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Relativistic charged particle in a uniform electromagnetic field
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The equations of motion for a relativistic charged particle in a uniform electromagnetic field are solved in a covariant form by calculating the
exponential of the matrix corresponding to the electromagnetic field tensor. It is shown that owing to the antisymmetry of the electromagnetic
field tensor, the exponential mentioned above can be easily calculated. Some results are then applied to study the algebraic properties of t
energy-momentum tensor of the electromagnetic field and the orthogonal transformations in spaces of dimension 4.
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Se resuelven las ecuaciones de movimiento de unepkrtelativista cargada en un campo electrongtign uniforme en forma covariante,
calculando la exponencial de la matriz correspondiente al tensor del campo eleci&totag®Se muestra que debido a la antisimaetr
del tensor del campo electromagico, dicha exponencial se puede calcubailmente. Algunos resultados se aplican para estudiar las
propiedades algebraicas del tensor de édaempmento del campo electromagico y las transformaciones ortogonales en espacios de
dimenson 4.
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1. Introduction In Sec. 2 the four-velocity of a relativistic charged par-
ticle in a uniform electromagnetic field is obtained in a co-
The motion of a relativistic charged particle in a constant uni-variant form by directly calculating the exponential of a ma-

form electromagnetic field has been studied in a large num{fix formed by the components of the electromagnetic field.

ber of papers and textbooks (sesy, Refs. 1 to 6 and the The proceqlure followed here essentially coincides with that
references cited therein), making use of various procedure§MPIoyed in Taub's paper [1]; however, here we present the
The corresponding equations of motion can be solved in g'¢chanism behind the algebraic relations that simplify the
manifestly covariant form, expressing the four-velocity or thec@lculation of the exponential mentioned above. We also
space-time coordinates of the particle as a function of thgemonstrate, in Sec. 3, that some of the relations obtained
proper time of the particle, or making use of a convenient refin S€c. 2 can be employed to study the algebraic proper-

erence frame in which the electromagnetic field takes somE€S Of the energy-momentum tensor of the electromagnetic
simplified form; for instance, whei- B = 0 andE? — B2 is field and to find the orthogonal transformations of the four-

different from zero, there exists an inertial frame where onélimensional spaces.
of the fields,E or B, vanishes and the equations of motion
can be easily solved (seeg, Ref. 6). 2. Solution of the equations of motion

The equations of motion of a charged particle in a uni- . . . .
form electromagnetic field constitute a system of four homo-In the framework (.)f speqal relativity, the equatlc_)ns of motion
geneous linear first-order ordinary differential equations with.Of a charged particle with re;t ”?assa”d elect_rlc charge
constant coefficients for the four-velocity of the particle as ghan arbitrary electromagnetic field can be written in the co-
function of the proper time, whose solution can be expresse\éa”am form o
in terms of the exponential of 4 x 4 matrix. The aim of du — iFg‘Uﬁ, (1)
this paper is to show that, owing to the antisymmetry of the dr mc
electromagnetic field tensor, this exponential can be calcuvhereU® (o = 0,1,2,3) is the four-velocity of the parti-
lated directly by appropriately decomposing the argument ofl€, 7 is its proper timec is the speed of light in vacuum,
the exponential into two matrices corresponding to the selfand Fs is the electromagnetic field tensor, with sum over
dual and the anti-self-dual parts of the electromagnetic fieldepeated indices (see.g, Ref. 6). Equivalently, this system
tensor (see also Ref. 1). Some of the basic relations thus e8f equations can be expressed in the more elementary matrix
tablished are then used to study the algebraic properties of tHerm
energy-momentum tensor of the electromagnetic field and the du 4 ry @)

orthogonal transformations of any four-dimensional space. dr — me
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whereU is the column matrix with entrie&®, U, U?,U3,  and* denotes complex conjugation (note tbats the com-

andF is the4 x 4 matrix plex conjugate of).
0 E, E, . The usefulness of this decomposition comes from the fact
E 0 B -B thatS and A commute with each other, and their squares are
« z Y (3) : X . X
E, -B, 0 B, ) proportional to the identity matrix,

E. B, —B, 0

where E,, £y, E;) and (B, By, B.) are the Cartesian com-
ponents of the electric and magnetic fields, respectively, with ) , , ,
respect to some inertial reference frame. wherel is the4 x 4 identity matrix, and

If one assumes that the electromagnetic field is uniform,
the entries of” are all constant, and the solution of Eq. (2) is
given by (seee.g, Refs. 7 and 8)

SA=AS, S?=F?I, A?=F*"], (8)

F? = F,>+F,+F.’=(E + iB)’=E*’-~B*+2iE - B

(see the discussion in Sec. 2.2, below). Hence, the powers of

— ar. ;
U(r) = exp (mcF) U(0), (4) S aregiven by
with the exponential of a matrix being defined by means of o m2\n ontl _ m2yn
the series expansion S7 = (F)", S = (F7)"S, ©)
oxp A — i lA” forn =0,1,2,.... It may be remarked that the two Lorentz
ba= “— nl ' invariants [6] of the electromagnetic fielB2 — B2 andE- B,

arise here in a natural way.

In spite of the fact thaf’ is a4 x 4 matrix, this exponen- SinceS andA commute with each other, from Eq. (2) we

tial can be very easily computed if one writes the maifias

the sum of two complex matricesf( Ref. 1) have
1 qT
_1 U(r) = [ AT 5+ 4 } U0
Fetisea) ©) (1) = [exp 52 (5 4+ 4)] U(0)
with = (exp ﬂS) (exp ﬂA) U(0),
0 F, F, F. 2mc 2mc
| B 0 —iF iR, with
§= F, iF, 0 —iF, ’ ©6)
F, —iF, iF, 0 exp ( qr A)
and 2mc
0 E; Fy Fr being the complex conjugate of
F* 0 iF*  —iF*
— T z Y
Sl ) - Y S R oxp (L5)
Ff iFy  —iFf 0 2me
whereF,, F,, F, are the Cartesian components of the com-Then, with the definition
plex vector field
IF| = VF2 = \/E? - B2 +2E-B (10)

F=E+iB
| (sothatF? = |F|?), making use of Eq. (9) we obtain

qT =1 q|F|r 2n 1 & 1 q|F|r -t q|F|r 1 . . q|F|T
— I - = ‘h I —_— 3 h 11
xp 2mcS nz:% (2n)! ( 2me + |F| T;) (2n+ 1)!' \ 2me 5= cos 2me +|F| S e 5, (1)
provided thatF| # 0. In the case wherfF| = 0, only the first two terms of the series contribute [see Egs. (8) and (9)] and we
have

qT qT

Note that|F| is a square root of the complex numt&t — B? + 2iE - B, and that the final expression in Eq. (11) is an even
function of |F|; therefore, since the two square roots of a complex number differ-byfactor, both square roots produce the

same result. Note also that Eq. (12) can be obtained from Eq. (11) in théHmit 0, and therefore it is enough to consider

Eqg. (11) only.
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From Eg. (11) we then obtain

F F|* 1 F|r F|*
exp (%F) = (cosh q2|m|cT> ( sh q rr‘zc ) I+ m ( nh Q|m|c ) (cosh q%LCT) S

1 (. qF*r q|F|r 1 . qF|T q|F[*7
h h— | A h inh —— A, 13
+ \F|* (sm e > (cos e + |FHF|* sin e e S (13)

which only involves the matricek S, A, andS A, and according to Eq. (4) gives the solution to Eq. (2) for any initial condition.

which correspond to the first three terms of the series expan-
! sion of the exponential on the left-hand side of the equation;
2.1. Some particular cases in fact, making use of Eq. (15) and that bath and A% are
equal to zero one finds that® = 0 and thereforé™ = 0 for

n > 3. As we shall prove in Sec. 3.2, in all cases (for each

As shown in Egs. (11) and (12), the expression for

qT value of7)
exPp (2mcS)
qTt
depends essentially gir|, and this expression is simplified exp (%F)

if E-B = 0, in which casgF| is real or pure imaginary [see

Eq. (10)]. As is well known, ifft - B = 0 then there existin- IS @ Lorentz transformation; the transformations of the form
ertial frames in whictB or E is equal to zero, provided that (17) are known asull rotations(or parabolicLorentz trans-
E? — B? is greater than zero or less than zero, respectiveljormations).

(seee.g, Ref. 6). In a similar manner one finds that & - B = 0 and
fE-B= |B| > |E|, then|F| is pure imaginary and writingF'| = 1By,
reduces to with By real and positive (the magnitude Bfin a reference

frame wherell = 0), Eq. (13) reduces to
ar .\ _,, 1 (. qBoT
exp (mcF) =1+ By (Sm e )F

1 qBoT 2
(1m0 e ag
which also leads to Eq. (17) in the limit &% tends to zero.
with |F| = vE? — B2. (Note that, sincéE? — B2 is in-  Equation (18) is a periodic function of with angular fre-
variant under the Lorentz transformations, in this dd&ds ~ quencyw = ¢By/mc, which produces a rotation of the parti-
the magnitude of the electric field in a reference frame wheréle’s four-velocity with this angular velocity (see also Ref. 1).
B = 0.) On the other hand, from Egs. (5) and (8) we find
that 2.2. Origin of the algebraic simplifications

1
exp (£F) <1+c hq| |T> I
me me

1 (. qF|r
— h F
T (Sm me )

1 Q| T
— 1 — cosh A, 14
2F|2< o )S a4

1 1
F? = Z(S2 +28A 4 A?) = §(IF|21 +SA), (15)  Aswe have seen, the properties (8) simplify the calculation of
o . ) the exponential of the matrik’; however, the derivation pre-
hence, eliminatings A in favor of /', Eq. (14) can also be sented above, or that given in Ref. 1, does not elucidate the

written in the form origin of these key relations. However, as we shall presently
0T g h q|F|T ” show, by using an appropriate basis, relations (8) become
exp (% ) + @ me trivial. Indeed, making use of the unitatyx 4 matrix
1
L—cosh Y p2 0 (16 10 0 1
R me M- 1101 i 0 (19)
Both invariants of the electromagnetic field are equal to V2 (1) (1) _S (1)
zero if and only if|F| = 0; in that case from Eg. (16) we B

obtain (which represents a change of basis, with the new basis con-

qT qT taining two complex vectors; the new basis, calledual
—F) I —F ( ) F2, Q7 . '
P (mc + t3 2 \mc (47 tetrad is formed by four null four-vectors), one finds that
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F, F, —iF, 0 0
_ | Fe+iF, —F. 0 0
K=MSM™ = 0 0 F, F, —iF, (20)
0 0 F, +iF, —F,
and
F? 0 F; +1F; 0
_ 1 0 F¥ 0 Fr +iFy
L=MAM™" = Fr — i 0 _F 0 (21)
0 Fy —iFy 0 —F7
Making use of theensor produc{or direct producj of two 2 x 2 matrices, defined by (see.g, Ref. 10)
(04 ﬂ) b(a 5) ace af3 ba bs
a
a b ® a B _ v 9 vy 6 ay ad by b (22)
c d v § ) a @ a f ca cf da dB |’
¢ ) d ) cy b dy dé
and its inverse, it follows that(*t,3) = —t.3. Hence the
k/ve see that the matrices and L can be expressed in the eigenvalues of the duality operator aké The entries of the
form matrices (6) and (7) ar&“ g and A% 3, respectively, with
h= ( (1) (1) ) ® ( F, FZ'F - _FiFy ) Sap = Fap =1"Fop,  Aap = Fap +1"Fap,
x + 4z ..
Hy SO that*S, s = iSas, and*A,s = —i A,s. Similar results
and hold for all possible metrics in four-dimensional spaces (see
Fr Fr +iFr 1 0 Sec. 3.2.1, below) as can readily be shown making use of the
L= < Fr—iF}  —F; Y ) ® ( 0 1 ) , spinor formalism [9].
then, using the fact thad ® B)(C ® D) = (AC) ® (BD), 2.3. Comparison with other covariant approaches
|t_tr|\_/|ally follgws that K and L commute with each other. |, ref. 3, the series corresponding to
Similarly, noting that
qTt
. 2 exp (—F)
F, F, —iF, _p2 1 0 me
F, +iF, —F, - 0 1) is calculated by showing first that all powers Bfare lin-

) N ) o ) - ear combinations of the four matricds F, F?, and the
we readily obtaink® = F=I and, similarly, .= = F**I,  matrix corresponding to the dual df,; [equivalent to
which are equivalent to the last two Egs. (8). It may be a|50(1/2)1(S—A)], which implies that the desired exponential is

noticed that also a linear combination of these matrices, and then finding
F, F, —iF, \ _ F the coefficients by calculating traces. In the approach fol-
F,+iF, -F, ) 2% lowed in Ref. 2,
whereo is the vector formed with the standard Pauli matri- exp (q—TF)
mc

ces and, therefordy and L can be conveniently expressed in
terms of the Pauli matrices.

The matricesS and A (or, equivalently,K and L) corre-
spond to the self-dual and anti-self-dual part$'gf, respec-
tively. If the dual of an antisymmetric tenstys is defined

by

is calculated by establishing some algebraic relations be-
tween F' and the matrix formed with the dual df,s3, and
then translating the problem into that of solving a homoge-
neous fourth-order linear ordinary differential equation with
constant coefficients. By contrast, the calculation presented
in Ref. 1 and in this section is much shorter and direct, by
(23) virtue of Egs. (8), and has some other useful applications, as
we shall show in Sec. 3. The algebraic relations employed in
wherez 35 is totally antisymmetric wittzg123 = 1 and the  Refs. 2 and 3 follow at once from Egs. (8).
tensor indices are raised or lowered with the aid of the metric  On the other hand, in Ref. 5, the solution of the ma-
tensor trix equation (1) is obtained making use of the exponential
_ of a differential operator and a decomposition analogous to
(9ap) = diag (-1,1,1,1) (24)  Eq. (5) (see also Ref. 4).

. 1
tag = §Eag,y5t'y§,
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3. Further applications As another application of Eq. (29) we can prove that the
) ) ) energy-momentum tensor of the electromagnetic field is of

In this section we show that the results derived above caghe form Top = kaoks, for some four-vectork, only if

be employed in the study of the algebraic properties of thgoth invariants of the electromagnetic field vanish. In ef-

energy-momentum tensor of the _electromagnetl_c f|e|d_, angbct, the fact that the trace dt,s is equal to zero amounts

to find the orthogonal transformations of a four-dimensionakg o — (- hence, T T75 = k%k,k7ks = 0 and from

space. Eq. (29) it follows thatE? — B2 andE - B must vanish si-

multaneously.
3.1. The energy-momentum tensor of the electromag- .
netic field 3.2. Orthogonal transformations

As pointed out in Refs. 1 to 5, the exponential appearing in
The compqngnts of thg energy-momentum tensor of the ele(ﬁq. (4) is analogous to the expression of a Lorentz trans-
tromagnetic field are given by [6] formation. As we show explicitly below, the exponential in
1 . i ion. - i
Ty — — 2 (Fo 7, — iF%FWpég), (25) Eq. (4) is a Lorentz transformation. In fact, the four-velocity

47 U of a particle must satisfy the conditiéi*U,, = —c? and
which amounts to saying that, in terms of the matfixthe the solutionU*(7) to the system of linear equations (1) must

4x4matrixT = (T°5) is expressed as [see Egs. (5) and (8)]depend linearly of the initial conditiof/*(0) (even if .the
F,z are not constant). Since the Lorentz transformations are

__1 [F? — (tr F)I] the only linear transformations of the Minkowski space into
4 itself that leave invariant the products* A, U“(7) must be
related toU/“(0) by means of a Lorentz transformation.
Let V be a real four-dimensional vector space, with a
) o ) non-singular metric tensoy, s (that is,det(go3) # 0). In
=7 [2SA+ (F* + F** — Jtr F?)I], (26)  the case of the Minkowski space-time, with respect to an ap-

T dm . '
ropri i
where tr denotes the trace. propriate basis,

As is well known, the trace of the energy-momentum ten- (gag) = diag(—1,1,1,1) (30)
sor (25) vanisheg®,, = 0; on the other hand, af R
trSA = tr (M KM)(M~'LM) = tr KL = 0 (or its negative, depending on the conventions adopted), but

we can also considee.g, (g.3) = diag(1,1,1,1), cor-
sinceK L is the direct product of two tracele8x 2 matrices.  responding to the Euclidean four-dimensional space, and
Hence, from Eg. (26) we see that (gap) = diag(—1,—-1,1,1).
The orthogonal transformations are those linear transfor-

trF? = 4(F” + F*?) = 8(E” - B?) (27) " mations fromV onto itself that leave the metric tensor in-
[which also follows directly from Eq. (3)] and variant; in the case of the metric tensor (30) the orthogonal
transformations are just the homogeneous Lorentz transfor-
T — —iSA. (28)  mations. If thel x 4 matrix (a®) is an orthogonal transfor-
2 mation, then
An important, nontrivial consequence of this last equation is
that, by virtue of Eq. (8), a®ua” 90p = Guv, (31)
T2 — %52142 — %[(EQ —B22 +4(E-B)YI from which one can prove that the orthogonal transforma-
Am A tions form a group under composition.
or, equivalently, If A(s) is an orthogonal matrix depending on a real pa-
1 rameters, in such a way that
T, T = 472[(E2 —-B?)?+4(E-B)%65.  (29)

, . At + s) = A(t)A(s), (32)
With the aid of Eq. (29) one can prove that the electro-

magnetic field satisfies the so-callédminant energy condi- then, differentiating with respect toat+ = 0 we obtain
tion. For an observer whose four-velocityli§*, the energy A'(s) = A’(0)A(s), or, definingF = 4’(0)

flux four-vector of the electromagnetic field7¥* 3V ?. This

four-vector is nonspacelike since, using the symmetr¥,.of A'(s) = FA(s). (33)
and Eq. (29),

From Eq. (32) it follows thatd(0) = I, and therefore the

o B _mpB o
(T%6V7)(Tar V) = T7a T VsV solution to Eq. (33) is given by
1
= 477T2[(E2 ~B%)? +4(E-B)*|VsV” <. A(s) = (expsF)A(0) = exp sF. (34)
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On the other hand, denoting lay 5(s) and F'* 5 the en-
tries of the matricesl(s) and F, respectively, from Eq. (31)
we havea®,(s)a”,(s)gas = g, Differentiating with re-
spect tos at s = 0, taking into account that(0) = I and
A'(0) = F, we get

Faugoa/ + Fﬂuguﬂ =0
or, equivalently, with the standard definitiéQi g = go £ 5.

FVM J'_ FI"V = O’ (35)

i.e, F,, is antisymmetric, as in the case of the electromag-

G.F. TORRES DEL CASTILLO AND C. SOSAANCHEZ

By means of a straightforward computation one finds
that, as in the previous cas&,commutes with4, and the
squares of and A are proportional to the identity matrix

SA=AS, 8?=-g?I A®>=—-g’I (37)
[cf. Egs. (8)], but nowS and A are two independent real an-
tisymmetric matricesg? and g2 are always real and non-
negative (see the discussion below).

From Egs. (37) we have.g,

SQn _ (_l)n‘g‘?n]’ 527L+1 _ (_1)n|g|2n57

netic field tensor. Thus, the exponential appearing in Eq. (4)

is an orthogonal transformationd,, a Lorentz transforma-
tion) and from Eq. (34), by suitably choosiigand the value

of s, one can obtain Lorentz transformations. In fact, any
proper orthochronous Lorentz transformation is of this form

(seee.g, Ref. 9).

3.2.1.

In the case where the metric tensor has the form
(9ap) = diag (1,1,1,1),

we haveF*3 = F,3 and by virtue of Eq. (35) the matrix
F = (F“g) is of the form

0 €1 €9 €3
—€1 0 b3 71)2
—€9 7()3 0 bl ’
—es3 b2 —bl 0

whereey, es, e3 andby, bo, bs are six arbitrary real numbers
[cf. EQ. (3)]. Now*(*t,3) = tags, therefore the eigenvalues
of the duality operator are-1, and the self-dual and anti-
self-dual parts o, 3 are defined byS.g = Fog + *Fugp.
andA.p = Fop — *Fup, respectively, so thatS,g = Sag.
and*Aag = —Aag.

Thus
1
F= 5(S+A), (36)
where,
0 g 92 g3
g | 9 0 g5 -9
-g2 —g93 0 ¢ ’
93 g2 —g1 O
and ~ ~ ~
0 g1 g2 g3
a0 e |
—J2 g3 0 -0
93 —92 G1 0
with the definitions
g=e+b, g=e—bhb.

Orthogonal transformations of the Euclidean space

forn=0,1,2,.... Thus,

exptF = <exp ;tS) <exp ;tA)

and

1 t 1 t
exp itS = <cos 2|g|> I+ 2l (Sin 2|g|) S

[cf. Eq. (11)], with an analogous expression éap(1/2)tA,
replacing|g| by |g|. Hence

t t
exptF = <cos 2|g|) (COS 2@) I
1 t t
+ = Sing><cosg)5
o (m581) (38
1 t t
+ — siné)(cosg)z‘l
i (508 (50

1 t t
+ sing)(sing)SA.
a7 (3 sl) (s

Making use of Egs. (36) and (37), this last expression can be
written in terms off, S, A, andF2.

As in the case where the metric tensor is given by
Eq. (30), one can readily see that relations (37) trivially fol-
low from the expression of and A in an appropriate basis.

In fact, with the aid of the unitary x 4 matrix

-1 0 0 1
1 0 1 -1 0
M = V2 0 1 i 0
-i 0 0 -1
one obtains
MFM—l _ 1 1 O ® 7193 71g1 + 92
2\ 0 1 —ig1 — g2 193
1 —igs —ig1 — g2 10
+2<—i§1+§2 igs )%\ o 1)

The first term corresponds and the second one tb.
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lished in order to solve Eq. (2) have a wider applicability and

analogs that enable us to readily find the exponentials of the

generators of all the orthogonal groups in four dimensions.
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