
integration of the differential equation by the Runge–Kutta
method of order 6–8 with an adaptive integration step to get
the desired accuracy [34-36], that hereafter will be referred as
Method I. In this approach it is supposed that the wave func-
tion depends explicitly on the position and the energy. We
solve the Schr̈odinger equation and an auxiliar equation, its
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partial derivative respect to the energy, simultaneously. Then
we use the shooting method and the Newton-Raphsom algo-
rithm to obtain the energy eigenvalues with the desired accu-
racy. This procedure simultaneously finds the eigenvalue and
its corresponding wave function on a grid, and it was imple-
mented using the UBASIC programming language with a 40
decimal representation for the real variables. This method
has been successfully used to study the Hulten potential [34],
the confined harmonic oscillator [35] and the spiked oscilla-
tor [36]. The second approach, Method II, is based on the
discretization of the interval(a, b) according to Numerov’s
method [32]. To find the energy eigenvalues Lindberg’s algo-
rithm is used and the eigenfunctions are obtained by inverse
iteration; in this way the convergence of the solution is very
fast and increases the efficiency of Numerov’s method. This
method was used in the study of the confined harmonic oscil-
lator [32].

Regarding the unconfined problem, the energy eigenval-
ues and eigenfunctions are obtained by moving the bound-
aries to infinity(a → −∞, b → +∞). From a practical point
of view the energy eigenvalues corresponding to the uncon-
fined case are obtained when the barriers are separated by a
large, but finite, distance which is known as practical infinity.

3. Results and discussion

3.1. Unconfined triple-well potentials

We are interested in the study of the anharmonic polynomial
potentials withM = 6, in Eq. 1, and depending on the coef-
ficients{bn} we can obtain symmetric or asymmetric triple-
wells.

The methodologies discussed in the previous section al-
low us to obtain the energy eigenvalues and eigenfunctions
with a high accuracy for the ground state and excited states.
In order to see the accuracy of the methods, we start with
potentials where the exact eigenvalues are available, namely,
V1(x) = x2 − 4x4 + x6 and V2(x) = 4x2 − 6x4 + x6.
Chaudhuri and Mondal [19] studied these symmetric triple–
well potentials by means of Supersymmetric Quantum Me-
chanics. For the first one they obtained that the exact ground
state energy is -2. Whereas, for the latter they obtained a
value of -9, which corresponds to the exact value of the first
excited state. Method I provides a ground state energy equal
to -2±ε for V1(x), and -9±ε for the energy of the first excited
state ofV2(x), where the error isε ∼ 1× 10−30.

Evidently, this method finds the solutions for other States;
Some of them are reported in Table I, and they are compared
with those obtained by Chaudhuri and Mondal [19]. From
the values reported in Table I it is clear that energy eigen-
values obtained with the present method are lower than those
obtained by the cited in Ref. 19. In Figs. 1a and 1b the po-
tentialsV1(x) andV2(x) and their first two lowest states are
depicted. It is important to note thatV2(x) has states very
close in energy although they are not completely degenerate,
as it can be appreciated in Table I. This quasi-degeneracy

FIGURE 3. In Fig. (3a) we show the triple well potential given
by V (x) = x6 − 8x4 + 6x2. In Fig. (3b) are plotted the first 8
energy eigenvalues as a function of the position of the right barrier
in x = b. The left barrier is fixed ata = −3.5 units.

is more pronounced in the symmetric triple–well potential:
V3(x) = 224x2 − 30x4 + x6. The corresponding eigen-
values of this potential are reported in Table II, rounded to
24 significant figures. These results suggest a clear pattern:
these potentials have sets of three almost degenerate states
that alternate with an isolated one. It is very important to
notice that this conclusion cannot be drawn if one solves the
Schr̈odinger equation with a smaller precision than that used
in the present work. In Table II one can see that they are very
close but definitively, not degenerate.

The energy eigenvalues corresponding to two symmetric
potentials are presented in Table III. Clearly, these potentials
have a three-fold quasi-degeneracy, which allows one to con-
clude that potentials with the formV (x) = αx2 − βx4 + x6,
have a set of three-fold quasi-degenerate states, alternating
with an isolated single state, when one of the following con-
ditions is satisfied:α = (β2/4) ± 1, with α > 0 andβ > 0.
The potentialV (x) = αx2− βx4 + x6 has three wells if one
of the conditions is satisfied [37]: (a)β2 > 4α, (b) β2 = 4α,
or (c)3α < β2 < 4α.

On the other hand, the lack of symmetry complicates the
use of some methods in the study of asymmetric triple–well
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TABLE III. Ground state and the first nine excited state energies for
two triple-well potentials that have triplet structure in their spectra.

Potential Energy

V (x)=

35x2−12x4+x6, (a = −4.3, b = 4.3)

5.63049195024533457884790197501

5.63798891410495326328556105194

5.64551914983797124356569858540

16.25343951621014944730333118515

24.48968368797934746392827132355

25.20003556051954706072905776976

26.19879575889057254189735303395

32.55552403292716010096002005822

37.19415578157257870120613044008

41.39905431803455666002428515225

V (x)=

99x2−20x4+x6, (a = −4.8, b = 4.8)

9.794658389809445085449992039350

9.794658392347135441800881758244

9.794658394884825800904312950444

29.060000870244433362396469665763

47.652176249216682869189006191928

47.652179079801232583567263428079

47.652181910388484267460691767522

65.514013936528706770748645981244

82.570496417401232849343793330663

82.571197525277099879823108828347

82.571898781860462231416159451105

potentials. However, with the methods presented in this work
it is possible to study the energy spectrum of symmetric and
asymmetric triple– well potentials, since symmetry is not a
requirement for these algorithms. To illustrate this point,
consider the potentialsV4(x) = 8x2 + 0.3x3 − 6x4 + x6

and V5(x) = 8x2 + 0.4x3 − 6x4 + x6. In Fig. 2 the
V4(x) potential is depicted. The numerical results for the first
eleven energy eigenvalues ofV4(x) andV5(x) are shown in
Table IV. From the argumentation concerning the precision of
this method, these results can be used as benchmark to vali-
date other methodologies that will be developed in the future
to solve similar problems.

3.2. Confined triple–well potentials

In this section two different numerical methods are used to
solve the one–dimensional Schrödinger equation with DBC,
conditions which are equivalent to those applied for the par-
ticle in a box. The main goal is to analyze the dependence of
the energy eigenvalues of the 1–D potentials studied here on
the size of the box where they are embedded. One needs to

TABLE IV. Some of the first energy eigenvalues for two asymmet-
rical triple-well potentials.

Potential Energy

V4(x) =

8x2+0.3x3−6x4+x6 (a = −4.0, b = 4.0)

0.802797063071902353138518367630

2.233245613195657280799133787148

3.954463882370181152487391491695

7.619290181238782051000472830517

11.652588636130142692469332410557

16.336192112086201671315363332288

21.792793627042372658128644227310

27.905774243810771121092551153408

34.619091183530347809079560586696

41.900424971657244180326731150339

49.720429179361730873762972432383

V5(x) =

8x2+0.4x3−6x4+x6 (a = −4.0, b = 4.0)

0.433913898170854996797324606688

2.247533566534289853224979782981

4.172704193977681244826597546497

7.608903381292434345552506494196

11.631775671810356321752135934585

16.331170178316698594736991862080

21.787419312398016394577371661135

27.898976801320894594150412119472

34.611915589058933679577945548993

41.893050773385921725170010670541

49.712906896782929427141155789421

solve Eq. (2) subject to the DBC at finite values ofx (Eq. 4).
It is worth remembering thata and b are the left and right
positions of the barrier, respectively. There are other stud-
ies where these positions are moved symmetrically, but in the
present case the barrier ata is fixed while the barrier atb is
displaced to the right, and the Schrödinger equation (2) with
DBC is solved to obtain the eigenvalues depending on the
sizeb− a of the box.

Now we are going to consider the triple well potential
V (x) = x6 − 8x4 + 6x2; two of the wells are symmetrical
and identical and very deep respect to the other well located
around the origin, as shown in Fig. 3a. In Fig. 3b we show
the bahaviour of the first eight energy eigenvalues as a func-
tion of the right barrier positionx = b. The left barrier is
fixed atx = a = −3.5 units.

When the position of the barrier at the right is b =-1.5, the
two states of lower energy are completely inside the well (1);
whereas, the other excited states will have energies greater
than zero.

Rev. Mex. F́ıs. 57 (1) (2011) 46–52
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TABLE V. The first four energy eigenvalues for the potentialV4(x)

confined by a box with walls ina andb.

a b E0 E1 E2 E3

-3.5 -3.0 545.213131 761.592968 981.688153 1255.573099

-3.5 -2.0 43.917489 106.290096 173.600058 245.026089

-3.5 -1.0 2.331169 18.635941 40.300204 66.527630

-3.5 0.0 0.976184 7.009332 15.338126 26.745659

-3.5 1.0 0.828501 3.050105 8.292560 14.136687

-3.5 2.0 0.805833 2.426806 5.242836 8.661214

-3.5 3.0 0.802797 2.233245 3.954463 7.619290

-3.5 3.5 0.802797 2.233245 3.954463 7.619290

FIGURE 4. The first lowest energy eigenvalues ofV4(x) as a func-
tion of the right wall positionb for a fixed value ofa = −3. Note
that the energy decreases in a non-monotonic way asb increases.

FIGURE 5. First lowest eigenfunctions of the potentialV4(x) for
a = −3 andb = 1.9. The horizontal lines are its eigenvalues for
this set on boundary conditions.

As the position of the barrier of the right increases, the
square well formed by the two infinite barriers becomes
wider, the section of the potentialV (x) located inside the
well changes its form, and the energy eigenvalues tend to di-

minish. From Fig. 3b it is observed that the three states of
lower energy remain practically constant in the interval form
b =-1.5 to b=2.0. This behavior can be understood because in
this region the portion of the potential inside the well remains
almost without change. Nevertheless, the states of greater en-
ergy detect a wider well and have to diminish their values.

For values of b around 2 units, the particle detects the
presence of the well (3) and its four lowest energy eigenval-
ues diminish rapidly, the most excited states detect the third
well as a perturbation. Finally, when b is greater than 2.5,
the particle detects two deep wells (1) and (3), and the lowest
states become quasi degenerated forming pairs of states with
its eigenfunction located mainly at the wells (1) and (3).

Now we consider the potentialV4(x) with the confining
potentialU(x) definied in Eq. (3), fixing the left wall at
a = −3.5 and changingb from -3.0 to 3.5 in steps of 0.5
units of length. The results are presented in Table V, and a
plot of the energy eigenvalues as a function ofb is depicted
in Fig. 4, where the drastic change in the energy is evident
when b increases. From this figure one can notice thatE2

departs fromE3 and approachesE1 at b = 2. In Fig. 5 the
three lowest states corresponding to theV4(x) potential for
a = −3 andb = 1.9 are shown.

In previous works the walls were moved symmetrically
with respect to the origin and it was found that the energy
eigenvalues decrease monotonically. However, when the dis-
placement of the barriers is asynchronous, the monotonic be-
havior is lost and one can only say that the eigenvalues de-
crease as a function of the size of the wall.

4. Conclusions

One–dimensional triple–well potentials are studied by two
different numerical approaches. These two methods are very
useful to study free (unbounded) and bounded quantum prob-
lems. It is found that these triple–well potentials have sin-
glet, doublet and triplet states. The energies provided by the
present approach are lower in energy than those previously
reported. An empirical formula that predicts the existence of
three–fold degenerate states is presented.

The major utility of the methods presented in this work
is to study confined quantum problems particularly when
the boundaries are non-symmetrically imposed, in which
case the solution by other techniques becomes very difficult.
When the walls are displaced symmetrically with respect to
the origin, the energy decreases monotonically as a function
of the positions of the walls. Fixing the position of the left
wall and moving the other wall to the right, breaks this mono-
tonicity. The multiplicity of states varies with the positions
of the walls in a way that is difficult to predict, except when
the walls are far from the origin, where one recovers the spec-
trum of the free (unconfined) problem.

The methods of this work are accurate, efficient and al-
low the possibility to study one–dimensional quantum prob-
lems with polynomial and non-polynomial potentials with
very general boundary conditions.
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