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Relativistic charged particle in a uniform electromagnetic field
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The equations of motion for a relativistic charged particle in a uniform electromagnetic field are solved in a covariant form by calculating the
exponential of the matrix corresponding to the electromagnetic field tensor. It is shown that owing to the antisymmetry of the electromagnetic
field tensor, the exponential mentioned above can be easily calculated. Some results are then applied to study the algebraic properties of the
energy-momentum tensor of the electromagnetic field and the orthogonal transformations in spaces of dimension 4.
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Se resuelven las ecuaciones de movimiento de una partı́cula relativista cargada en un campo electromagnético uniforme en forma covariante,
calculando la exponencial de la matriz correspondiente al tensor del campo electromagnético. Se muestra que debido a la antisimetrı́a
del tensor del campo electromagnético, dicha exponencial se puede calcular fácilmente. Algunos resultados se aplican para estudiar las
propiedades algebraicas del tensor de energı́a-momento del campo electromagnético y las transformaciones ortogonales en espacios de
dimensíon 4.
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1. Introduction

The motion of a relativistic charged particle in a constant uni-
form electromagnetic field has been studied in a large num-
ber of papers and textbooks (see,e.g., Refs. 1 to 6 and the
references cited therein), making use of various procedures.
The corresponding equations of motion can be solved in a
manifestly covariant form, expressing the four-velocity or the
space-time coordinates of the particle as a function of the
proper time of the particle, or making use of a convenient ref-
erence frame in which the electromagnetic field takes some
simplified form; for instance, whenE ·B = 0 andE2−B2 is
different from zero, there exists an inertial frame where one
of the fields,E or B, vanishes and the equations of motion
can be easily solved (see,e.g., Ref. 6).

The equations of motion of a charged particle in a uni-
form electromagnetic field constitute a system of four homo-
geneous linear first-order ordinary differential equations with
constant coefficients for the four-velocity of the particle as a
function of the proper time, whose solution can be expressed
in terms of the exponential of a4 × 4 matrix. The aim of
this paper is to show that, owing to the antisymmetry of the
electromagnetic field tensor, this exponential can be calcu-
lated directly by appropriately decomposing the argument of
the exponential into two matrices corresponding to the self-
dual and the anti-self-dual parts of the electromagnetic field
tensor (see also Ref. 1). Some of the basic relations thus es-
tablished are then used to study the algebraic properties of the
energy-momentum tensor of the electromagnetic field and the
orthogonal transformations of any four-dimensional space.

In Sec. 2 the four-velocity of a relativistic charged par-
ticle in a uniform electromagnetic field is obtained in a co-
variant form by directly calculating the exponential of a ma-
trix formed by the components of the electromagnetic field.
The procedure followed here essentially coincides with that
employed in Taub’s paper [1]; however, here we present the
mechanism behind the algebraic relations that simplify the
calculation of the exponential mentioned above. We also
demonstrate, in Sec. 3, that some of the relations obtained
in Sec. 2 can be employed to study the algebraic proper-
ties of the energy-momentum tensor of the electromagnetic
field and to find the orthogonal transformations of the four-
dimensional spaces.

2. Solution of the equations of motion

In the framework of special relativity, the equations of motion
of a charged particle with rest massm and electric chargeq
in an arbitrary electromagnetic field can be written in the co-
variant form

dUα

dτ
=

q

mc
Fα

β Uβ , (1)

whereUα (α = 0, 1, 2, 3) is the four-velocity of the parti-
cle, τ is its proper time,c is the speed of light in vacuum,
andFαβ is the electromagnetic field tensor, with sum over
repeated indices (see,e.g., Ref. 6). Equivalently, this system
of equations can be expressed in the more elementary matrix
form

dU
dτ

=
q

mc
FU, (2)
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whereU is the column matrix with entriesU0, U1, U2, U3,
andF is the4× 4 matrix



0 Ex Ey Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0


 , (3)

where (Ex, Ey, Ez) and (Bx, By, Bz) are the Cartesian com-
ponents of the electric and magnetic fields, respectively, with
respect to some inertial reference frame.

If one assumes that the electromagnetic field is uniform,
the entries ofF are all constant, and the solution of Eq. (2) is
given by (see,e.g., Refs. 7 and 8)

U(τ) = exp
( qτ

mc
F

)
U(0), (4)

with the exponential of a matrix being defined by means of
the series expansion

expA =
∞∑

n=0

1
n!

An.

In spite of the fact thatF is a4× 4 matrix, this exponen-
tial can be very easily computed if one writes the matrixF as
the sum of two complex matrices (cf. Ref. 1)

F =
1
2
(S + A), (5)

with

S ≡




0 Fx Fy Fz

Fx 0 −iFz iFy

Fy iFz 0 −iFx

Fz −iFy iFx 0


 , (6)

and

A ≡




0 F ∗x F ∗y F ∗z
F ∗x 0 iF ∗z −iF ∗y
F ∗y −iF ∗z 0 iF ∗x
F ∗z iF ∗y −iF ∗x 0


 , (7)

whereFx, Fy, Fz are the Cartesian components of the com-
plex vector field

F ≡ E + iB

and∗ denotes complex conjugation (note thatA is the com-
plex conjugate ofS).

The usefulness of this decomposition comes from the fact
thatS andA commute with each other, and their squares are
proportional to the identity matrix,

SA = AS, S2 = F2I, A2 = F∗2I, (8)

whereI is the4× 4 identity matrix, and

F2 ≡ Fx
2+Fy

2+Fz
2=(E + iB)2=E2−B2+2iE ·B

(see the discussion in Sec. 2.2, below). Hence, the powers of
S are given by

S2n = (F2)nI, S2n+1 = (F2)nS, (9)

for n = 0, 1, 2, . . . . It may be remarked that the two Lorentz
invariants [6] of the electromagnetic field,E2−B2 andE·B,
arise here in a natural way.

SinceS andA commute with each other, from Eq. (2) we
have

U(τ) =
[
exp

qτ

2mc
(S + A)

]
U(0)

=
(
exp

qτ

2mc
S

)(
exp

qτ

2mc
A

)
U(0),

with

exp
( qτ

2mc
A

)

being the complex conjugate of

exp
( qτ

2mc
S

)
.

Then, with the definition

|F| ≡
√

F2 =
√

E2 −B2 + 2iE ·B (10)

(so thatF2 = |F|2), making use of Eq. (9) we obtain

exp
qτ

2mc
S=

∞∑
n=0

1
(2n)!

(
q|F|τ
2mc

)2n

I+
1
|F|

∞∑
n=0

1
(2n + 1)!

(
q|F|τ
2mc

)2n+1

S=
(

cosh
q|F|τ
2mc

)
I+

1
|F|

(
sinh

q|F|τ
2mc

)
S, (11)

provided that|F| 6= 0. In the case where|F| = 0, only the first two terms of the series contribute [see Eqs. (8) and (9)] and we
have

exp
qτ

2mc
S = I +

qτ

2mc
S. (12)

Note that|F| is a square root of the complex numberE2 −B2 + 2iE ·B, and that the final expression in Eq. (11) is an even
function of|F|; therefore, since the two square roots of a complex number differ by a−1 factor, both square roots produce the
same result. Note also that Eq. (12) can be obtained from Eq. (11) in the limit|F| → 0, and therefore it is enough to consider
Eq. (11) only.
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From Eq. (11) we then obtain

exp
( qτ

mc
F

)
=

(
cosh

q|F|τ
2mc

)(
cosh

q|F|∗τ
2mc

)
I +

1
|F|

(
sinh

q|F|τ
2mc

)(
cosh

q|F|∗τ
2mc

)
S

+
1
|F|∗

(
sinh

q|F|∗τ
2mc

) (
cosh

q|F|τ
2mc

)
A +

1
|F||F|∗

(
sinh

q|F|τ
2mc

) (
sinh

q|F|∗τ
2mc

)
SA, (13)

which only involves the matricesI, S, A, andSA, and according to Eq. (4) gives the solution to Eq. (2) for any initial condition.

2.1. Some particular cases

As shown in Eqs. (11) and (12), the expression for

exp
( qτ

2mc
S

)

depends essentially on|F|, and this expression is simplified
if E ·B = 0, in which case|F| is real or pure imaginary [see
Eq. (10)]. As is well known, ifE ·B = 0 then there exist in-
ertial frames in whichB or E is equal to zero, provided that
E2 − B2 is greater than zero or less than zero, respectively
(see,e.g., Ref. 6).

If E ·B = 0 and|E| > |B|, then|F| is real and Eq. (13)
reduces to

exp
( qτ

mc
F

)
=

1
2

(
1 + cosh

q|F|τ
mc

)
I

+
1
|F|

(
sinh

q|F|τ
mc

)
F

− 1
2|F|2

(
1− cosh

q|F|τ
mc

)
SA, (14)

with |F| =
√

E2 −B2. (Note that, sinceE2 − B2 is in-
variant under the Lorentz transformations, in this case|F| is
the magnitude of the electric field in a reference frame where
B = 0.) On the other hand, from Eqs. (5) and (8) we find
that

F 2 =
1
4
(S2 + 2SA + A2) =

1
2
(|F|2I + SA), (15)

hence, eliminatingSA in favor of F 2, Eq. (14) can also be
written in the form

exp
( qτ

mc
F

)
= I +

1
|F|

(
sinh

q|F|τ
mc

)
F

− 1
|F|2

(
1− cosh

q|F|τ
mc

)
F 2. (16)

Both invariants of the electromagnetic field are equal to
zero if and only if|F| = 0; in that case from Eq. (16) we
obtain

exp
( qτ

mc
F

)
= I +

qτ

mc
F +

1
2

( qτ

mc

)2

F 2, (17)

which correspond to the first three terms of the series expan-
sion of the exponential on the left-hand side of the equation;
in fact, making use of Eq. (15) and that bothS2 andA2 are
equal to zero one finds thatF 3 = 0 and thereforeFn = 0 for
n > 3. As we shall prove in Sec. 3.2, in all cases (for each
value ofτ )

exp
( qτ

mc
F

)

is a Lorentz transformation; the transformations of the form
(17) are known asnull rotations(or parabolicLorentz trans-
formations).

In a similar manner one finds that ifE · B = 0 and
|B| > |E|, then|F| is pure imaginary and writing|F| = iB0,
with B0 real and positive (the magnitude ofB in a reference
frame whereE = 0), Eq. (13) reduces to

exp
( qτ

mc
F

)
= I +

1
B0

(
sin

qB0τ

mc

)
F

+
1

B0
2

(
1− cos

qB0τ

mc

)
F 2 (18)

which also leads to Eq. (17) in the limit asB0 tends to zero.
Equation (18) is a periodic function ofτ with angular fre-
quencyω = qB0/mc, which produces a rotation of the parti-
cle’s four-velocity with this angular velocity (see also Ref. 1).

2.2. Origin of the algebraic simplifications

As we have seen, the properties (8) simplify the calculation of
the exponential of the matrixF ; however, the derivation pre-
sented above, or that given in Ref. 1, does not elucidate the
origin of these key relations. However, as we shall presently
show, by using an appropriate basis, relations (8) become
trivial. Indeed, making use of the unitary4× 4 matrix

M =
1√
2




1 0 0 1
0 1 i 0
0 1 −i 0
1 0 0 −1


 (19)

(which represents a change of basis, with the new basis con-
taining two complex vectors; the new basis, called anull
tetrad, is formed by four null four-vectors), one finds that
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K ≡ MSM−1 =




Fz Fx − iFy 0 0
Fx + iFy −Fz 0 0

0 0 Fz Fx − iFy

0 0 Fx + iFy −Fz


 (20)

and

L ≡ MAM−1 =




F ∗z 0 F ∗x + iF ∗y 0
0 F ∗z 0 F ∗x + iF ∗y

F ∗x − iF ∗y 0 −F ∗z 0
0 F ∗x − iF ∗y 0 −F ∗z


 . (21)

Making use of thetensor product(or direct product) of two 2× 2 matrices, defined by (see,e.g., Ref. 10)

(
a b
c d

)
⊗

(
α β
γ δ

)
≡




a

(
α β
γ δ

)
b

(
α β
γ δ

)

c

(
α β
γ δ

)
d

(
α β
γ δ

)


 =




aα aβ bα bβ
aγ aδ bγ bδ
cα cβ dα dβ
cγ cδ dγ dδ


 , (22)

we see that the matricesK andL can be expressed in the
form

K =
(

1 0
0 1

)
⊗

(
Fz Fx − iFy

Fx + iFy −Fz

)

and

L =
(

F ∗z F ∗x + iF ∗y
F ∗x − iF ∗y −F ∗z

)
⊗

(
1 0
0 1

)
,

then, using the fact that(A⊗B)(C ⊗D) = (AC)⊗ (BD),
it trivially follows that K andL commute with each other.
Similarly, noting that

(
Fz Fx − iFy

Fx + iFy −Fz

)2

= F2

(
1 0
0 1

)
,

we readily obtainK2 = F2I and, similarly,L2 = F∗2I,
which are equivalent to the last two Eqs. (8). It may be also
noticed that(

Fz Fx − iFy

Fx + iFy −Fz

)
= F · σ,

whereσ is the vector formed with the standard Pauli matri-
ces and, therefore,K andL can be conveniently expressed in
terms of the Pauli matrices.

The matricesS andA (or, equivalently,K andL) corre-
spond to the self-dual and anti-self-dual parts ofFαβ , respec-
tively. If the dual of an antisymmetric tensortαβ is defined
by

∗tαβ ≡ 1
2
εαβγδt

γδ, (23)

whereεαβγδ is totally antisymmetric withε0123 ≡ 1 and the
tensor indices are raised or lowered with the aid of the metric
tensor

(gαβ) = diag (−1, 1, 1, 1) (24)

and its inverse, it follows that∗(∗tαβ) = −tαβ . Hence the
eigenvalues of the duality operator are±i. The entries of the
matrices (6) and (7) areSα

β andAα
β , respectively, with

Sαβ = Fαβ − i ∗Fαβ , Aαβ = Fαβ + i ∗Fαβ ,

so that∗Sαβ = i Sαβ , and∗Aαβ = −i Aαβ . Similar results
hold for all possible metrics in four-dimensional spaces (see
Sec. 3.2.1, below) as can readily be shown making use of the
spinor formalism [9].

2.3. Comparison with other covariant approaches

In Ref. 3, the series corresponding to

exp
( qτ

mc
F

)

is calculated by showing first that all powers ofF are lin-
ear combinations of the four matricesI, F , F 2, and the
matrix corresponding to the dual ofFαβ [equivalent to
(1/2)i(S−A)], which implies that the desired exponential is
also a linear combination of these matrices, and then finding
the coefficients by calculating traces. In the approach fol-
lowed in Ref. 2,

exp
( qτ

mc
F

)

is calculated by establishing some algebraic relations be-
tweenF and the matrix formed with the dual ofFαβ , and
then translating the problem into that of solving a homoge-
neous fourth-order linear ordinary differential equation with
constant coefficients. By contrast, the calculation presented
in Ref. 1 and in this section is much shorter and direct, by
virtue of Eqs. (8), and has some other useful applications, as
we shall show in Sec. 3. The algebraic relations employed in
Refs. 2 and 3 follow at once from Eqs. (8).

On the other hand, in Ref. 5, the solution of the ma-
trix equation (1) is obtained making use of the exponential
of a differential operator and a decomposition analogous to
Eq. (5) (see also Ref. 4).
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3. Further applications

In this section we show that the results derived above can
be employed in the study of the algebraic properties of the
energy-momentum tensor of the electromagnetic field, and
to find the orthogonal transformations of a four-dimensional
space.

3.1. The energy-momentum tensor of the electromag-
netic field

The components of the energy-momentum tensor of the elec-
tromagnetic field are given by [6]

Tα
β = − 1

4π
(Fα

γF γ
β − 1

4F ρ
γF γ

ρδ
α
β ), (25)

which amounts to saying that, in terms of the matrixF , the
4×4 matrixT = (Tα

β) is expressed as [see Eqs. (5) and (8)]

T = − 1
4π

[
F 2 − 1

4 (tr F 2)I
]

= − 1
4π

[
(S + A)2 − 1

4 (trF 2)I
]

= − 1
4π

[
2SA + (F2 + F∗2 − 1

4 trF 2)I
]
, (26)

where tr denotes the trace.
As is well known, the trace of the energy-momentum ten-

sor (25) vanishes,Tα
α = 0; on the other hand,

trSA = tr (M−1KM)(M−1LM) = trKL = 0,

sinceKL is the direct product of two traceless2×2 matrices.
Hence, from Eq. (26) we see that

trF 2 = 4(F2 + F∗2) = 8(E2 −B2) (27)

[which also follows directly from Eq. (3)] and

T = − 1
2π

SA. (28)

An important, nontrivial consequence of this last equation is
that, by virtue of Eq. (8),

T 2 =
1

4π2
S2A2 =

1
4π2

[(E2 −B2)2 + 4(E ·B)2] I

or, equivalently,

Tα
γT γ

β =
1

4π2
[(E2 −B2)2 + 4(E ·B)2] δα

β . (29)

With the aid of Eq. (29) one can prove that the electro-
magnetic field satisfies the so-calleddominant energy condi-
tion. For an observer whose four-velocity isV α, the energy
flux four-vector of the electromagnetic field isTα

βV β . This
four-vector is nonspacelike since, using the symmetry ofTαβ

and Eq. (29),

(Tα
βV β)(TαγV γ) = T β

αTα
γVβV γ

=
1

4π2
[(E2 −B2)2 + 4(E ·B)2]VβV β 6 0.

As another application of Eq. (29) we can prove that the
energy-momentum tensor of the electromagnetic field is of
the form Tαβ = kαkβ , for some four-vectorkα only if
both invariants of the electromagnetic field vanish. In ef-
fect, the fact that the trace ofTαβ is equal to zero amounts
to kαkα = 0; hence,Tα

γT γ
β = kαkγkγkβ = 0 and from

Eq. (29) it follows thatE2 − B2 andE · B must vanish si-
multaneously.

3.2. Orthogonal transformations

As pointed out in Refs. 1 to 5, the exponential appearing in
Eq. (4) is analogous to the expression of a Lorentz trans-
formation. As we show explicitly below, the exponential in
Eq. (4) is a Lorentz transformation. In fact, the four-velocity
Uα of a particle must satisfy the conditionUαUα = −c2 and
the solutionUα(τ) to the system of linear equations (1) must
depend linearly of the initial conditionUα(0) (even if the
Fαβ are not constant). Since the Lorentz transformations are
the only linear transformations of the Minkowski space into
itself that leave invariant the productsAαAα, Uα(τ) must be
related toUα(0) by means of a Lorentz transformation.

Let V be a real four-dimensional vector space, with a
non-singular metric tensor,gαβ (that is,det(gαβ) 6= 0). In
the case of the Minkowski space-time, with respect to an ap-
propriate basis,

(gαβ) = diag(−1, 1, 1, 1) (30)

(or its negative, depending on the conventions adopted), but
we can also consider,e.g., (gαβ) = diag(1, 1, 1, 1), cor-
responding to the Euclidean four-dimensional space, and
(gαβ) = diag(−1,−1, 1, 1).

The orthogonal transformations are those linear transfor-
mations fromV onto itself that leave the metric tensor in-
variant; in the case of the metric tensor (30) the orthogonal
transformations are just the homogeneous Lorentz transfor-
mations. If the4× 4 matrix (aα

β) is an orthogonal transfor-
mation, then

aα
µaβ

νgαβ = gµν , (31)

from which one can prove that the orthogonal transforma-
tions form a group under composition.

If A(s) is an orthogonal matrix depending on a real pa-
rameter,s, in such a way that

A(t + s) = A(t)A(s), (32)

then, differentiating with respect tot at t = 0 we obtain
A′(s) = A′(0)A(s), or, definingF ≡ A′(0)

A′(s) = FA(s). (33)

From Eq. (32) it follows thatA(0) = I, and therefore the
solution to Eq. (33) is given by

A(s) = (exp sF )A(0) = exp sF. (34)
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On the other hand, denoting byaα
β(s) andFα

β the en-
tries of the matricesA(s) andF , respectively, from Eq. (31)
we haveaα

µ(s)aβ
ν(s)gαβ = gµν . Differentiating with re-

spect tos at s = 0, taking into account thatA(0) = I and
A′(0) = F , we get

Fα
µgαν + F β

νgµβ = 0

or, equivalently, with the standard definitionFαβ ≡ gαγF γ
β ,

Fνµ + Fµν = 0, (35)

i.e., Fµν is antisymmetric, as in the case of the electromag-
netic field tensor. Thus, the exponential appearing in Eq. (4)
is an orthogonal transformation (i.e., a Lorentz transforma-
tion) and from Eq. (34), by suitably choosingF and the value
of s, one can obtain Lorentz transformations. In fact, any
proper orthochronous Lorentz transformation is of this form
(see,e.g., Ref. 9).

3.2.1. Orthogonal transformations of the Euclidean space

In the case where the metric tensor has the form

(gαβ) = diag (1, 1, 1, 1),

we haveFα
β = Fαβ and by virtue of Eq. (35) the matrix

F = (Fα
β) is of the form




0 e1 e2 e3

−e1 0 b3 −b2

−e2 −b3 0 b1

−e3 b2 −b1 0


 ,

wheree1, e2, e3 andb1, b2, b3 are six arbitrary real numbers
[cf. Eq. (3)]. Now∗(∗tαβ) = tαβ , therefore the eigenvalues
of the duality operator are±1, and the self-dual and anti-
self-dual parts ofFαβ are defined bySαβ ≡ Fαβ + ∗Fαβ ,
andAαβ ≡ Fαβ − ∗Fαβ , respectively, so that∗Sαβ = Sαβ ,
and∗Aαβ = −Aαβ .

Thus

F =
1
2
(S + A), (36)

where,

S =




0 g1 g2 g3

−g1 0 g3 −g2

−g2 −g3 0 g1

−g3 g2 −g1 0


 ,

and

A =




0 g̃1 g̃2 g̃3

−g̃1 0 −g̃3 g̃2

−g̃2 g̃3 0 −g̃1

−g̃3 −g̃2 g̃1 0


 ,

with the definitions

g ≡ e + b, g̃ ≡ e− b.

By means of a straightforward computation one finds
that, as in the previous case,S commutes withA, and the
squares ofS andA are proportional to the identity matrix

SA = AS, S2 = −g2I, A2 = −g̃2I (37)

[cf. Eqs. (8)], but nowS andA are two independent real an-
tisymmetric matrices,g2 and g̃2 are always real and non-
negative (see the discussion below).

From Eqs. (37) we have,e.g.,

S2n = (−1)n|g|2nI, S2n+1 = (−1)n|g|2nS,

for n = 0, 1, 2, . . . . Thus,

exp tF =
(

exp
1
2
tS

)(
exp

1
2
tA

)

and

exp
1
2
tS =

(
cos

t

2
|g|

)
I +

1
|g|

(
sin

t

2
|g|

)
S

[cf. Eq. (11)], with an analogous expression forexp(1/2)tA,
replacing|g| by |g̃|. Hence

exp tF =
(

cos
t

2
|g|

)(
cos

t

2
|g̃|

)
I

+
1
|g|

(
sin

t

2
|g|

)(
cos

t

2
|g̃|

)
S

+
1
|g̃|

(
sin

t

2
|g̃|

)(
cos

t

2
|g|

)
A

+
1

|g||g̃|
(

sin
t

2
|g|

) (
sin

t

2
|g̃|

)
SA.

Making use of Eqs. (36) and (37), this last expression can be
written in terms ofI, S, A, andF 2.

As in the case where the metric tensor is given by
Eq. (30), one can readily see that relations (37) trivially fol-
low from the expression ofS andA in an appropriate basis.
In fact, with the aid of the unitary4× 4 matrix

M =
1√
2




−i 0 0 1
0 1 −i 0
0 1 i 0
−i 0 0 −1




one obtains

MFM−1 =
1
2

(
1 0
0 1

)
⊗

( −ig3 −ig1 + g2

−ig1 − g2 ig3

)

+
1
2

( −ig̃3 −ig̃1 − g̃2

−ig̃1 + g̃2 ig̃3

)
⊗

(
1 0
0 1

)
.

The first term corresponds toS and the second one toA.
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4. Conclusions

By contrast with the approaches followed in other works, the
procedure employed in this paper allows us to solve the equa-
tions of motion (2) in a straightforward manner and to derive
certain algebraic relations [notably Eq. (29)] that do not seem
obtainable with other elementary methods in such a simple
way. As we have shown, the fundamental relations estab-
lished in order to solve Eq. (2) have a wider applicability and
analogs that enable us to readily find the exponentials of the
generators of all the orthogonal groups in four dimensions.
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comments and for pointing out Ref. 1 to them.

1. A.H. Taub,Phys. Rev.73 (1948) 786.

2. A.T. Hyman,Am. J. Phys.65 (1997) 195.
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