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In this article, we present an autonomous mobile robot that is provided with two active wheels and passive one, as well as two control
algorithms for the stabilization of the programmed paths. The dynamic programming constitute the bases for the determination of both
control laws. The first law of optimal control is obtained by solving the Ricatti matricial differential equation. The second is deduced taking
into account the work done by Kalman, which makes possible the reduction of a matricial differential equation into an algebraic matricial
equation. The simulation of both algorithms is made when the programmed path is a straight line and this makes possible to observe the
optimal control law, which represents the principal goal of this paper, and which presents an improved quality for the stabilization that the
control law obtained following the work of Kalman.
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En este trabajo presentamos un rob@wihautonomo provisto de dos ruedas activas y una pasivacmso dos algoritmos de control para

la estabilizaddn de las trayectorias programadas; la progragmadinamica es el fundamento para determinar ambas leyes de control. La
primera ley de controbptimo la obtenemos al solucionar una ecéadiiferencial matricial del tipo Riccati, la segunda ley se deduce al
aprovechar una diserta@ci hecha por Kalman, la cual permite reducir una ec@radiferencial matricial a una ecuaai algebraica matricial.

La simulacén de ambos algoritmos se realiza cuando la trayectoria programada ésameetta y permite observar que la ley de control
optimo, objetivo primordial de este @tilo, presenta una calidad superior en la estabilimaque la ley de control obtenida mediante la
disertacbn de Kalman.

Descriptores: Robot novil; control 6ptimo; programadin dinamica; ecuaéin diferencial de Riccati.

PACS: 45.40.-f; 45.80.+r; 46.15.Cc; 02.30.Yy.

1. Introduction In particular, as the control area is a subsystem that go-
verns the activity of the autonomous mobile robot, it has in-
As a branch of artificial intelligence, mobile robotics hascreased its study range, generating algorithms that are more
seen great advances during the last decades, principally &nd more robust. The autonomy of a mobile robot is based
the mathematical formalization of different deterministic andupon the automatic navigation system. In these systems, the
non-deterministic algorithms, as well as the creation of newiasks of planning, perception, and control are included. The
theories that complement the concepts that already existed problem of global planification of the path consists of making
artificial intelligence. These theories make possible to reackhe path of less length in order to reach the goal. This implies
goals that improve the autonomy and intelligence of mobilea problem in the design of the control that regulates the mis-
robots [1]. sion of the robot, which is considered in this paper [3,4]. In
The machines we call robots are increasingly takingorder to do this, we consider the class of autonomous mobile
greater importance in the life of man, humans design anéoPOts that consist of three wheels, two active and one pas-
build this machine in order to help us perform various ac-SV€; with nqn—holonqmm restrictions, that are present due to
tivities such as handling hazardous materials, tasks that at8® @ssumption that it does not slides.
beyond the natural capacity of human beings and activities An article which considers a similar mobile robot, shown
in environments where human life is endangered. When wéh Ref. 5, however, the dynamic model presented is differ-
speak about mobile robots, we refer to a particular class ot and this model is considered a system with slow and fast
intelligent agents for whom their interaction environment ismodes, a matrix algebraic Riccati equation is resolves to syn-
the physical context that surrounds the robot with materiathesize a control strategy for the subsystem with slow modes.
objects. The stimuli provided by the sensors measure phydn Ref. 6 is considered a robot mobile with two-wheel dif-
ical properties distance, size, color, luminous intensity, ptc. ferential drive located at the geometric centre (robot soccer),
of the objects, and the responses are physical acts upon trie modeling is done using the Lagrange formulation. In this
environment fniovement of the robot its¢lf2]. This causes ~Paper, the dynamics of electric part (the motors) can usually
some difficulties in the mobile robots, consisting principally be neglected, as electrical time constants are usually signif-
in the uncertainty and the error involved in the transformatioricantly smaller than mechanical time constants. Not exhibit
of the physical magnitudes measured by the sensors, becau®ay control strategy.
these values are used as input to the system that controls the This article aims, the deduction of a dynamic model that
robot. is very accessible but at the same time capture the essen-
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tial nonlinearities such robots; synthesize two optimal controkan be written as:

strategies to plan a robot path, considering a quadratic perfor- ~

mance indicator. The first law to get when we solve a Riccati % = f(x,1), )

differential matrix equation, the second control law deduced ~

from the previous work done by Kalman. The second controivheref(0,¢) = 0for ¢ € [to, 1) andx(to) # 0. These equa-

strategy we get it for comparison between the two and showions admit a trivial solution that corresponds to the desired

that the strategy obtained by solving the matrix differentialmovementy®(t) of the system.

equation has a higher quality stabilization. Let us assume that?(t) is located inside th& set for
This paper is organized in the following way. Sec. 2 ist € [to,t1) (this means that there still remain additional re-

devoted to the statement of the control problem. In Sec. 3sources). For a given control strategy= u®(t) + Au(z, ¢)

the mathematical model of the mobile robot is deduced. InwhereAu is the additional control. Afterwards, the follow-

Sec. 4, the programmed paths of the mobile robot is deing linear equations of the deviations are obtained:

scribed, using the fact that every real path can be achieved

as combinations of the programmed paths. In Sec. 5, the X = A(t)x + B(t)Au, 4)

linear equations of the state variables are considered for the

programmed paths. In Sec. 6 and 7, the first and secon§ere
control laws are obtained, respectively, as well as the solu- Oty (1), ul(t)]
tion algorithms and their simulations. Finally, in Sec. 8, the A(t) = 3—”
conclusions obtained are presented. . Y .
By = MO0 -
2. Statement of the Problem
and the linear model of measurement is
Let us consider the following controllable process:
z=H(t)x detH #0, (6)
{ y= f(Y7 u)’ 1)
u(-)eU={u:u(t) e QCR"}, where
wherey is thenth-dimensional vector that contains the state H(t) = e[y ()] %
coordinates of the systenm is the rth-dimensional vector dy

that represents the input controls u) belongs to the .
b b g, u) g Let us suppose that the perturbations upon the system and

C? class. The control is a vectorial function that is piece-th ¢ Al t without i
wise continuous, and which for every instant of time, it takes € measurement errors are null. AImost without exception,

its values from the convex, closed, and boun€lesiet, Let (Nere are initial perturbations that are preseft) # 0 and

us assume that given some displacenyit) and a desired ';Eere lsdqply a fmallongfmfer of cal\Tes n:hwrlchzt_tt)q =0 h
controlu?(t), the following equations are satisfied: e conditionx(t) — 0 if ¢ — oco. Neverineless, 1tis muc
more probable to have the case in which foa = 0, the

conditionx(t) - 0 if ¢ — oo is satisfied.
vy = f(y?(t),ul(t)), 2 This results into the stabilization problem; that is, with
u(l)eU te [to,tr). (2) " the use of the information of the desired path, we have to de-

Let there ben sensors that produce data about the actual # e
movement. After the processing of this data, it is possible to PR N o
make an estimate of the actual deviatiatig) = y(t) —y?(t) :
and to form the control of the actor.

Let us use the following notation:

e Au = u — u?is the additional control,

e x = y—y%isthe deviation respect to the desired move-
ment,

e 7z = p(y) — o(y?) is the information vector that is
received concerning the deviation.

The differential equations that govern the deviations

x(t)=y(t)—y*(t) for u(t)=u’(t), [to,tr) FIGURE 1. Autonomous Mobile Robot.
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FR = Macm (8)

and
dLep,

TR )
whereF, is the resultant force upon the magsof the body
anda,,, is the acceleration of the mass center. On the other
hand, in Eq. (9)rg is the sum of external pairs add.,, is
the angular momentum around the axis that crosses the mass
center. Both of the equations are valid in an inertial system
which is assumed to be fixed on a flat surface upon which the
mobile robot, which is indicated by th&?, X9 y X9 axes.
Moreover, we consider a reference system that is fixed to the
robot’s body, whose axes are denoted®f, X1 y XM,
and which are shown in Fig. 2.

Let C be a point that lies along th&} axis, and is lo-
cated at a distance with a position vector., which will

. N - _ (0 .0 .0\T _
termine a controAu(z, ¢) such that the real deviations de- P€ represented as = (z;;,zc,7¢3)", and where the su
crease asymptotically. In this paper, it is assumed that weerindex states that the vector is expressed in the represen-

have the exact and complete information of each one of thtation of the inertial reference system. The representation of
coordinates [7]. the vectorr, in the reference system that is fixed to the body

has componentge?! | xd1 2 2)T
There is a very useful equation that shows the relationship
3. Dynamic model of the mobile robot of the temporal variations that are measured in the two refer-
ence systems, on inertial and the other fixed on the moving
The dynamic model of the mobile robot plays an importantbody (which is denoted with an asterisk), which is
role in the simulation of the movement, the analysis of the iB d'B
mechanic structure of the prototype, and in the design of the o a

control algorithms [8,9]. The autonomous mobile robot thatwherew is the angular velocity of the fixed system respect

was constructgd, IS shown'ln Fig. 1. As can be seen, th?o the inertial system. Considering the paifwith position
prototype consists of a straight, non-homogeneous Cy“nde(lectorr _ R+ C, whereR = (20,29, 29)7 is the vector

with two lateral wheels and one smaller that function as th hat goes from the origin of the inertial reference system to

support. The move_ment of the S”.‘a” wheel is not cansidere he origin of the reference system that is fixed to the body
due to the fact that its mass and size are small when compared |~ — (2,9, 97 is the vector that goes from the origin
Y I

to the body of the rOt_)Ot' . . of the reference system fixed to the body up to the p6int
For the construction of the dynamic model of the mobHeusing the Eq. (10), then the velocity of the poffitis given
robot, we make the following considerations: a) The mobiley, '

robot moves upon a plane; b) we suppose that the parts of the

TR =

0

FIGURE 2. Diagram of the mobile robot.

+wx B, (10)

mobile robot are rigid bodies; c) the movement of the small el veos —wesing

wheel of support is not considered, which can be done be- 5?82 = | —vsin®+wccost |, (11)
cause the mass and size of the wheel are small in comparison Le3 0

to those of the body of the robot; d) the velocities of the mo-wherev = /(i9)2 + (3)2 andd = w is the translation ve-

bile robot are small, so that the viscous friction force can beocity of the origin of the mobile reference system and the
safely ignored; e) the lateral wheels satisfy the non-slippingangular velocity around th& 9 axis, respectively.
condition; and f) the friction between the wheels and the flat  The velocities of the centers of the wheels are obtained

surface is such that it satisfies the condition of lateral nonpy ysing the Eq. (10), so for the left and right wheels, we

slipping of the wheels. obtain
Taking into account these considerations, the mobil robot M M — aw
constructed was modeled using a straight cylinder and two @ | = @M 7 (12)
lateral wheels with a straight cylinder form, as can be seen s 0
in the Figs. 2 and 3, where the mobile robot model is pre-
sented, and which was used to obtain the dynamic modef’}nd o "
The formulation employed to construct the dynamic model 9_57& 7 .Law
is the Euler-Newton formulation, which consists of using the Ty | = 5 ; (13)
following equation [10-12]: Ty 0
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respectively. In these expressionss the distance that lies
between the origin of the system fixed to the body to that of

the center of the wheel. These velocities have been calculatet
from the representation of the reference system that is fixed. O
to the body to keep simple the expression.

In order to calculate the acceleration, the Eq. (10) is used,
applying it twice in order to obtain the equation of the second
derivative. The acceleration of a poi6tthat lies upon the
XM is given by the following equation

Il & o FIGURE 3. Free-Body Di

. o IGURE 3. Free-bo lagram.

o= #M e . (14) ybiag

..M . . .
Le3 0 Moreover, the transformation equations for the velocities

The acceleration of the poirit is expressed in the represen- Of the origin of the fixed reference system to the inertial sys-
tation of the system fixed to the body. Following the samelem, can be written in the following way:

procedure, the acceleration at the center of the left and right M . .0
wheels are given by the following equations: 1 cos —sinf 0 1
i | = —sind cosd 0 @ . (24)
i — af i o o0 1)\l
By | =| @' —ab® |, (15) o
AT 0 N_ow, by con&dgnng the second componen_t of the expres-
sion (24) and taking into account the expression (23), the fol-
and lowing equation is obtained:
M M 4 af
xZ\/;[ _ gcé\l/j —:ra9_2 7 (16) i) = —i9sin @ + &Y cos§ = 0, (25)
Tr3 0 and by differentiating respect to time, then
respectively. Y
Taking into account the constriction relationships, let us iy =0. (26)

assume that the wheels satisfy the rolling and non-slipping . ) . o .
conditions. (that no lateral slipping occurs in the wheels). _USing the free-body diagram of Fig. 3, itis possible to

The rolling condition is established using the following equa-"'te for every mobile part of the robot the Eq. (8). For the
tions body of the robot, the Eq. (14) has been used in Eq. (8),

] wherec = —b, so
Vi=rar, 17)

, F +F. \ @M+ bg?
V, =7y, (18) ( R+R ) —mb( v ) @0

— M _ M H
whereV; = &)y andV, = ;. With the help of these ex- \ nore . is the mass of the body of the robot ahis the

phressions,_ iT is possible tot:/vr:cte”doyvn the first coordinate Ofjigyance hetween the system that is fixed on the body up to
the vectorial equations in the following manner (12), (13) 6 ropot's mass center. For the left wheel, it is possible to

Vi = v — aw, (19) Write the Eq. (8) as
V, = v+ aw, (20) F—F \ M —af
( R—R )T aM a2 ) (28)

sincei}! = v. The angular accelerations of the wheels of the
mobile robot are obtained by differentiating respect to timeyp, this expressiony,,; is the mass of the left wheel. Mean-

the Egs. (19) and (20). Thus, while, for the right wheel, Eq. (8) can be rewritten as
o = (& — af), (21) Fo—F \_ . M 4 af (29)
L Re—R, ) ="\ e )
a, = (&' + ab), (22) . . . .
r In this expressionm,,,. is the mass of the right wheel.
wherea; = ¢, . = &, y r is the radius of the wheels. Adding the corresponding members of Eqs (27), (28),
The no-slip lateral condition of the wheels is establishec@nd (29), then
by requiring that the following conditions are satisfied: F+F ) _ myiM + mbbé"? - omy i o)
By = @y = i3’ = 0. (23) R+ R, myi — myb + 2m, 3 )
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where it has been considered that the masses of the wheels

are equalin,; = My = My. TABLE |. Programmed trajectories of horizontal and vertical lines.
In order to finish the dynamic model of the mobile robot,

it is necessary to apply the second equation of the Euler-  Trajectory a2 x0g 6t vt w?

Newton formulation to the robot model shown in Figs. 2 1. horizontalline  vot + & 0 0 vw O

and 3. Equation (9), can be rewritten as: negative sense

< d d 2. hori Ii
rp=Tens- dw +mro X VCM' (31) o.n.zonta ine  wot + & 0 ™ 0 0
dt dt positive sense
In order to obtain the equation that completes the dynamic 3. vertical line 0 vot+m0 5 w0
model of the mobile robot, we employed the same plan that pegative sense
produced the Egs. (30). Considering the free-body diagram , .. jine 0 wt+m —T w0

of Fig. 3, and using Eq. (31) for the robot’s body and the two
wheels, and adding the corresponding sides of the resultant
equations, then

positive sense

whereuw; is the potential difference applied to the engine

a(Fy, — ) = (Ine + 2T30 gf)i.IS the angular veIogty at which the engine’s akistates, .
) x is the ratio that exists between the constant electromotive
+2my,a® +mpb?) 6 — mybiy”. (32) force and the electric resistance of the engineaigithe ra-

tio between the counter-electromotive force and the electric

In this expression/;. is the momentum of inertia along the resjstance. Considering this expression and using (17)-(20),
axis that goes through the mass center, which is the robotg,en

center, and which is parallel &2/, while I3,, is the mo-

mentum of inertia along the axis that goes through the mass _ 2v

center of a wheel and that is parallel to tkig” axis. (7 +m) = x(ur +w) = 7 (38)
Therefore, to obtain the relationship between the pairs ap- 2aw

plied by the engines upon the wheets (r,.) and the traction (7 = 7) = x(ur —w) = o (39)

forces that are produced upon the wheéls §’.), we apply

for each one of the wheels the expressionr; = I«, where Finally, substituting Eqgs. (38) and (39) in Egs. (35)

the sum of the applied pairs are those who are responsible tnd (36) and by using Eq. (11), but with= h, and by
the rolling of the wheel with an angular acceleratioaround  combining them, we obtain the dynamic model
the rotation axis with a momentum of inertia Considering

the free-body diagram of Fig. 3 and the angular accelerations % = vcosf — hwsin,
of the wheels in the expressions (21) and (22), then 0, = vsin @ + hw cos b,
1 Iow (. ; ) =
F=- {n . (:ciw - ae)] : (33) f=w, ) (40)
r r J10 = —mpbw? — 25 v + %(u, +w),
T
1 w (o . 2
F.== {T,« -2 (g’é{” + ae)} : (34) o = 280 5 1 X (4, — ).
r r r

wherels,, is the momentum of inertia respect to the axis thatwhere
passes through the axis that connects the two wheels.

Substituting the equations (33) and (34), in the first com- J1 = my + 2my, + 205, /1?
ponent of the expressions (28) and (32), then
and
r 2Dy \ .. ;
(e +m) _ (mb + 2my + Z) M+ mybb?, (35)
" " Jo = Ise + 2I5 + 2mya® + mpb? + 2a2I2w/r2.
a(rr — 1) 9
=V, b _ . .
T ( s F M The expression of the dynamic model, Eq. (40) is a non-
9242 ) linear system of five differential equations that have two con-
+ 213, + 2my,a® + 2[2w) 0, (36)  trol variablesu, y u;.
T
respectively.

The model of the motor which is being considered is the4. Programmed Paths
following one [13]:
The stationary programmed pati&(t), are determined from

Ti = Xui — 0Pi, i=1m, @37 a specific activity of the robot, and they are given in such a

Rev. Mex. .57 (1) (2011) 75-83
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TABLE Il. Numerical values of system’s parameters.

Variable Value Description

Vo 1.5 wanted speed, in meters/seconds
a 0.40 Distance between wheels, in meters
b 0.08 Distance between masses center and

the axis of wheels, in meters
h 0.10 Distance between the wheels and
the array of infrared sensors, in meters

m 4.5 Mass of robot, in kilograms
r 0.08 Radius of wheels, in meters
&=
0 X,
-0 _
. . Lol = 0,
FIGURE 4. Training Board of the Mobile Robot
% = —vpf — hw,
way that this activity will be regulated by the desired move- 6 —w
ment. ’ ) (41)
It is possible to approximate any assigned activity by U= 2310 + ?}1 (ur +up),
combinations of horizontal o vertical straight lines and by . 2d%c X (0, — )
semicircles. We will make eight possible configuratioas ( w“= r2Jy W gy \Ur — U

can be seein Fig. 4).

We show the set of desired paths in Table I, where the Considering that the desired path is a semicircle, then we
movement is done along a segment of a line parallel to thebtain the eight systems for the linear deviations, substituting
(X? axis or to thex? axis). in the following system each one of the desired movements

In the case in which the robot goes along a horizontal oKin this caseeach system depends 6%), we present one of
vertical straight line, as can be seen in Table |, it is assumethese:
that there will be no angular movemefat? = 0). Those

equations that satisfy this set of conditions is said to be in an il =- (vo sen 0% + hwy cos Gd) 0
equilibrium state. _ o T vcos 8t — whsen 69,
If the robot moves along a segment of a circle with diam- 0 4 4

eter R that is centered on one of the corners of the training g = (—vo cos 0 — huwo sen )
board, and if we consider this corner and the configuration of +uvsen 8¢ + wh cos 6%,
the training board, we have four quadrants that are counted 0= w (42)
counterclockwise, dividing the circle into four equal semicir- ’
cles._ In thi_s situation, it is possible to deS(_:ribe eight poss_ible D= — %?I- v — 2bw?]fmb + rXTl(“" +w),
configurations. Moreover, the set of solutions for the desired 7"2 1
path results from considering that the robot describes a semi- w=20"0, AX (uy — wy)

: 2J 7"J2 4 b
circular movement, so we assume a constant angular move- rJ2

ment. The velocity and the angle are given from this angular

displacement, as well as the position coordinates. . . .
6. Firstlaw of optimal control and solution al-

. . . . gorithm
5. Linear Equations in the Deviations

If u(t) is a nominal entry to the system that is described by considering the system

Egs. (40) ang/?(¢) is a nominal path of this system, then it is
possible to find approximations to the neighboring solutions
for small deviations from the initial state and for the entry.
Let us suppose that the system is closed for nominal cond@nd the stabilization quality functional is given by
tions, which implies thati(¢) andy (¢) will slightly deviate

from u?(t) andy?(t). /OO 7
0

% = Ax(t) + Bu(t), (43)

The linear system for the horizontal line in the positive G(x,u) x(t) +u” (t)N(t)u(t))dt. (44)

sense is given by:

Rev. Mex. .57 (1) (2011) 75-83
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START

A" 4

Stored data :
t=[0' tf]
A, B, 1, %X

5

A 4
L=care(A,B,6I)

v
syst=A-(B*BT*L)

Function
X = system (t,x)
Where syst is the
matrix of coefficients
for system of ED

A 4
[t,x]=0oded5("

system ',t,x0)

‘IV

Graph
(t,x)

h 4
END

FIGURE 5. Diagram of flux to solve the Riccati's differential ma-
tricial equation.

The programmed path is considered as a straight line in

the negative direction (Table I)

xf vot + &o

2% 0

04 | = 7T (45)
v Vo

w? 0

The matricesA, B of the system (43) are obtained ac-

81

00 0 -1 0
00 —-15 0  —01
A=[00 o0 0 1 ., (46)
00 0 0625 0
00 0 0  0.3923
0 0
0 0
B= 0 0 (47)
0.0278 0
0  0.1744

Using the dynamic programming and by considering
Bellman'’s functionw (x, t) = x(t)L(t)x(t), we obtain Ric-
catti's matricial differential equation [14,15].

L=CLBBTL-2AL-G con L(t;)=0. (48)
For a given instant;, we proceed to solve this system in the
inverse time as a system with initial conditions using a vari-
able exchange = ¢ — t¢;, so that the system (48), which is
a non-linear system with final conditions, is transformed to a
system with initial conditions.

Afterwards, with the use of polynomials, it is possible to
obtain an approximation of each one of the matrix elements
L(t). Since these functions are written in the inverse time,
it is necessary to return to the direct time, obtaining all the
matrix elements<(¢), and thus, the optimal control is written
as

u=-N"'BTL(t)x(t). (49)

Finally, we substitute this control into the system
X =A(t)x + B(t)u,

and by solving fork=(A — BB7T L)x, we simulate the be-
havior of the state variables.

—— Xm(1)
0.8 - - -Xm(2) -
-« - - Xm(3)
% "‘ —-— Xm(4)
5 04R°, —--=Xm(5) -
)
&
>
2
8
w 4
’
04F .- -
./
-
-0,8 s 1 a 1 N 1 PR | A 1 N 1 N
0,0 0,2 0,4 0,6 0,8 1,0 1,2 14
Time (s)

cording to the values of the parameters of the Table Il and ar€icure 6. Behavior of the state variables when the control con-

described below:

sidersL(t)
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The diagram of Fig. 3, shows the algorithm that describes @
the steps that are necessary to obtain the solution.
Executing this algorithm in Matlab, the following re-

sults of the simulation of the state variables are obtained and Stared datars
shown in Fig. 4. t=[0: t]
A B, 1, x
L,=0
7. Second law of control and its solution algo- 7 "
I’Ithm f =i L =system(t, L)

Kalman states and proves the equivalence between optima
problems [16]. L [L t]=0ded5(' system 't, L o) &
Theorem 7.1Let us assume that the system l

x=A(t)x+B(t)u L= polyfit(t, L, arade)
is completely controllable; that is ‘L
rangB, AB,...,A" " 'B) = n. L = changev( L ,t;)
If the following problem l
‘ Endsyst =A-BBT, ‘
t1 l
min [ £() =x" () Colto)x(t0),  (50)
u(+) x=rkuta( endsyst ,t,xg,nv)

to

has a solution of the form

u(t) = -N"'BTL(t)x, (51) m

then in the case in which = oo is satisfied, then ;

] ) ) ~ Ficure 7. Diagram of flow to solve Riccati’s algebraic matricial
whereLl = £y > 0 and L is the solution of the Riccati’s equation.

algebraic equation,

L(t) — Ly when t— oo, (52)

G-LBN'BTL 4+ (LA+ATL)=0. (53) .
Therefore, it is possible to calculate the control as L ;((g; e
0_ N-1RpT == -X(3) ]
u’ = -N"T"B' Lyx. (54) 2 — = X(4) -
= —--=X
Thus, we can use Kalman'’s result to solve a problem of the -g B
type (50) when the control has the fonin= —Kx and the &
model of the system is given by ;
[}
x = Ax(t) + Bu(?). (55) ? i
7.1. Solution Algorithm whent; = oo i
The solution of Riccati's matricial differential equation A
L(t) — Lo whent — oo, and whereL, is a constant matrix 0 1 2 3 4 5 6

and it is a solution of Riccati’'s algebraic Eq. (53) de Riccati, Time (s)

with final conditions ) ]
FIGURE 8. Behavior of the state variables when the control con-

Lo(ty) = 0. (56)  siderslo

In the flux diagram shown in Fig. 5, we present the steps In this case, the system is solved using Mathlab’s func-
used for the solution of the system with constant coefficientstion (care) and thereby obtaining the behavior of the state
which involve £, in the control. variables, as shown in Fig. 6.
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8. Conclusions

trol law (49) by solving Riccati’'s matricial differential equa-

83

gebraic equation (53), simplifying the calculations done in
this equation. Nevertheless, the stabilization time increases
We obtained the movement Egs. (40) of the mobile robofignificantly, as can be seen in Fig. 6. A future paper will
for a horizontal straight line in the positive sense, we wroteconsist of determining a control law when the programmed
down the deviations linear system (41), and used this syg?ath is a semicircle.

tem to deduce both of the control laws. Using the dynamic
programming as a basis, we obtained the first optimal conacknowledgments

tion (48), and the stabilization time in the simulation is quite The authors are grateful for the financial support given by
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