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The hydrogen atom with an origin centred singularity
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We study the problem of a hydrogen atom with an infinitely repulsive singularity at the origin, in two cases: in the first, the electron is free to
move throughout space, while in the other, the system is confined in a spherical box of impenetrable walls centred at the nucleus. We show
that spherically symmetrics states cannot exist in these systems.

Keywords: Confined hydrogen atom; energy eigenvalues; eigenfunctions.

Estudiamos el problema delátomo de hidŕogeno con una singularidad infinitamente repulsiva en el origen, en dos casos: en el primero,
el electŕon se mueve libremente en todo el espacio, mientras que en el otro, el sistema se confina dentro de una caja esférica de paredes
impenetrables centrada en el núcleo. Mostramos que no existen estados esféricamente siḿetricos en este problema.

Descriptores:Átomo de hidŕogeno confinado; energı́as propias; funciones propias.

PACS: 03.65.Ge; 31.15.-p

1. Introduction

There has recently been an increased interest in the study
of quantum confined systems. Some examples refer to the
so-called artificial atoms or quantum dots, which consist
of electrons moving inside quantum wells [1-3]. Atoms
or molecules trapped inside cavities as fullerenes or zeolite
cages [4,5] also fall into this category.

Another system recently analyzed corresponds to the so-
called shell-confined hydrogen atom [6-8], which refers to a
hydrogen atom with the nucleus placed at the centre of two
concentric impenetrable spheres, where the electron is sub-
ject to the following potential

V (r) =





+∞ if 0 ≤ r ≤ a
− 1

r if a < r < b
+∞ if r ≥ b

(1)

Studies based on this model have been devoted to the
analysis of variations in the static dipole polarizability and
Shannon entropy as functions of the wall positions.

In this report we analyze the energy spectrum of the sys-
tem in two cases: in the first we takea = 0 andb → ∞,
while in the second we choosea = 0 andb = r0(finite). We
show that these systems possess no spherically symmetric so-
lutions (s states). It should be pointed out that this property
has not been discussed in previous works.

In Sec. 2 we obtain the energy spectrum of the hydrogen
atom with an impenetrable wall at the origin, while in Sec. 3
we identify the eigensolutions for confinement atr = b. Fi-
nally, in Sec. 4 we give some conclusions.

2. The hydrogen atom with a singularity at the
origin

The system under consideration is a hydrogen atom with a
singularity at the origin. The radial Schrödinger equation of
the system in atomic units (~ = m = e = 1) is given by

−1
2
∇2ψ + Vc(r)ψ = Eψ, (2)

whereVc(r) is the potential

Vc(r) =
{ ∞, if r = 0
− 1

r , if r > 0 (3)

As usual, the wave function can be separated as

ψ(r, θ, φ) = R(r)Ylm(θ, φ). (4)

By substituting Eq. (4) into Eq. (2), the radial Schrödin-
ger equation reads

−1
2

1
r2

d

dr

(
r2 dR

dr

)
+

(
l(l + 1)

2r2
+ Vc(r)

)
R = ER . (5)

The radial wave function must fulfil the boundary condi-
tions,

R(r = 0) = 0, (6)

lim
r→∞

R(r) = 0. (7)

The singularity at the origin implied by Eq. (6) prevents
the electron from being found at that point, while Eq. (7) en-
sures the square integrability character of the wave function.

In order to find solutions to the radial Schrödinger equa-
tion, we first consider the region spanned byr > 0. Ac-
cordingly, Eq. (5) is transformed into the common radial
Schr̈odinger equation of the hydrogen atom

−1
2

1
r2

d

dr

(
r2 dR

dr

)
+

(
l(l + 1)

2r2
− 1

r

)
R = ER. (8)
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By making the substitutions

n = 1/
√
−2E, ρ = 2r/n, (9)

Eq. (8) is transformed into

d2R

dρ2
+

2
ρ

dR

dρ
−

(
1
4
− n

ρ
+

l(l + 1)
ρ2

)
R = 0. (10)

By using the ansatz

R = e−ρ/2 ρl F (ρ), (11)

Eq. (10) becomes

ρ
d2F

dρ2
+ (2l + 2− ρ)

dF

dρ
+ (n− l − 1)F = 0. (12)

This is the well known Kummer differential equation,
whose general solution is given by [9,10]

F (ρ) = AM(−n + l + 1, 2l + 2; ρ)

+ BU(−n + l + 1, 2l + 2; ρ), (13)

whereA andB are constants andM andU are the Kum-
mer functions. The first Kummer function, or the confluent
hypergeometric functionM(a, b, z), is regular at the origin,
while the second Kummer functionU(a, b, z) is singular at
the origin. The radial wavefunction (Eq. 11) becomes,

R(ρ) = e−ρ/2
{
Aρl M(−n + l + 1, 2l + 2; ρ)

+BρlU(−n + l + 1, 2l + 2; ρ)
}

. (14)

Since the second parameter2l + 2 of the Kummer func-
tion U is an integer, its appropriate representation is given
by [9]

U(a, n + 1, z) =
(−1)n+1

n!Γ(a− n)

[
M(a, n + 1, z) ln z

1
+

∞∑
r=0

(α)rz
r

(n + 1)rr!
{ψ(a + r)− ψ(1 + r)− ψ(1 + n + r)}

]

+
(n− 1)!

Γ(a)
z−nM(a− n, 1− n, z)n (15)

for n = 0, 1, 2, 3, ..., whereψ(x) = Γ′(x)/Γ(x), and the last
factor is the sum ofn terms with value zero forn = 0.

Since the radial wave function must vanish at the origin
(see Eq. 6), thenB = 0, andl > 0, i.e., there are nos states.
Therefore

R(ρ) = Ae−ρ/2 ρlM(−n + l + 1, 2l + 2; ρ). (16)

In order for the wave function to be well-behaved as
r → ∞, the hypergeometric function must be truncated.
This requirement will be met provided there exists some non-
negative integernr such that

−nr = −n + l + 1, with l > 0. (17)

By substitutingn from equation (9) we get

En = − 1
2n2

, n = nr + l + 1, l > 0. (18)

3. The confined hydrogen atom with a singu-
larity at the origin

When the hydrogen atom is enclosed in an impenetrable
sphere of radiusr0, the potential energy (Eq. 3) becomes

Vc(r) =





+∞, if r = 0

− 1
r , if 0 < r < r0

+∞, if r0 < r

. (19)

The solutions of the corresponding Schrödinger equation
are of the form given by Eq. (4). In the region0 < r < r0

the radial Schr̈odinger equation is given by Eq. (10), where
the radial wave function must satisfy the following boundary
conditions:

R(r = 0) = 0, (20)

R(r0) = 0. (21)

The first of the above equations relates to a repulsive in-
finite wall at the origin, while the second (Dirichlet’s bound-
ary condition) is imposed by the impenetrable spherical wall.
The general solution of the radial equation in this region is
also given by Eq. (14). Applying the boundary condition
at the origin we found thatB = 0, and the integerl > 0.
Equation (20) yields the energy eigenvalues

R(ρ0) = Ae−ρ0/2 ρl
0M(−n + l + 1, 2l + 2; ρ0) = 0, (22)

whereρ = 2r/n. It is enough to find the roots of the conflu-
ent hypergeometric function for a given angular momentum
l and a box radiusρ0. This procedure was successfully ap-
plied by Aquinoet al [11], where they found very accurate
energy eigenvalues for a wide range of states of the confined
hydrogen atom.
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4. Conclusions

In this work we have shown that the problem of a hydro-
gen atom with a singularity at the origin yields no solutions
for l = 0, i.e., s states are excluded. This problem is a
limiting case of the so-calledshell-confined hydrogen atom
(shell-CHA). The potential energy in Eq. (3) is obtained from
Eq. (1) asa → 0 andb → ∞. On the other hand, the poten-

tial energy in Eq. (19) is obtained whena → 0 andb → r0.
It is worth pointing out that solutions forl = 0 states had not
been discussed previously and so far had remained an open
question.

The eigenfunctions and eigen-energies of the hydrogen
atom with a singularity at the origin were found. For the CHA
problem with a singularity at the origin, the eigen-energies
are numerically obtained, as shown by Aquinoet al [11].
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