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Av. San Claudio y 18 Sur, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Pue., 72570, México,
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In this article, we present an autonomous mobile robot that is provided with two active wheels and passive one, as well as two control
algorithms for the stabilization of the programmed paths. The dynamic programming constitute the bases for the determination of both
control laws. The first law of optimal control is obtained by solving the Ricatti matricial differential equation. The second is deduced taking
into account the work done by Kalman, which makes possible the reduction of a matricial differential equation into an algebraic matricial
equation. The simulation of both algorithms is made when the programmed path is a straight line and this makes possible to observe the
optimal control law, which represents the principal goal of this paper, and which presents an improved quality for the stabilization that the
control law obtained following the work of Kalman.
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En este trabajo presentamos un robot móvil autónomo provisto de dos ruedas activas y una pasiva, ası́ como dos algoritmos de control para
la estabilizacíon de las trayectorias programadas; la programación dińamica es el fundamento para determinar ambas leyes de control. La
primera ley de controĺoptimo la obtenemos al solucionar una ecuación diferencial matricial del tipo Riccati, la segunda ley se deduce al
aprovechar una disertación hecha por Kalman, la cual permite reducir una ecuación diferencial matricial a una ecuación algebraica matricial.
La simulacíon de ambos algoritmos se realiza cuando la trayectoria programada es una lı́nea recta y permite observar que la ley de control
óptimo, objetivo primordial de este artı́culo, presenta una calidad superior en la estabilización que la ley de control obtenida mediante la
disertacíon de Kalman.

Descriptores: Robot ḿovil; control óptimo; programación dińamica; ecuación diferencial de Riccati.
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1. Introduction

As a branch of artificial intelligence, mobile robotics has
seen great advances during the last decades, principally in
the mathematical formalization of different deterministic and
non-deterministic algorithms, as well as the creation of new
theories that complement the concepts that already existed in
artificial intelligence. These theories make possible to reach
goals that improve the autonomy and intelligence of mobile
robots [1].

The machines we call robots are increasingly taking
greater importance in the life of man, humans design and
build this machine in order to help us perform various ac-
tivities such as handling hazardous materials, tasks that are
beyond the natural capacity of human beings and activities
in environments where human life is endangered. When we
speak about mobile robots, we refer to a particular class of
intelligent agents for whom their interaction environment is
the physical context that surrounds the robot with material
objects. The stimuli provided by the sensors measure phys-
ical properties (distance, size, color, luminous intensity, etc.)
of the objects, and the responses are physical acts upon this
environment (movement of the robot itself) [2]. This causes
some difficulties in the mobile robots, consisting principally
in the uncertainty and the error involved in the transformation
of the physical magnitudes measured by the sensors, because
these values are used as input to the system that controls the
robot.

In particular, as the control area is a subsystem that go-
verns the activity of the autonomous mobile robot, it has in-
creased its study range, generating algorithms that are more
and more robust. The autonomy of a mobile robot is based
upon the automatic navigation system. In these systems, the
tasks of planning, perception, and control are included. The
problem of global planification of the path consists of making
the path of less length in order to reach the goal. This implies
a problem in the design of the control that regulates the mis-
sion of the robot, which is considered in this paper [3,4]. In
order to do this, we consider the class of autonomous mobile
robots that consist of three wheels, two active and one pas-
sive, with non-holonomic restrictions, that are present due to
the assumption that it does not slides.

An article which considers a similar mobile robot, shown
in Ref. 5, however, the dynamic model presented is differ-
ent and this model is considered a system with slow and fast
modes, a matrix algebraic Riccati equation is resolves to syn-
thesize a control strategy for the subsystem with slow modes.
In Ref. 6 is considered a robot mobile with two-wheel dif-
ferential drive located at the geometric centre (robot soccer),
the modeling is done using the Lagrange formulation. In this
paper, the dynamics of electric part (the motors) can usually
be neglected, as electrical time constants are usually signif-
icantly smaller than mechanical time constants. Not exhibit
any control strategy.

This article aims, the deduction of a dynamic model that
is very accessible but at the same time capture the essen-
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tial nonlinearities such robots; synthesize two optimal control
strategies to plan a robot path, considering a quadratic perfor-
mance indicator. The first law to get when we solve a Riccati
differential matrix equation, the second control law deduced
from the previous work done by Kalman. The second control
strategy we get it for comparison between the two and show
that the strategy obtained by solving the matrix differential
equation has a higher quality stabilization.

This paper is organized in the following way. Sec. 2 is
devoted to the statement of the control problem. In Sec. 3,
the mathematical model of the mobile robot is deduced. In
Sec. 4, the programmed paths of the mobile robot is de-
scribed, using the fact that every real path can be achieved
as combinations of the programmed paths. In Sec. 5, the
linear equations of the state variables are considered for the
programmed paths. In Sec. 6 and 7, the first and second
control laws are obtained, respectively, as well as the solu-
tion algorithms and their simulations. Finally, in Sec. 8, the
conclusions obtained are presented.

2. Statement of the Problem

Let us consider the following controllable process:
{

ẏ = f(y,u),
u(·) ∈ U = {u : u(t) ∈ Ω ⊆ Rr} ,

(1)

wherey is thenth-dimensional vector that contains the state
coordinates of the system,u is the rth-dimensional vector
that represents the input controls andf(y,u) belongs to the
C2 class. The control is a vectorial function that is piece-
wise continuous, and which for every instant of time, it takes
its values from the convex, closed, and boundedΩ set. Let
us assume that given some displacementyd(t) and a desired
controlud(t), the following equations are satisfied:

{
ẏd ≡ f(yd(t),ud(t)),
u(.) ∈ U t ∈ [t0, t1).

(2)

Let there bem sensors that produce data about the actual
movement. After the processing of this data, it is possible to
make an estimate of the actual deviationsx(t) = y(t)−yd(t)
and to form the control of the actor.

Let us use the following notation:

• ∆u = u− ud is the additional control,

• x = y−yd is the deviation respect to the desired move-
ment,

• z̃ = ϕ(y) − ϕ(yd) is the information vector that is
received concerning the deviation.

The differential equations that govern the deviations

x(t)=y(t)−yd(t) for u(t) = ud(t), [t0, t1)

can be written as:

ẋ = f̃(x, t), (3)

wheref̃(0, t) ≡ 0 for t ∈ [t0, t1) andx(t0) 6= 0. These equa-
tions admit a trivial solution that corresponds to the desired
movementyd(t) of the system.

Let us assume thatud(t) is located inside theΩ set for
t ∈ [t0, t1) (this means that there still remain additional re-
sources). For a given control strategyu = ud(t) + ∆u(z̃, t)
where∆u is the additional control. Afterwards, the follow-
ing linear equations of the deviations are obtained:

ẋ = A(t)x + B(t)∆u, (4)

where

A(t) =
∂f [yd(t),ud(t)]

∂y
,

B(t) =
∂f [yd(t),ud(t)]

∂u
, (5)

and the linear model of measurement is

z̃ = H(t)x detH 6= 0, (6)

where

H(t) =
∂ϕ[(yd(t)]

∂y
. (7)

Let us suppose that the perturbations upon the system and
the measurement errors are null. Almost without exception,
there are initial perturbations that are presentx(t0) 6= 0 and
there is only a small number of cases in which for∆u ≡ 0,
the conditionx(t) → 0 if t → ∞. Nevertheless, it is much
more probable to have the case in which for∆u ≡ 0, the
conditionx(t) 9 0 if t →∞ is satisfied.

This results into the stabilization problem; that is, with
the use of the information of the desired path, we have to de-

FIGURE 1. Autonomous Mobile Robot.
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FIGURE 2. Diagram of the mobile robot.

termine a control∆u(z̃, t) such that the real deviations de-
crease asymptotically. In this paper, it is assumed that we
have the exact and complete information of each one of the
coordinates [7].

3. Dynamic model of the mobile robot

The dynamic model of the mobile robot plays an important
role in the simulation of the movement, the analysis of the
mechanic structure of the prototype, and in the design of the
control algorithms [8,9]. The autonomous mobile robot that
was constructed, is shown in Fig. 1. As can be seen, the
prototype consists of a straight, non-homogeneous cylinder,
with two lateral wheels and one smaller that function as the
support. The movement of the small wheel is not considered,
due to the fact that its mass and size are small when compared
to the body of the robot.

For the construction of the dynamic model of the mobile
robot, we make the following considerations: a) The mobile
robot moves upon a plane; b) we suppose that the parts of the
mobile robot are rigid bodies; c) the movement of the small
wheel of support is not considered, which can be done be-
cause the mass and size of the wheel are small in comparison
to those of the body of the robot; d) the velocities of the mo-
bile robot are small, so that the viscous friction force can be
safely ignored; e) the lateral wheels satisfy the non-slipping
condition; and f) the friction between the wheels and the flat
surface is such that it satisfies the condition of lateral non-
slipping of the wheels.

Taking into account these considerations, the mobil robot
constructed was modeled using a straight cylinder and two
lateral wheels with a straight cylinder form, as can be seen
in the Figs. 2 and 3, where the mobile robot model is pre-
sented, and which was used to obtain the dynamic model.
The formulation employed to construct the dynamic model
is the Euler-Newton formulation, which consists of using the
following equation [10-12]:

FR = Macm (8)

and

τR =
dLcm

dt
, (9)

whereFR is the resultant force upon the massM of the body
andacm is the acceleration of the mass center. On the other
hand, in Eq. (9)τR is the sum of external pairs andLcm is
the angular momentum around the axis that crosses the mass
center. Both of the equations are valid in an inertial system
which is assumed to be fixed on a flat surface upon which the
mobile robot, which is indicated by theX0

1 , X0
2 y X0

3 axes.
Moreover, we consider a reference system that is fixed to the
robot’s body, whose axes are denoted byXM

1 , XM
2 y XM

3 ,
and which are shown in Fig. 2.

Let C be a point that lies along theXM
1 axis, and is lo-

cated at a distancec, with a position vectorrc, which will
be represented asrc = (x0

c1, x
0
c2, x

0
c3)

T , and where the su-
perindex states that the vector is expressed in the represen-
tation of the inertial reference system. The representation of
the vectorrc in the reference system that is fixed to the body
has components(xM

1c , xM
2c , xM

3c )T .
There is a very useful equation that shows the relationship

of the temporal variations that are measured in the two refer-
ence systems, on inertial and the other fixed on the moving
body (which is denoted with an asterisk), which is

dB
dt

=
d∗B
dt

+ ω ×B, (10)

whereω is the angular velocity of the fixed system respect
to the inertial system. Considering the pointC with position
vectorrc = R + C, whereR = (x0

1, x
0
2, x

0
3)

T is the vector
that goes from the origin of the inertial reference system to
the origin of the reference system that is fixed to the body
andC = (c0

1, c
0
2, c

0
3)

T is the vector that goes from the origin
of the reference system fixed to the body up to the pointC,
using the Eq. (10), then the velocity of the pointC is given
by 


ẋ0

c1

ẋ0
c2

ẋ0
c3


 =




v cos θ − ωc sin θ
−v sin θ + ωc cos θ

0


 , (11)

wherev =
√

(ẋ0
1)2 + (ẋ0

2)2 andθ̇ = ω is the translation ve-
locity of the origin of the mobile reference system and the
angular velocity around theX0

3 axis, respectively.
The velocities of the centers of the wheels are obtained

by using the Eq. (10), so for the left and right wheels, we
obtain 


ẋM

l1

ẋM
l2

ẋM
l3


 =




ẋM
1 − aω
ẋM

2

0


 , (12)

and 


ẋM
r1

ẋM
r2

ẋM
r3


 =




ẋM
1 + aω
ẋM

2

0


 , (13)
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respectively. In these expressions,a is the distance that lies
between the origin of the system fixed to the body to that of
the center of the wheel. These velocities have been calculated
from the representation of the reference system that is fixed
to the body to keep simple the expression.

In order to calculate the acceleration, the Eq. (10) is used,
applying it twice in order to obtain the equation of the second
derivative. The acceleration of a pointC that lies upon the
XM

1 is given by the following equation



ẍM
c1

ẍM
c2

ẍM
c3


 =




ẍM
1 − cθ̇2

ẍM
2 + cθ̈

0


 . (14)

The acceleration of the pointC is expressed in the represen-
tation of the system fixed to the body. Following the same
procedure, the acceleration at the center of the left and right
wheels are given by the following equations:




ẍM
l1

ẍM
l2

ẍM
l3


 =




ẍM
1 − aθ̈

ẍM
2 − aθ̇2

0


 , (15)

and



ẍM
r1

ẍM
r2

ẍM
r3


 =




ẍM
1 + aθ̈

ẍM
2 + aθ̇2

0


 , (16)

respectively.
Taking into account the constriction relationships, let us

assume that the wheels satisfy the rolling and non-slipping
conditions. (that no lateral slipping occurs in the wheels).
The rolling condition is established using the following equa-
tions

Vl = rφ̇l, (17)

Vr = rφ̇r, (18)

whereVl = ẋM
l1 andVr = ẋM

r1 . With the help of these ex-
pressions, it is possible to write down the first coordinate of
the vectorial equations in the following manner (12), (13)

Vl = v − aω, (19)

Vr = v + aω, (20)

sinceẋM
1 = v. The angular accelerations of the wheels of the

mobile robot are obtained by differentiating respect to time
the Eqs. (19) and (20). Thus,

αl =
1
r
(ẍM

1 − aθ̈), (21)

αr =
1
r
(ẍM

1 + aθ̈), (22)

whereαl = φ̈l, αr = φ̈r y r is the radius of the wheels.
The no-slip lateral condition of the wheels is established

by requiring that the following conditions are satisfied:

ẋM
l2 = ẋM

r2 = ẋM
2 = 0. (23)

FIGURE 3. Free-Body Diagram.

Moreover, the transformation equations for the velocities
of the origin of the fixed reference system to the inertial sys-
tem, can be written in the following way:




ẋM
1

ẋM
2

ẋM
3


 =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1







ẋ0
1

ẋ0
2

ẋ0
3


 . (24)

Now, by considering the second component of the expres-
sion (24) and taking into account the expression (23), the fol-
lowing equation is obtained:

ẋM
2 = −ẋ0

1 sin θ + ẋ0
2 cos θ = 0, (25)

and by differentiating respect to time, then

ẍM
2 = 0. (26)

Using the free-body diagram of Fig. 3, it is possible to
write for every mobile part of the robot the Eq. (8). For the
body of the robot, the Eq. (14) has been used in Eq. (8),
wherec = −b, so

(
F
′
l + F

′
r

R
′
l + R

′
r

)
= mb

(
ẍM

1 + bθ̇2

ẍM
2 − bθ̈

)
, (27)

wheremb is the mass of the body of the robot andb is the
distance between the system that is fixed on the body up to
the robot’s mass center. For the left wheel, it is possible to
write the Eq. (8) as

(
Fl − F

′
l

Rl −R
′
l

)
= mwl

(
ẍM

1 − aθ̈

ẍM
2 − aθ̇2

)
. (28)

In this expression,mwl is the mass of the left wheel. Mean-
while, for the right wheel, Eq. (8) can be rewritten as

(
Fr − F

′
r

Rr −R
′
r

)
= mwr

(
ẍM

1 + aθ̈

ẍM
2 + aθ̇2

)
. (29)

In this expression,mwr is the mass of the right wheel.
Adding the corresponding members of Eqs (27), (28),
and (29), then

(
Fl + Fr

Rl + Rr

)
=

(
mbẍ

M
1 + mbbθ̇

2 + 2mwẍM
1

mbẍ
M
2 −mbbθ̈ + 2mwẍM

2

)
, (30)
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where it has been considered that the masses of the wheels
are equal,mwl = mwr = mw.

In order to finish the dynamic model of the mobile robot,
it is necessary to apply the second equation of the Euler-
Newton formulation to the robot model shown in Figs. 2
and 3. Equation (9), can be rewritten as:

τR = ÎCM · dω

dt
+ mrCM × dvCM

dt
. (31)

In order to obtain the equation that completes the dynamic
model of the mobile robot, we employed the same plan that
produced the Eqs. (30). Considering the free-body diagram
of Fig. 3, and using Eq. (31) for the robot’s body and the two
wheels, and adding the corresponding sides of the resultant
equations, then

a(Fr − Fl) = (I3c + 2I3w

+2mwa2 + mbb
2
)
θ̈ −mbbẍ

M
2 . (32)

In this expression,I3c is the momentum of inertia along the
axis that goes through the mass center, which is the robot’s
center, and which is parallel toXM

3 , while I3w is the mo-
mentum of inertia along the axis that goes through the mass
center of a wheel and that is parallel to theXM

3 axis.
Therefore, to obtain the relationship between the pairs ap-

plied by the engines upon the wheels (τl , τr) and the traction
forces that are produced upon the wheels (Fl, Fr), we apply
for each one of the wheels the expression

∑
i τi = Iα, where

the sum of the applied pairs are those who are responsible to
the rolling of the wheel with an angular accelerationα around
the rotation axis with a momentum of inertiaI. Considering
the free-body diagram of Fig. 3 and the angular accelerations
of the wheels in the expressions (21) and (22), then

Fl =
1
r

[
τl − I2w

r

(
ẍM

1 − aθ̈
)]

, (33)

Fr =
1
r

[
τr − I2w

r

(
ẍM

1 + aθ̈
)]

, (34)

whereI2w is the momentum of inertia respect to the axis that
passes through the axis that connects the two wheels.

Substituting the equations (33) and (34), in the first com-
ponent of the expressions (28) and (32), then

(τr + τl)
r

=
(

mb + 2mw +
2I2w

r2

)
ẍM

1 + mbbθ̇
2, (35)

a(τr − τl)
r

=
(

I3c + mbb
2

+ 2I3w + 2mwa2 +
2a2

r2
I2w

)
θ̈, (36)

respectively.
The model of the motor which is being considered is the

following one [13]:

τi = χui − σφ̇i, i = l, r, (37)

TABLE I. Programmed trajectories of horizontal and vertical lines.

Trajectory x0d
c1 x0d

c2 θd vd ωd

1. horizontal line v0t + ξ0 0 0 v0 0

negative sense

2. horizontal line v0t + ξ0 0 π v0 0

positive sense

3. vertical line 0 v0t + η0
π
2

v0 0

negative sense

4. vertical line 0 v0t + η0 −π
2

v0 0

positive sense

whereui is the potential difference applied to the enginei,
φ̇i is the angular velocity at which the engine’s axisi rotates,
χ is the ratio that exists between the constant electromotive
force and the electric resistance of the engine andσ is the ra-
tio between the counter-electromotive force and the electric
resistance. Considering this expression and using (17)-(20),
then

(τr + τl) = χ(ur + ul)− σ
2v

r
, (38)

(τr − τl) = χ(ur − ul)− σ
2aω

r
. (39)

Finally, substituting Eqs. (38) and (39) in Eqs. (35)
and (36) and by using Eq. (11), but withc = h, and by
combining them, we obtain the dynamic model





ẋ0
c1 = v cos θ − hω sin θ,

ẋ0
c2 = v sin θ + hω cos θ,

θ̇ = ω,

J1v̇ = −mbbω
2 − 2σ

r2 v + χ
r (ur + ul),

J2ω̇ = 2a2σ
r2 ω + aχ

r (ur − ul).

(40)

where

J1 = mb + 2mw + 2I2w/r2

and

J2 = I3c + 2I3w + 2mwa2 + mbb
2 + 2a2I2w/r2.

The expression of the dynamic model, Eq. (40) is a non-
linear system of five differential equations that have two con-
trol variablesur y ul.

4. Programmed Paths

The stationary programmed pathsyd(t), are determined from
a specific activity of the robot, and they are given in such a

Rev. Mex. F́ıs. 57 (1) (2011) 75–83
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FIGURE 4. Training Board of the Mobile Robot

way that this activity will be regulated by the desired move-
ment.

It is possible to approximate any assigned activity by
combinations of horizontal o vertical straight lines and by
semicircles. We will make eight possible configurations (as
can be seenin Fig. 4).

We show the set of desired paths in Table I, where the
movement is done along a segment of a line parallel to the
(X0

1 axis or to theX0
2 axis).

In the case in which the robot goes along a horizontal or
vertical straight line, as can be seen in Table I, it is assumed
that there will be no angular movement(ωd = 0). Those
equations that satisfy this set of conditions is said to be in an
equilibrium state.

If the robot moves along a segment of a circle with diam-
eterR that is centered on one of the corners of the training
board, and if we consider this corner and the configuration of
the training board, we have four quadrants that are counted
counterclockwise, dividing the circle into four equal semicir-
cles. In this situation, it is possible to describe eight possible
configurations. Moreover, the set of solutions for the desired
path results from considering that the robot describes a semi-
circular movement, so we assume a constant angular move-
ment. The velocity and the angle are given from this angular
displacement, as well as the position coordinates.

5. Linear Equations in the Deviations

If ud(t) is a nominal entry to the system that is described by
Eqs. (40) andyd(t) is a nominal path of this system, then it is
possible to find approximations to the neighboring solutions
for small deviations from the initial state and for the entry.
Let us suppose that the system is closed for nominal condi-
tions, which implies thatu(t) andy(t) will slightly deviate
from ud(t) andyd(t).

The linear system for the horizontal line in the positive
sense is given by:

TABLE II. Numerical values of system’s parameters.

Variable Value Description

v0 1.5 wanted speed, in meters/seconds

a 0.40 Distance between wheels, in meters

b 0.08 Distance between masses center and

the axis of wheels, in meters

h 0.10 Distance between the wheels and

the array of infrared sensors, in meters

m 4.5 Mass of robot, in kilograms

r 0.08 Radius of wheels, in meters





ẋ0
c1 = −v,

ẋ0
c2 = −v0θ − hω,

θ̇ = ω,

v̇ = − 2σ
r2J1

v + χ
rJ1

(ur + ul),

ω̇ = 2a2σ
r2J2

ω + aχ
rJ2

(ur − ul).

(41)

Considering that the desired path is a semicircle, then we
obtain the eight systems for the linear deviations, substituting
in the following system each one of the desired movements
(in this caseeach system depends onθd), we present one of
these:





ẋ0
c1 = − (

v0 sen θd + hω0 cos θd
)
θ

+ v cos θd − ωh sen θd,

ẋ0
c2 =

(−v0 cos θd − hω0 sen θd
)
θ

+v sen θd + ωh cos θd,

θ̇ = ω,

v̇ = − 2σ
r2J1

v − 2bω0ωmb
J1

+ χ
rJ1

(ur + ul),

ω̇ = 2a2σ
r2J2

ω + aχ
rJ2

(ur − ul).

(42)

6. First law of optimal control and solution al-
gorithm

Considering the system

ẋ = Ax(t) + Bu(t), (43)

and the stabilization quality functional is given by

G(x,u) =

∞∫

0

(xT (t)G(t)x(t) + uT (t)N(t)u(t))dt. (44)
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FIGURE 5. Diagram of flux to solve the Riccati’s differential ma-
tricial equation.

The programmed path is considered as a straight line in
the negative direction (Table I)




x0d
c1

x0d
c2

θd

vd

ωd




=




v0t + ξ0

0

π

v0

0




. (45)

The matricesA,B of the system (43) are obtained ac-
cording to the values of the parameters of the Table II and are
described below:

A =




0 0 0 −1 0
0 0 −1.5 0 −0.1
0 0 0 0 1
0 0 0 0.625 0
0 0 0 0 0.3923




, (46)

B =




0 0
0 0
0 0

0.0278 0
0 0.1744




. (47)

Using the dynamic programming and by considering
Bellman’s function,w(x, t) = x(t)L(t)x(t), we obtain Ric-
catti’s matricial differential equation [14,15].

L̇ = LBBTL − 2AL −G con L(t1) = 0. (48)

For a given instantt1, we proceed to solve this system in the
inverse time as a system with initial conditions using a vari-
able exchangeτ = t − t1, so that the system (48), which is
a non-linear system with final conditions, is transformed to a
system with initial conditions.

Afterwards, with the use of polynomials, it is possible to
obtain an approximation of each one of the matrix elements
L(t). Since these functions are written in the inverse time,
it is necessary to return to the direct time, obtaining all the
matrix elementsL(t), and thus, the optimal control is written
as

u = −N−1BTL(t)x(t). (49)

Finally, we substitute this control into the system

ẋ = A(t)x + B(t)u,

and by solving forẋ=(A − BBTL)x, we simulate the be-
havior of the state variables.

FIGURE 6. Behavior of the state variables when the control con-
sidersL(t)
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The diagram of Fig. 3, shows the algorithm that describes
the steps that are necessary to obtain the solution.

Executing this algorithm in Matlab, the following re-
sults of the simulation of the state variables are obtained and
shown in Fig. 4.

7. Second law of control and its solution algo-
rithm

Kalman states and proves the equivalence between optimal
problems [16].

Theorem 7.1Let us assume that the system

ẋ=A(t)x+B(t)u

is completely controllable; that is

rang(B,AB, ...,An−1B) = n.

If the following problem

min
u(·)

t1∫

t0

f0(t) = xT (t0)L0(t0)x(t0), (50)

has a solution of the form

u0(t) = −N−1BTL(t)x, (51)

then in the case in whicht1 = ∞ is satisfied, then

L(t) → L0 when t →∞, (52)

whereLT
0 = L0 > 0 andL0 is the solution of the Riccati’s

algebraic equation,

G− LBN−1BTL+ (LA + ATL) = 0. (53)

Therefore, it is possible to calculate the control as

u0 = −N−1BTL0x. (54)

Thus, we can use Kalman’s result to solve a problem of the
type (50) when the control has the formu = −Kx and the
model of the system is given by

ẋ = Ax(t) + Bu(t). (55)

7.1. Solution Algorithm when t1 = ∞
The solution of Riccati’s matricial differential equation
L(t) → L0 whent →∞, and whereL0 is a constant matrix
and it is a solution of Riccati’s algebraic Eq. (53) de Riccati,
with final conditions

L0(t1) = 0. (56)

In the flux diagram shown in Fig. 5, we present the steps
used for the solution of the system with constant coefficients,
which involveL0 in the control.

FIGURE 7. Diagram of flow to solve Riccati’s algebraic matricial
equation.

FIGURE 8. Behavior of the state variables when the control con-
sidersL0

In this case, the system is solved using Mathlab’s func-
tion (care) and thereby obtaining the behavior of the state
variables, as shown in Fig. 6.
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8. Conclusions

We obtained the movement Eqs. (40) of the mobile robot
for a horizontal straight line in the positive sense, we wrote
down the deviations linear system (41), and used this sys-
tem to deduce both of the control laws. Using the dynamic
programming as a basis, we obtained the first optimal con-
trol law (49) by solving Riccati’s matricial differential equa-
tion (48), and the stabilization time in the simulation is quite
acceptable, because by using the Kalman’s work, we have the
second control law (54) when we solve Riccati’s matricial al-

gebraic equation (53), simplifying the calculations done in
this equation. Nevertheless, the stabilization time increases
significantly, as can be seen in Fig. 6. A future paper will
consist of determining a control law when the programmed
path is a semicircle.
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