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Energy on a timelike particle in dynamical and
electrodynamical force fields in De-Sitter space
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In this study, we firstly define equations of motion based on traditional Newtonian mechanics in terms of the Frenet-Serret frame adapted to
the worldline of the moving particle in De-Sitter space. Then, we compute energy on the moving timelike particle in resultant force field using
geometrical description of the curvature and the torsion of the worldline belonging to the particle in the space. We also investigate the relation
between energy on the moving timelike particle in different force fields and energy on the moving timelike particle in the Frenet-Serret vector
fields.
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1. Introduction

It is well known that there exists two different space forms
having a constant sectional curvature, which are Lorentzian
space form and Riemannian space form. The Lorentzian
space form with the positive constant curvature is called De-
Sitter space, which is the analogue in Minkowski spacetime
of a sphere in ordinary Euclidean space.

Constant curvature space times have attracted much no-
tice from observational and theoretical viewpoint of mod-
ern cosmology and physics. The major interest in De-Sitter
spacetime is guided by current cosmological observations,
which show that our universe is asymptotic. In other words
solution of the equations of Einstein with positive cosmolog-
ical constant is found in De-Sitter metric, which models an
expanding universe [1]. To obtain this consequence focus-
ing on kinematics and dynamical aspect of the corresponding
spacetime is crucial.

A search of the literature indicates that there is almost no
concrete computations on the entropy, laws of horizon dy-
namics and energy in De-Sitter spacetime. Various attempts
are being made to describe the concept of energy by using
quasi-local or local approach. However, these definitions of
energy do not agree with each other all the time and they are
not applicable to the universes of De-Sitter type [2-4]. There-
fore, we choose to start with using local approach to make
progress on the notion of energy in this spacetime. Thus, we
consider that one of the most effective way is to use intrin-
sic geometric features of the moving particle in the De-Sitter
spacetime.

Motion of a particle in space is important due to wide
range of applications. Motion of the particle in absolute space
and time was defined firstly by Newtonian dynamics [5,6].
Then, geometric generalization of the action, which includes
terms belonging to the curvature of the trajectory of the mov-
ing particle, in different space times is given in [7].

The equations of a moving particle in particular vector
fields are obtained by considering its generalized accelera-
tion, velocity, and coordinate. Guided by this, energy of the
unit vector fields on a Riemannian manifoldM is described
to be equal to the energy of the mappingM → T1M where
T1M is defined as a unit tangent bundle equipped with the
Sasaki metric [8]. By similar argument volume of a unit vec-
tor field X is described as the volume of the submanifold in
the unit tangent bundle defined byX(M) [9]. It is also inves-
tigated that energy and volume of the vector fields have many
similarities [10-15].

Recently, this subject has expanded to more up-to-date
application fields as a parallel of the improvement in the field
of relativity [16]. For example, [17] defined the equations of
motion in terms of the principal curvature of the worldline to
model a relativistic particle. Then, [18] considered an auxil-
iary variables method as an alternative of the standard theory
of deformations for curves to construct the dynamics of rel-
ativistic particles. Further, [19] used curvature functions to
express both the Euler-Lagrange equations and the physical
invariants of the motion associated with the Poincare symme-
try of Minkowski space, the spin and the mass.

In this study, we mainly focus on the energy on the mov-
ing timelike particle in particular force fields in De-Sitter
spacetime. Thus, we aim to obtain some consequences on
Lorentzian space form.

The brief description of the organization of the paper is
as follows. In Sec. 2, we firstly review some basic notions
of the wordline Frenet-Serret geometry by describing trajec-
tory of the particle. Then, we give some definitions, which
are significant in order to compute energy on the moving
timelike particle in unit vector fields. In Sec. 3, we obtain
equations of motion and second law of Newton depending on
the Frenet-Serret frame elements for De-Sitter spacetime. In
Sec. 4, Sec. 5, and Sec. 6, we compute energy on the moving
timelike particle in different force fields in De-Sitter space-
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time using its geometrical description, which is obtained by
Frenet-Serret frame equations. We also compare energy on
the moving timelike particle in distinct force fields and en-
ergy on the same particle in Frenet vector fields. In Sec. 7,
we draw some conclusion and brief discuss the result.

2. Preliminaries

2.1. Kinematics of the Timelike Particle in De-Sitter
Space

Let Γ be a particle moving in a space such that the precise
location of the particle is specified byΓ = Γ(t) wheret is a
time parameter. Changing the time parameter determines the
worldline of the motion of the particle. Hence, the worldline
corresponds to a curveβββ in the space for the moving particle
Γ. It is also convenient to remind that the arc-length parame-
ter is used to compute the distance traveled by particle along
its worldline. It is defined by

ds

dt
=‖ v ‖,

where v = v(t) = dβββ/dt is the velocity vector and
dβββ/dt 6= 0. In particle dynamics the arc-length parame-
ter s is considered as a function oft. Frenet-Serret frame
is also determined thanks to the arc-length. Intrinsic geo-
metrical features of the regular curve is recognized owing to
this frame construction. This construction is composed by
three orthonormal vectorse(α) and the curveβββ itself, assum-
ing the curve is sufficiently smooth at each point. The index
within the parenthesis is the tetrad index that describes par-
ticular member of the tetrad. In particular,e(0) is the unit
tangent vector,e(1) is the unit normal vector, ande(2) is the
unit binormal vector of the curveβββ respectively. Frenet-
Serret frame construction is defined on three dimensional
space in an ordinary manner. However, De-Sitter spacetime
is a four dimensional space. Thus, there must be a fourth
vector in addition to tangent, normal, and binormal vector in
the framework construction different from the usual descrip-
tion of the Frenet-Serret frame defined on three dimensional
space. Therefore, it is considered that the curve itself is a
vector in order to establish Frenet-Serret equations in four di-
mensional space. Pseudo-orthonormality conditions are sum-
marized bye(α)e(β) = ηαβ whereηαβ is Lorentzian metric
such that: diag(-1,1,1,1), if the curve is timelike.

For non-negative coefficientsκ, τ and{e(0), e(1), e(2),βββ}
pseudo-orthonormal Frenet-Serret frame is determined by
following equations for a timelike moving particle in De-
Sitter spacetime [20].

De(0)

ds
= κe(1) + βββ,

De(1)

ds
= κe(0) + τe(2),

De(2)

ds
= −τe(1),

Dβββ

ds
= e(0). (1)

2.2. Energy of Unit Vector Fields in Space

We firstly give fundamental definitions and propositions,
which are used to compute energy on the curve in the unit
vector fields.

Definition 1. Let (M, ρ) and(N,h) be two Riemannian
manifolds, then energy of a differentiable mapf : (M,ρ) →
(N,h) is defined by

energy(f) =
1
2

∫

M

n∑
a=1

h(df(a), df(a))v, (2)

where{a} is a local basis of the tangent space andv is the
canonical volume form inM , [8].

Proposition 2. Let Q : T (T 1M) → T 1M be the con-
nection map. Then following two conditions hold:

i) ω ◦ Q ◦ dω andω ◦ Q = ω ◦ `, where` : T (T 1M) is
the tangent bundle projection;

ii) for ρ ∈ TxM and a sectiono : M → T 1M ; we have

Q(do(ρ)) = Dρo, (3)

whereD is the Levi-Civita covariant derivative [8,21].

Definition 3. Let ς1, ς2 ∈ To(T 1M), we define

ρs(π1, π2) = ρ(dω(π1), dω(π2)) + ρ(Q(π1), Q(π2)). (4)

This yields a Riemannian metric onTM . As is known
ρs is called the Sasaki metric. It also makes the projection
ω : T 1M → M a Riemannian submersion.

Now, let us turn our focus on how to imagine the motion
of the particle in De-Sitter spacetime and how to compute
energy on the particle by using aforementioned definitions.
Particles left trajectories in space as they move. These tra-
jectories correspond to particular type of curves. Since De-
Sitter spacetime is a four dimensional structure and it is the
analogue of a sphere in ordinary Euclidean space, we have
following sample sketch for the trajectory of the timelike par-
ticle in space.

Now, we are able to compute energy on the moving time-
like particle in De-Sitter spacetime in terms of the curvature
and the torsion of the timelike curve. Here, we use Frenet
equations and non-flat Lorentzian geometry.

Theorem 4.Letβββ be a unit speed timelike curve defined
on the De-Sitter space. Then, energy on the moving timelike
particle in the tangent, normal, binormal vector fields and en-
ergy on its own vector field are given by
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FIGURE 1. Particle trajectory together with Frenet-Serret vectors
in 4-dimensional De-Sitter spacetime.

energye(0) =
1
2

s∫

0

κ2ds,

energye(1) =
1
2

s∫

0

(−1− κ2 + τ2)ds,

energye(2) =
1
2

s∫

0

(−1 + τ2)ds,

energyβββ = −S. (5)

Proof. Here, we only prove energy on the moving time-
like particle in the tangent vector field. Other statements can
be proved by using similar approach. From (2) and (3) we
know that

energye(0) =
1
2

s∫

0

ρs(de(0)(e(0)), de(0)(e(0)))ds.

Moreover, we obtain from (4)

ρs(de(0)(e(0)), de(0)(e(0)))=ρ(dω(e(0)(e(0))), dω(e(0)(e(0))))

+ ρ(Q(e(0)(e(0))), Q(e(0)(e(0))))

Sincee(0) is a section, we get

d(ω) ◦ d(e(0)) = d(ω ◦ e(0)) = d(idc) = idrc.

We also have

Q(e(0)(e(0))) = De(0)e(0) = κe(1) + βββ.

Thus, we find that

ρs(de(0)(e(0)), de(0)(e(0)))=ρ(De(0)e(0), De(0)e(0))

= κ2.

So we can easily obtain

energye(0) =
1
2

s∫

0

κ2ds.

Following sketch illustrates energy variation on the mov-
ing timelike particle in tangent vector filed in De-Sitter space-
time. Here, we suppose that moving particle corresponds to
a parameterized unit speed timelike curve in De-Sitter space-
time. We compute its curvature and torsion for the calculation
of the energy. Hence, we get the following illustration for en-
ergy on the moving timelike particle with respect to time.

Elastica known as the solution of a variational prob-
lem, which deal with minimizing the bending energy of de-
formable materials. Bending energy of a space curve is de-
fined by using curvature squared energy functional over a
curve.

energye(0) =
1
2

s∫

0

κ2ds, (6)

wheres is the arc-length. On the appropriate length scale,
bending energy provides a significant physical description of
a bounding a soap film, thin wire with circular cross section,
or the elastic properties of a stiff polymer. However, stiff
polymers are the most interesting of them. It is used to inves-
tigate some other physical phenomena such as superconduc-
tors, vortices in fluids, mechanical properties of DNA, etc.
Assuming that the curvature of space curve does not vanish,
energy cost for being bent for stiff polymers is defined as

energyE =
1
2

s∫

0

(
A

2
κ2(s) +

B

2
(τ(s)− τ0)2

)
ds, (7)

FIGURE 2. Energy distribution on the moving timelike particle in
tangent vector field with respect to time.
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whereA, B, andτ0 are constant coefficients [22]. Now, we
can correlate the bending energy of stiff polymers and energy
on timelike particle in Frenet vector fields.

Corollary 5 . Letβββ be a unit speed timelike curve defined
on De-Sitter space. Then, energy on the moving timelike par-
ticle in the tangent, normal, binormal vector fields and energy
on its own vector field can be expressed by bending energy
of stiff polymers as follows, respectively.

i If A = 1, andB = 0, thenenergyE = energye(1).
Here, we can also deduce thatenergyE =
energye(0).

ii If A = 1, B = 1, τ0 = 0 thenenergyE − (1/2)s =
energye(1).

iii If A = 0, B = 1, and τ0 = 0, then energyE −
(1/2)s = energye(2).

iv If A = 0, B = −1, τ = 0 and τ0 =
√

2, then
energyE = energye(β). Since torsion of the curve
vanishes everywhere, it implies that the curve is pla-
nar.

Proof. If we use Theorem 4 together with Eq. (5), and
Eq. (6) for each case separately, then it is evident.

3. Classical Mechanics on a Particle with Dy-
namics

Arc-length parameter is also significant to define accelera-
tion of the particle. Here we attain equations of motion for
the timelike particle in De-Sitter spacetime. Equations of mo-
tion and second law of Newton are obtained thanks to Frenet-
Serret frame, which is adapted to the worldline of the timelike
particle. It includes geometric features of the timelike curve
in De-Sitter spacetime.

Let the moving particleΓ has a unit timelike tangent vec-
tor e(0) . Then, we have

v(t(s)) =
dζ

dt
=

ds

dt
e(0) (8)

and

a(t(s)) =
dv
dt

=
d2s

dt2
e(0) + κ

(
ds

dt

)2

e(1) +
(

ds

dt

)2

βββ (9)

According to second law of Newton the resultant force
acting on the particle, which has a mass is defined by

F = ma = m
d2s

dt2
e(0)

+ mκ

(
ds

dt

)2

e(1) + m

(
ds

dt

)2

βββ (10)

For the set of Frenet vectors{e(0), e(1), e(2)} and the
curveβββ itself we may write

F = F0e(0) + F1e(1) + F2e(2) + F3βββ, (11)

where,

F̃0 = F0 · e(0), F̃1 = F1 · e(1),

F̃2 = F2 · e(2), F̃3 = F3 · βββ (12)

Using this result we have following notations;

F0 = m
d2s

dt2
, F1 = mκ

(
ds

dt

)2

,

F2 = 0, F3 = m

(
ds

dt

)2

. (13)

4. Energy on the Timelike Particle in a Resul-
tant Force Field

Now, we reach to the point, where we define the work done
by the force during the motion of the particleΓ along its tra-
jectory. Kinetic energy of the moving particleΓ, which has a
massm is defined by

K =
1
2
m

(
ds

dt

)2

. (14)

Assuming the kinetic energy of the particle varies from
some initial and final value, total work done on that particle
is given by

Ω = Kfinal −Kinitial . (15)

By the work-energy theorem we also have following re-
lation between variation on the kinetic energy and resultant
forceF.

2Ω
m

= ν2
f − ν2

i = 2

s∫

0

d2s

dt2
ds, (16)

wherem 6= 0, [23].
Now, we compute energy on the moving timelike parti-

cle, which is acting under a resultant force, in terms of the
curvature and torsion of the particle in De-Sitter spacetime.
Further, the relation between energy on the moving timelike
particle and work done by forces can be investigated easily
from (15) and (16).

Theorem 6. Let Γ be a moving timelike particle in De-
Sitter spacetime. Then, energy on the timelike particle in the
resultant force fieldF is stated by

energyF =
1
2

s∫

0

(−1 + m2(−(
...
s + (κ2 + 1))ṡ3)2

+ (3κs̈ṡ + κ′ṡ3)2 + (κτ ṡ3)2 + (3s̈ṡ)2))ds,

where superposed dot denotes the time derivative of the func-
tion.

Rev. Mex. Fis.63 (2017) 560-568
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Proof. From (2) and (3) we get

energy(F) =
1
2

s∫

0

ρs(dF(e(0)), dF(e(0)))ds.

By using Eq. (4), we have

ρs(dF(e(0)),dF(e(0))) = ρ(dω(F(e(0))), dω(F(e(0))))

+ ρ(Q(F(e(0))), Q(F(e(0)))).

Sincee(0) is a section, we also get

d(ω) ◦ d(F ) = d(ω ◦ F ) = d(idC) = idTC .

Moreover, it is clear that

Q(F(e(0))) = D(e(0))F = ma′ = m((
...
s + (κ2 + 1)ṡ3)e(0)

+ (3κs̈ṡ + κ′ṡ3)e(1) + (3κτ ṡ3)e(2) + (3s̈ṡ)βββ)

Thus, we find from (1) and (10)

ρs(dF(e(0)),dF(e(0))) = ρ(e(0), e(0))

+ ρ(De(0)F, De(0)F ) =

− 1 + m2(−(
...
s + (κ2 + 1)ṡ3)2

+ (3κs̈ṡ + κ′ṡ3)2 + (κτ s̈3)2 + (3s̈ṡ)2).

FIGURE 3. Energy on the moving timelike particle in resultant
force field and Frenet-Serret vector fields.

Finally, we have

energyF =
1
2

s∫

0

(−1 + m2(−(
...
s + (κ2 + 1)ṡ3)2

+ (3κs̈ṡ + κ′ṡ3)2 + (κτ s̈3)2 + (3s̈ṡ)2))ds.

Corollary 7. Let Γ be a moving timelike particle in De-
Sitter space. Then, energy on the timelike particle in the re-
sultant force fieldF can be written in terms of the energy on
the same particle in tangent, normal, binormal, and its own
vector field as the following.

energyF− energye(0) = −s

2
+

m2

2

(
−

s∫

0

(
...
s + (κ2 + 1)ṡ3)2ds +

s∫

0

(3κs̈ṡ + κ′ṡ3)2ds + +

s∫

0

(3s̈ṡ)2ds

)
,

energyF− energye(1) =
m2

2

(
−

s∫

0

(
...
s + (κ2 + 1)ṡ3)2ds +

s∫

0

(6κκ′ṡ4s̈ + κ′2ṡ6)ds +

s∫

0

τ2

(
κ2ṡ6 − 1

m2

)
ds

+

s∫

0

κ2

(
9(s̈ṡ)2 +

1
m2

)
ds +

s∫

0

(3s̈ṡ)2ds

)
,

energyF− energye(2) =
m2

2

(
−

s∫

0

(
...
s + (κ2 + 1)ṡ3)2ds +

s∫

0

(3κs̈ṡ + κ′ṡ3)2ds +

s∫

0

τ2

(
κ2ṡ6 − 1

m2

)
ds

+

s∫

0

(3s̈ṡ)2ds

)
,

energyF− energyβββ =
s

2
+

m2

2

s∫

0

(−(
...
s + (κ2 + 1)ṡ)2 + (3κs̈ṡ + κ′ṡ3)2 + (κτs)2 + (3s̈ṡ)2)ds.

Proof. It is obvious from Theorem 4 and Theorem 6.

Corlloray 8 . Let Γ be a moving timelike particle in De-
Sitter space. Then, energy on the timelike particle in the tan-
gential, normal and binormal resultant force fieldF in De-
Sitter spacetime is given by

energyF0 =
1
2

s∫

0

(−1 + m2(−...
s 2 + (κ2 + 1)s̈2ṡ2))ds,
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energyF 1 =
1
2

s∫

0

(−1 + m2(−κ4ṡ6 + (2κs̈ṡ + κ′ṡ3)2

+ κ2τ2ṡ6))ds,

energyF 2 = 0,

energyF3 =
1
2

s∫

0

(−1−m2(−...
s 6 + (2s̈ṡ)2)ds.

Proof. Using Eq. (12) and Eq. (13) together with the
Sasaki metric given in Eq. (4), we can easily reach the result
for each case.

What we found so far is that the general formulation for
the energy of the moving timelike particle with a massm 6= 0
in the resultant force vector field in De-Sitter spacetime As
is known, there might be different type of forces affecting re-
sultant force acting on the particle such as gravitational force,
normal force, frictional force, electric force, magnetic force
etc. Now, in the following section, we consider two phys-
ical phenomena supposing that they take place in De-Sitter
spacetime. One is related to classical Newtonian mechanics.
The system includes a block sliding down on the given fixed
timelike curve. We determine each individual force acting
on it with the help of Frenet vector elements to obtain resul-
tant forceF Other is related to electrodynamics. It includes
a moving charged particle, which is under the action of mag-
netic or electric force only. We compute the energy on the
charged particle by assuming that its motion corresponds to
a timelike curve in De-Sitter spacetime. As it is seen, thanks
to this novel approach we compute the energy on the parti-
cle in the resultant or any other force field such a unique and
elegant fashion by using geometric tools of Frenet frame.

5. Energy on the Timelike Particle in Dynam-
ical Force Fields

In this section, we apply our findings to a well-known phys-
ical problem to show its originality and usefulness. We sup-
pose that under the action of gravity on a downward concave
surface there is a point particle sliding to the downward such
that it follows a trajectory of a fixed curve in De-Sitter space-
time. Let assume that motion of the particle corresponds to
a timelike curve and it has a Frenet characterization given by
(1) in De-Sitter spacetime. Then, there are three distinct force
affecting action of the particle. These forces are friction (f),
weight of the particle (W), and normal force (N). They are
defined geometrically as the following.

f = −ϑNe(0), N = cNe(1),

W = mge(0) + mge(1) (17)

whereN =‖ N ‖, c = ±1, ϑ is friction’s coefficient,g
is gravitational constant and is the mass of the particle [24].
Thus, we get the following equality for resultant force field.

F = f + N + W

Theorem 9.Let Γ be a moving timelike particle such that
it is under the action of (f), (W), (N) in De-Sitter spacetime.
Then, energy on the timelike particle in the resultant force
field F is stated by

energyF =
1
2

s∫

0

(−1 + (1 + κ2)(mg − ϑN)2

+ (τ2 − κ2)(mg + cN)2)ds.

Proof. We can verify this result similarly as in Theorem
6 bearing in mind the fact that

De(0)F = De(0)(f + N + W)

= De(0) f + De(0)N + De(0)W.

Main Result 10. We have following result of the energy
on the moving timelike particle in the resultant force field in
De-Sitter spacetime.

m2(−(
...
s + (κ2 + 1)ṡ3)2 + (3κs̈ṡ + κ′ṡ3)2 + (κτ ṡ3)

+ (3s̈ṡ)2) = (1 + κ2)(mg − ϑN)2 + (τ2 − κ2)(mg + cN)2.

Proof. We reach the result by considering Theorem 6 and
Theorem 9.

FIGURE 4. a) Trajectories of the curvature of the moving time-
like particle in De-Sitter spacetime. b) Values of the curvature for
particular input of the arc-length of the moving timelike particle in
De-Sitter spacetime.
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FIGURE 5. a)Trajectories of the torsion of the moving timelike par-
ticle in De-Sitter spacetime. b)Values of the torsion for particular
input of the arc-length of the moving timelike particle in De-Sitter
spacetime.

Thus, we obtain a sample solution family of third order
non-linear ordinary differential equation system. It gives the
following illustrations for particular values of the curvature
and the torsion of the wordline of the timelike particle in De-
Sitter space together with the particular values ofN =‖ N ‖,
c = ±1, ϑ, andm.

Corollary 11. Let Γ be a moving timelike particle in De-
Sitter space. Then, energy on the particle in the resultant
force field (F = f + N + W) can be written in terms of the
energy on the same particle in tangent, normal, binormal, and
its own vector field as the following.

energyF = (1− (mg − ϑN)2 − (mg+eN)2energyβββ

+ (mg + ϑN)2energye(0)

+ (mg + ϑN)2energye(1).

Proof. It is obvious from Theorem 4 and Theorem 9.
We can also compute energy on the moving timelike par-

ticle in each individual force field in De-Sitter spacetime. By
this way, we might have an idea regarding energy variation
and distribution on the resultant force fields by considering
how much energy does the particle store on each force field.

Corollary 12. Let Γ be a moving timelike particle such
that it is under the action of (f), (W), (N) in De-Sitter space-
time. Then, energy on the particle in the friction force field
weight force field (W), and normal force field (N) are stated
by using Sasaki metric as the following.

FIGURE 6. Energy on the timelike particle in resultant force field
together with normal, weight, and frictional force field.

energyf =
1
2

s∫

0

(−1 + (κ2 + 1)ϑ2N2)ds,

energyW =
1
2

s∫

0

(−1 + (1 + τ2)m2g2)ds,

energyN =
1
2

s∫

0

(−1 + N2κ2 + N2τ2)ds.

Proof. Let we consider each equality given in (17) sepa-
rately. If we apply the argument in (2), (3), (4) to the Eq. (17),
then the proof is obvious.

Corollary 13. Let Γ be a moving timelike particle in
De-Sitter spacetime. Then, energy on the moving timelike
particle in the friction force field (f), weight force field (W),
normal force field (N) can be expressed by the energy on the
particle in each Frenet vector field as the following.

energyf =
1− ϑ2N2

2
energyβββ + ϑ2N2energye(0),

energyW =
1− 2m2g2

2
energyβββ + m2g2energye(2),

energyN =
1−N2

2
energyβββ + N2energye(1).

6. Energy on the Timelike Particle in Electro-
dynamical Force Fields

Now, we investigate some consequences on another famous
physical phenomena under the light of our findings. Let as-
sume that we have a moving timelike charged particle, whose
mass is denoted bym. We also assume that it is under the ac-
tion of an electric force only in the electromagnetic field. The
Lorentz force equation is described by

ma = F = q(E + v×B)
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for the charged particle of velocityv, massm, and electric
chargeq under the magnetic fieldB and electric fieldE, [23].
By the assumption the magnetic force vanishes, thus we have

m
De(0)

ds
= qE.

Hence, we obtain

E =
κm

q
e(1) +

m

q
βββ. (18)

Corollary 14. Let Γ be a moving timelike charged parti-
cle in De-Sitter space. Then, energy on the timelike charged
particle in the electric force field (E) is stated by

energyE =
1
2

s∫

0

(
− 1 +

(
m

q

)2

(−(κ2 + 1)2

+ κ′2 + (κτ)2)
)

ds.

Proof. It is obvious, if we consider (18) and (2), (3), (4).
Main Result 15. We have following result of the energy

on the timelike particle in the resultant force field if there
exists only an electric force acting on the particle in the elec-
trodynamical field.

FIGURE 7. a)Trajectories of the curvature of the moving time-
like charged particle under the action of electric force in De-
Sitter spacetime. b)Values of the curvature of the moving time-
like charged particle under the action of electric force in De-Sitter
spacetime.

FIGURE 8. a)Trajectories of the torsion of the moving timelike
charged particle under the action of electric force in De-Sitter
spacetime. b)Values of the torsion of the moving timelike charged
particle under the action of electric force in De-Sitter spacetime.

− (
...
s + (κ2 + 1)ṡ3)2 + (3κs̈ṡ + κ′ṡ3)2

+ (κτ ṡ3)2 + (3s̈ṡ)2 =
1
q2

(−(κ2 + 1)2 + κ′2 + (κτ)2).

Proof. We reach the result by considering Theorem 6 and
Corollary 14.

Thus, we obtain a sample solution family of third order
non-linear ordinary differential equation system. It gives the
following illustrations for particular values of the curvature
and the torsion of the wordline of the timelike particle in
De-Sitter space together with the particular values of electric
chargeq.

7. Conclusion

Computing the energy on the moving particle has a wide
range of application in the theoretical and applied physics. As
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was stated aforementioned, this computation is deeply inter-
ested on dynamics of the particle including work done, force,
and energy related concepts. It has also deep connection on
mass-equivalence relation in special relativity theory.

In this study, we have studied motion of the timelike par-
ticle and energy on the timelike particle in the different force
fields in De-Sitter space. Firstly, we set a connection between
energy on the timelike particle in these force fields and energy
on the particle in Frenet vector fields. This is important for
our future work since a simple characterization on the energy
of a vector field can be described as it is up to constants, in
other words, it is squareL2 norm of the vector field’s covari-
ant derivative. Thanks to this definition, we will correlate

the concept of the energy on the moving particle in differ-
ent force fields with the concept of total bending functional
and volume in these force fields in that space.

Furthermore, we apply our findings to compute the en-
ergy on the moving timelike particle in the existence of elec-
tromanetic force in De-Sitter space. We have examined en-
ergy on the charged particle while it is under the action of

electric force. In the future studies, we turn our focus to
Loretnz force of the particular magnetic fields in three dimen-
sion since they are quite important for some reasons. First of
all, vector fields and 2-forms are in correspondence. Also,
magnetic fields on three dimensional Riemannain manifolds
come from vector fields of divergence free. Further, uniform
magnetic fields and parallel vector fields correspond to each
other.

This study will also lead up to further research on the
relativistic dynamics of the particle in terms of computing
energy on the relativistic particle in different spacetimes by
considering mainly its geometric descriptions.
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