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On the phenomenology underlying Taylor’s hypothesis in atmospheric turbulence
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G.I. Taylor’s hypothesis of transposition of turbulent statistics from the spatial to the temporal domain (and vice-versa) is usually explained
in terms of smaller features being advected by a large-scale transport velocity, while intrinsic temporal velocity fluctuations are slower than
the corresponding inertial terms, and turbulent velocity fluctuations remain small in comparison with the transport velocity. This formulation,
widely known as “frozen turbulence”, is undoubtedly correct in laboratory experiments where the stated conditions are being fulfilled, and
perhaps in many natural settings. However, temporal structure functions of measured velocities in the atmospheric boundary layer during
periods of higher transport velocities (tropical day time), when compared with periods of low activity (night time), show a very similar
behavior, hereby raising the question whether the space–time similarity of turbulent fluctuations in terms of statistical moments is really due
only to transport-like advection, or there might exist a different underlying phenomenology leading to the same result, and accounting for the
behavior during low-advection periods. Based on the multifractality observed in the structure functions, the alternative explanation of a 4-D
space-time multifractal field is suggested.
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La hipótesis de G.I. Taylor con respecto a la transposición de estad́ısticas del dominio espacial al dominio temporal (y viceversa) en turbu-
lencia, se explica generalmente en términos de las estructuras turbulentas más pequẽnas siendo arrastradas por una velocidad de transporte
a escalas grandes, mientras que las fluctuaciones de velocidad intrı́nsicamente temporales sean más lentas que sus contrapartes inerciales
y las fluctuaciones turbulentas de velocidad sean despreciables en comparación con la velocidad de transporte. Esta explicación, comun-
mente conocida como “turbulencia congelada”, es sin duda correcta en el caso de aquellos experimentos de laboratorio donde se cumplen
las condiciones enunciadas, ası́ como en ciertos casos que ocurren en la naturaleza. Sin embargo, las funciones estructurales de las varia-
ciones temporales de velocidad en la capa lı́mite atmosf́erica durante perı́odos con velocidades de transporte más altas (mãnanas tropicales),
se muestran muy parecidas a las calculadas para perı́odos de baja intensidad de viento (noches), suscitando ası́ la cuestíon si realmente la
similaridad espacio-temporal de los momentos estadı́sticos de las fluctuaciones turbulentas de velocidad se debe a una advección, o bien
podŕıa existir otra fenomenologı́a subyacente que llevara al mismo resultado estadı́stico, pero que pudiese explicar también el mismo com-
portamiento durante los perı́odos de baja advección. Basados en la multifractalidad observada en las funciones estructurales, proponemos
una explicacíon alternativa, involucrando un campo multifractal espacio-temporal.

Descriptores:Capa ĺımite; campo multifractal; hiṕotesis de Taylor; turbulencia.

PACS: 44.25.+f; 47.27.eb; 47.53.+n

1. Introduction

The existence of a universal behavior within the inertial sub-
range of fully-developed turbulence, in terms of velocity and
pressure fields, as assumed in [1] and rigorously conjectured
by [2], is expressed by a scaling of the velocity field with
distance. Scaling is one of the fundamental transformations
(such as space-time translations or Galilean transformations)
that leave the Navier-Stokes dynamical equation

∂v/∂t + (v∇)v = −∇p + ν(∇∇)v (1)

invariant, wherev is the velocity,p the pressure, andν the
kinematic viscosity of the fluid, whilet is the temporal coor-
dinate, and∇ the vector-operator(∂/∂x, ∂/∂y, ∂/∂z), with
r = (x, y, z) the spatial coordinates. If we transform, for
some positive realλ, r → λr, t → λ1−ht, v → λhv, and

p → λ2hp, then from dimensional considerations, applying
the Buckingham Product Theorem, we obtainh = −1. How-
ever, in the limit of high Reynolds numbersRe:=rv/ν→∞,
which is precisely the case of fully-developed turbulence, the
viscous term becomes negligible, andh is not limited by
dimensional reasons. Kolmogorov’s statistical proportion-
ality law ∆v3 (∆r) ∝ |∆r| (seee.g. [3] for details) im-
pliesh = 1/3 for fully-developed, homogeneous turbulence.
The power-law scaling of the velocity field with length can
be phenomenologically explained by the energy cascading
across scales (for the case of the atmosphere see [4,5]). Pro-
gressively refined cascade models [6,7] have been proposed
in recent years to explain increasingly precise velocity mea-
surements, reaching from simple monofractal scaling models
to multifractal models with log-infinitely divisible [8,9], and
in particular log-stable cascade generators [10,11].
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G.I. Taylor [12] hypothesized that second-order statistics
can be rescaled from space to time and vice-versa, a property
routinely used in experimental turbulence (seee.g.[3]). The
original explanation put forth by Taylor for this hypothesis
is a so-called “frozen” field (large-scale movement advecting
small-scale features, which in the particular case of the at-
mosphere is associated with large-scale circulation carrying
along smaller eddies, at higher velocities than their own re-
laxation speed). While the hypothesis itself has been widely
confirmed experimentally, the underlying phenomenology
explaining the hypothesis may not necessarily be limited to
the “frozen” turbulence scenario. As a matter of fact, in the
absence of a clearly identifiable large-scale current (such as
the one createde.g.in a wind tunnel) the presence of eddies
at all scales makes it a non-trivial issue whether a unique
advection velocity can be employed at all, as discussede.g.
in [13]. In [14], a model is proposed, where the advection
velocity is adjusted as a function of the relative intensity of
turbulent fluctuations, in an attempt to determine the extent
to which intertwined large-scale features are able to “trans-
port” smaller-scale eddies. The model has been indirectly
confirmed by [15].

What has prompted the existence of this work is the fact
that the Taylorian space-time transposition does not seem to
break down as the mean velocity tends to 0, as it should in
the case of a purely advection-led transposition. We argue
that different physical mechanisms (or a combination thereof)
give rise to the Taylorian behavior under different circum-
stances, which explains the “survival” of the mentioned be-
havior as the mean velocity tends to 0, and could also be
interpreted as an alternative phenomenology explaining the
adjustments proposed in [15].

2. Velocity data

Turbulent velocity fields were measured at a deforested site
in the state of Rond̂onia, Brazil (10◦45′ S, 62◦ 22′ W) dur-
ing the wet-season months of January and February 1999.
The land is now used as pasture and is dominated by
short grasses (Brachiaria brizantha), about 25 cm tall. Iso-
lated indigenous trees are scattered throughout the land-
scape. The measurements were obtained as part of the NASA
TRMM-LBA (Tropical Rainfall Measuring Mission – Large
scale Biosphere-Atmosphere) project in the Amazonia. To
measure the three components of the wind speed, a sonic
anemometer (Solent A1002R, Gill Instruments, Lymington,
UK) was deployed on a tower at 6 m above the surface. The
10-m tower was also instrumented with other sensors that al-
lowed to measure variables such as water vapor concentra-
tion, air temperature profiles, short-wave and long-wave ra-
diation. The sonic anemometer recorded wind speed and vir-
tual temperature at a frequency of 10 Hz. These fast-response
data were obtained via data acquisition and electronic signal
condition systems (model SCXI 2400, National Instruments,
Austin, TX), which were interfaced with a computer. A de-
tailed description of the data set can be found in [16].

We observed that during daytime the absolute values of
wind velocity components (Fig. 1, top) exhibit the expected
increase, due mainly to the thermal forcing. We use these
two different regimes (day- vs. night-time) to compare the
particularities of the Taylorian behavior in each case. Let us
recall that the justification of the “frozen” field lies precisely
in a relatively low intensity of turbulent fluctuations with re-
spect to the transport velocity generated by the largest scales
(which can be considered a “mean flow” velocity with respect
to smaller scales). But no such transport velocity justifies the
hypothesis during night hours, when mean velocities are low
(mostly, less than 1 m/s), and a mean transport velocity vir-
tually nonexistent.

3. Background, analysis and results

Let us consider the scaling of the Fourier energy spectrum
E(k) with respect to the wavenumberk:

E(k) ∝ kβ . (2)

The planetary-scaleβ = −3 range is widely believed to be
the result of a two-dimensional direct (large scale to small
scale) enstrophy (=vorticity2/2) cascade [17], dimensionally
agreeing with Kraichnan two-dimensional turbulence the-
ory [18]. This also agrees with the observational fact that at
the planetary scale, the Coriolis force, together with the jux-
taposition of oceans and continents, and landscape features,
induce a large-scale vorticity which subsequently cascades
down to smaller scales. This, in turn, argues in favor of a
frozen-field explanation of Taylor’s hypothesis at the plane-
tary range of scales, given the mentioned regularity of global
circulation, dominated by the induced large-scale vorticity.

It is a non-trivial problem to determine around what scale
atmospheric turbulence changes from a 2-D to a 3-D behav-
ior. This is particularly the case since thermal energy injec-
tion and two-phase effects in the atmospheric boundary layer
naturally occur around the range of scales, where fluid ele-
ments geometrically undergo the transformation from a 3-D
to a 2-D configuration. This geometrically-based occurrence
has an equally interesting dynamical counterpart: the energy
injection at the above-mentioned scales causes a 2-D inverse
energy cascade (from the transition scales to larger scales),
according to Kraichnan’s theory [18], as well as a 3-D di-
rect energy cascade (from those scales to smaller scales), in
agreement with Kolmogorov’s classical 3-D isotropic turbu-
lence scaling hypothesis [2]. But then again, both of these
cascades have aβ = −5/3 spectral exponent, which makes
them spectrally indistinguishable, and calls for more refined
scaling analyses to define the junction between the 2-D in-
verse and the 3-D direct energy cascade. A relevant tool for
such an analysis is offered by the structure functionζ of ab-
solute values of velocity increments, defined from

|∆v(∆t)|p ∝ ∆tζ(p), (3)
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FIGURE 1. Top: Absolute value of wind speed during January
30, 1999. Bottom: Fourier power spectrum estimation at different
hours of that same day.

where∆v(∆t) := v(t + ∆t)− v(t) andp represents the or-
der of statistical moments for whichζ(p) is defined (note that
ζ, as defined, reflects the scaling law of the absolute values
of velocity increments with the time intervals over which they
were measured, and may be different of the structure function
of signed velocity increments, for those values ofp where the
latter exists). In [17] it was found that no part of the−5/3
power spectrum is compatible with 2-D turbulence, based on
the fact that the second-order structure functionsζ(2) of the
velocities do not agree with the corresponding 2-D isotropic
relationship. Similarly, [17] computed the outer scale of the
3-D cascade from the convergence point of the scaling statis-
tical moments of different orders, and found that it lies at syn-
optic scales. This would imply that the whole−5/3 power
spectrum scaling range should be interpreted as a 3-D energy
inertial scaling range, and that the so-called “mesoscale gap”
does not actually play any role [19] in the qualitative behavior
of atmospheric turbulence.

It appears therefore that a 3-D direct energy cascade
of spectral exponent -5/3 in space is responsible, transposed

FIGURE 2. Top: Ensemble Fourier power spectrum estimation
at midday across the daily realizations, during the whole period
of the experiment (the exponent estimation line is marked in red).
Bottom: ensemble estimations of the Fourier power-spectral expo-
nent at different hours, across the daily realizations, for the whole
January-February period of the experiment.

through advection, for the spectra that we obtain from point-
velocity measurements. However, as argued earlier, the ad-
vective transposition should break down as the advection ve-
locity tends to 0. Dimensional considerations, based on the
Buckingham Product Theorem (just as for the other cases
cited above), give in this caseE (ω) ∝ ω−2ε, whereω is
the respective frequency for which the spectral density is be-
ing calculated, andε the specific energy dissipation rate. It
is interesting to observe that the same value of the spectral
exponent has been found in [21], in a similar context, where
the scaling arises in fully developed free-convective turbu-
lence of helium gas heated from below. However, let us note
that the atmosphere offers a unique case study in this respect,
distinguished by the fact that its huge scale allows for consid-
erable Reynolds numbers to be attained, with very low inten-
sities of “external” flow, a setting that cannot be reproduced
in the laboratory. In [22] it is noted for example that in typical
experimental conditions for atmospheric turbulence,
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FIGURE 3. Ensemble estimation of the structure functionζ of tem-
poral point-velocity fluctuations during January – February 1999,
for the time windows 12:00 to 12:30 a.m. (dash-dotted line), and
12:00 to 12:30 p.m. (dashed line), respectively. The solid line rep-
resents the1/3-slope values according to Kolmogorov [2].

the ratio between the relaxation speed of smaller eddies and
the velocity of the “mean wind” is of the order of 0.2 to 0.5.
In the present data set we found values up to 0.7. Figure 1,
bottom, shows an example of the daily power-spectral ex-
ponents, estimated from point-velocity time series, and one
can appreciate (comparing with the top figure) that during
daytime, with high advection velocities, the estimated expo-
nents are grouped around the -5/3 value, whereas at night,
a shift towards the -2 value can be observed. The ensemble
power spectra (an example in Fig. 2, top) lead to exponent
estimations that exhibit the same tendencies; however, less
pronounced due to ensemble averaging (Fig. 2, bottom).

In order to better understand what is actually occurring
in the case of low advection velocities, we compare the time-
domainζ functions, defined as in (3), between daytime and
night-time (Fig. 3). Theζ(p) are estimated from the linearity
of the logarithmic plots of|∆v(∆t)|p vs.∆t.

The interesting feature to observe here is the deviation of
the time-domainζ (p) functions from the straightp/3 line.
This is a behavior characteristic of multifractality (let us re-
call that the definition of multifractality as the nonlinearity
of ζ (p) functions stems from the existence of a continuous
range of Ḧolder exponents in the measure); see also [20].
This deviation is considerably higher during day time than
during night time, a fact that has to be connected to the larger
day-time velocities (which, in turn, relate to a deeper iner-
tial subrange). In any case, both cases show an unmistakable
multifractal behavior, and consequently should be regarded
as different realizations of multifractal cascades. As mul-
tifractal cascades are trivially non-ergodic in their structure
functions (both mathematically and physically: real-life cas-
cading processes approach structure-function ergodicity over
domains that largely exceed the scale where the cascades
are generated, which arguably allows the process to contain

FIGURE 4. Probability-unbiased estimation of the cumulative dis-
tribution function (CDF) of breakdown coefficients (BDC) of tem-
poral point-velocity fluctuations on January 30, 1999, between 1:00
and 1:30 a.m., and between 12:00 and 12:30 p.m., respectively.

several realizations of an ensemble), an operator that ensures
ergodicity over multifractal cascades should be employed for
the purpose of further investigating the generator characteris-
tics of the observed cascades. Such operators are the break-
down coefficients (BDCs), defined for a measureµ on the
Borel subsets of some interval of the real line as:

b (I1, I2) = µ (I1)/µ (I2) , (4)

whereI1 ⊆ I2 ⊂ R are two intervals of the real line. Aside
from their ergodicity, the relevance of breakdown coefficients
for scale-invariant processes in general, and for multifrac-
tal measures in particular, lies in the fact that their probabil-
ity distribution function only depends on the quotient of the
lengths of the intervalsI1 andI2 (for an overview of proper-
ties, as well as generalizations, see [23,24]). In our case, the
probability distribution functions of BDCs for daytime and
night-time (Fig. 4) confirm the likelihood of a multifractal
structure of the data, by means of their asymptotes in 0 and 1
(see [25]), and most importantly, show a striking resemblance
between each other.

This evidence suggests the identity of the multifractal en-
ergy cascade kernel between day and night. Given the fact
that during the night, the turbulent intensity dominates the
mean velocity,i.e., point-measurements in Eulerian coordi-
nates are at least to some extent reflecting an intrinsic tem-
poral variability; whereas, during the day a “frozen field”-
type of advection makes point-measurements reflect mainly
the spatial variability, we can conclude from the similarity
of the day- and night-time energy cascades that a 4-D space-
time multifractal model is appropriate for explaining the ob-
served features. In a Taylorian setting, this is to say that the
turbulence-intensity correction to the transport velocity is a
fraction (reflecting the importance of turbulent intensity vs.
mean flow) of theζ (p)th root of the ratio between the spatial
and the temporal structure functions. Let us note that in the
case of a space-time anisotropy of the structure functions, the
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transport velocity correction should be a function of the order
p of the moment for which the transposed statistics are evalu-
ated; otherwise, for isotropic scaling between space and time,
the correction should be the same for all orders of moments
(and obviously identical to the one used for the “classical”
Taylorian second-moment transposition).

4. Conclusions and perspectives

Employing a straightforward thread of thought (of which a
number of elements were previously known), we offer ev-
idence in favor of a 4-D space-time multifractal model of
turbulence, using data from atmospheric turbulence, where
relatively high Reynolds numbers can be reached without a
considerable mean flow. The multifractal intrinsic tempo-
ral component determines the transposition of statistics be-
tween space and time at low mean flows (with respect to
the turbulent intensity), much in the same way as the advec-
tion velocity does at high mean flows. The final conclusion
on whether this model is in fact correct will have to rely on

simultaneous (albeit expensive) multi-anemometer measure-
ments in the space-time domain. If the 4-D multifractality is
confirmed, an additional bonus of such a field study would be
an answer to whether there exists an anisotropy between the
spatial scaling and the temporal scaling. Such a model could
offer the correct description of processes where atmospheric
small-scale turbulence is involved, such as cloud drop nucle-
ation, raindrop growth and size distribution under different
atmospheric conditions, and others. A theoretical perspective
for the to-be 4-D multifractality would be the phenomenolog-
ical description of the intrinsic temporal multifractal compo-
nent.
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