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Energy on a timelike particle in dynamical and
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In this study, we firstly define equations of motion based on traditional Newtonian mechanics in terms of the Frenet-Serret frame adapted to
the worldline of the moving particle in De-Sitter space. Then, we compute energy on the moving timelike particle in resultant force field using
geometrical description of the curvature and the torsion of the worldline belonging to the particle in the space. We also investigate the relation
between energy on the moving timelike particle in different force fields and energy on the moving timelike particle in the Frenet-Serret vector
fields.
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1. Introduction The equations of a moving particle in particular vector
fields are obtained by considering its generalized accelera-
It is well known that there exists two different space formstion, velocity, and coordinate. Guided by this, energy of the
having a constant sectional curvature, which are Lorentziatinit vector fields on a Riemannian manifald is described
space form and Riemannian space form. The Lorentziaio be equal to the energy of the mappihg — T M where
space form with the positive constant curvature is called Ded1 M is defined as a unit tangent bundle equipped with the
Sitter space, which is the analogue in Minkowski spacetimeSasaki metric [8]. By similar argument volume of a unit vec-
of a sphere in ordinary Euclidean space. tor field X is described as the volume of the submanifold in

Constant curvature space times have attracted much n§?€ unittangent bundle defined BY(1/) [9]. Itis also inves-

tice from observational and theoretical viewpoint of mod-tigated that energy and volume of the vector fields have many
ern cosmology and physics. The major interest in De-Sittefimilarities [10-15].

spacetime is guided by current cosmological observations, Recently, this subject has expanded to more up-to-date
which show that our universe is asymptotic. In other wordsapplication fields as a parallel of the improvement in the field
solution of the equations of Einstein with positive cosmolog-of relativity [16]. For example, [17] defined the equations of
ical constant is found in De-Sitter metric, which models anmotion in terms of the principal curvature of the worldline to
expanding universe [1]. To obtain this consequence focusmodel a relativistic particle. Then, [18] considered an auxil-
ing on kinematics and dynamical aspect of the correspondingry variables method as an alternative of the standard theory
spacetime is crucial. of deformations for curves to construct the dynamics of rel-

A search of the literature indicates that there is almost n@tivistic particles. Further, [19] used curvature functions to
concrete computations on the entropy, laws of horizon dy€xpress both the Euler-Lagrange equations and the physical
namics and energy in De-Sitter spacetime. Various attempﬂ'gvariants of the motion associated with the Poincare symme-
are being made to describe the concept of energy by usinéy of Minkowski space, the spin and the mass.
guasi-local or local approach. However, these definitions of  In this study, we mainly focus on the energy on the mov-
energy do not agree with each other all the time and they ariag timelike particle in particular force fields in De-Sitter
not applicable to the universes of De-Sitter type [2-4]. Theresspacetime. Thus, we aim to obtain some consequences on
fore, we choose to start with using local approach to maké.orentzian space form.

progress on the notion of energy in this spacetime. Thus, we The brief description of the organization of the paper is
consider that one of the most effective way is to use intrinas follows. In Sec. 2, we firstly review some basic notions
sic geometric features of the moving particle in the De-Sitterof the wordline Frenet-Serret geometry by describing trajec-
spacetime. tory of the particle. Then, we give some definitions, which
Motion of a particle in space is important due to wide are significant in order to compute energy on the moving
range of applications. Motion of the particle in absolute spacd¢imelike particle in unit vector fields. In Sec. 3, we obtain
and time was defined firstly by Newtonian dynamics [5,6].equations of motion and second law of Newton depending on
Then, geometric generalization of the action, which includeghe Frenet-Serret frame elements for De-Sitter spacetime. In
terms belonging to the curvature of the trajectory of the mov-Sec. 4, Sec. 5, and Sec. 6, we compute energy on the moving
ing particle, in different space times is given in [7]. timelike particle in different force fields in De-Sitter space-
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time using its geometrical description, which is obtained by2.2. Energy of Unit Vector Fields in Space
Frenet-Serret frame equations. We also compare energy on

the mOVing timelike partide in distinct force fields and en- We f|rst|y give fundamental definitions and propositions’

ergy on the same particle in Frenet vector fields. In Sec. Awhich are used to compute energy on the curve in the unit
we draw some conclusion and brief discuss the result. vector fields.

Definition 1. Let (M, p) and(N, h) be two Riemannian
manifolds, then energy of a differentiable map (M, p) —

2. Preliminaries (N, h) is defined by
2.1. Kinematics of the Timelike Particle in De-Sitter ) n
Space energy(f) = 3 [ Yo ndr@).af@), @
M a=1

Let I" be a particle moving in a space such that the precise

location of the particle is specified iy= T'(¢) wheret is a . . .
time parameterl.J ChangingF;he time garam(e?[er determines tk\}/&here.{a} s a local ba§|s of the tangent space arid the
worldline of the motion of the particle. Hence, the worldline canonical volume form i/, [8].

corresponds to a cun@in the space for the moving particle ~ Proposition 2. LetQ : T(T"M) — T'M be the con-
I. Itis also convenient to remind that the arc-length parameDection map. Then following two conditions hold:

ter is used to compute the distance traveled by particle along

its worldline. It is defined by i) woQodwandwoQ = w o ¢, wherel : T(T' M) is

ds the tangent bundle projection;

=l
wherev = v(t) = dB/dt is the velocity vector and ii) for p € 7,:M and a sectiom : M — T"M; we have
dB/dt # 0. In particle dynamics the arc-length parame-
ter s is considered as a function of Frenet-Serret frame Q(do(p)) = Do, 3)
is also determined thanks to the arc-length. Intrinsic geo-
metrical features of the regular curve is recognized owing to whereD is the Levi-Civita covariant derivative [8,21].

this frame construction. This construction is composed by

three orthonormal vectoss,,) and the curves itself, assum-

ing the curve is sufficiently smooth at each point. The index  Definition 3. Letcy, ¢; € T,(T" M), we define

within the parenthesis is the tetrad index that describes par-

ticular member of_the tetra_d. In particulagy), is th_e unit ps (1, m2) = p(dw(m), dw(ms)) + p(Q(m1), Q(m2)). (4)

tangent vectorg ;) is the unit normal vector, ang,) is the

unit binormal vector of the curv@ respectively. Frenet-

Serret frame construction is defined on three dimensional This yields a Riemannian metric GRAZ. As is known

space in an ordinary manner. However, De-Sitter spacetimés is called the Sasaki metric. It also makes the projection

is a four dimensional space. Thus, there must be a fourtw : 7" M — M a Riemannian submersion.

vector in addition to tangent, normal, and binormal vector in ~ Now, let us turn our focus on how to imagine the motion

the framework construction different from the usual descrip-of the particle in De-Sitter spacetime and how to compute

tion of the Frenet-Serret frame defined on three dimensionanergy on the particle by using aforementioned definitions.

space. Therefore, it is considered that the curve itself is ®articles left trajectories in space as they move. These tra-

vector in order to establish Frenet-Serret equations in four dijectories correspond to particular type of curves. Since De-

mensional space. Pseudo-orthonormality conditions are sungitter spacetime is a four dimensional structure and it is the

marized bye, € = 15 Wheren,s is Lorentzian metric  analogue of a sphere in ordinary Euclidean space, we have

such that: diag(-1,1,1,1), if the curve is timelike. following sample sketch for the trajectory of the timelike par-
For non-negative coefficients 7 and{e), 1. €q),8} ticle in space.

pseudo-orthonormal Frenet-Serret frame is determined by Now, we are able to compute energy on the moving time-

following equations for a timelike moving particle in De- like particle in De-Sitter spacetime in terms of the curvature

Sitter spacetime [20]. and the torsion of the timelike curve. Here, we use Frenet
equations and non-flat Lorentzian geometry.
Dew) ) Dew) _ K€0) + T€2) Theorem 4. Let B be a unit speed timelike curve defined
ds ds on the De-Sitter space. Then, energy on the moving timelike
Degp) o DB o (1) particle in the tangent, normal, binormal vector fields and en-
ds ds O ergy on its own vector field are given by
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Thus, we find that

Ps(deo) (€0))> 2€0) (€0)))=p(Dey, €0)s De(o, €0))

:HQ.

So we can easily obtain

energye) =

N |

/szs.
0

Following sketch illustrates energy variation on the mov-
ing timelike particle in tangent vector filed in De-Sitter space-
time. Here, we suppose that moving particle corresponds to
a parameterized unit speed timelike curve in De-Sitter space-
time. We compute its curvature and torsion for the calculation
of the energy. Hence, we get the following illustration for en-
ergy on the moving timelike particle with respect to time.

Elastica known as the solution of a variational prob-
lem, which deal with minimizing the bending energy of de-
FIGURE 1. Particle trajectory together with Frenet-Serret vectors formable materials. Bending energy of a space curve is de-

in 4-dimensional De-Sitter spacetime. fined by using curvature squared energy functional over a
curve.
S 1 4
_ 2
energye) = 1/,'<;2ds, energy€o) = 5 /” ds, (6)
2 ) )
1 o wheres is the arc-length. On the appropriate length scale,
energye) = 3 /(—1 — k% + 72)ds, bending energy provides a significant physical description of
0 a bounding a soap film, thin wire with circular cross section,

R or the elastic properties of a stiff polymer. However, stiff
energye) = 1 / (=1 + 72)ds polymers are the most i.nteresting of them. Itis used to inves-
2 ’ tigate some other physical phenomena such as superconduc-
0 tors, vortices in fluids, mechanical properties of DNA, etc.
energyB = —S. (5)  Assuming that the curvature of space curve does not vanish,
energy cost for being bent for stiff polymers is defined as

Proof. Here, we only prove energy on the moving time-
like particle in the tangent vector field. Other statements can

be proved by using similar approach. From (2) and (3) we cpergyFE = 1/ (é,ﬁ(s) + E(T(s) — 70)2) ds, (7)
2 )

know that 2 )

S

1
energye = 3 /ps(de(o) (e(o)),de(o)(e(o)))ds.

0
Moreover, we obtain from (4)

ps(de)(€0)); d€0) (€0)))=p(dw(€0) (€0))), dw(€)(€0))))
+ p(Q(&0) (&0))), Q&) (€0))))
Sinceg) is a section, we get

d(w) o d(e(o)) = d(u} o e(o)) = d(’LdC) = id.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
We also have

FIGURE 2. Energy distribution on the moving timelike particle in
Q(&0)(&0))) = De, &0) = K€1) + B- tangent vector field with respect to time.
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where A, B, andr, are constant coefficients [22]. Now, we where,

can correlate the bending energy of stiff polymers and energy ~ ~

on timelike particle in Frenet vector fields. Fo=Fo-€0), F1=F1-€q,
Corollary 5. Let3 be a unit speed timelike curve defined

on De-Sitter space. Then, energy on the moving timelike par-

ticle in the tangent, normal, binormal vector fields and energy

on its own vector field can be expressed by bending energy

Fo=Fs- €y, F3=F;-p (12)

Using this result we have following notations;

of stiff polymers as follows, respectively. P ds\ 2
. F0:m72’ F]_:’ITLI{( ) )
iIf A=1,andB = 0, thenenergyE = energye). dt dt
Here, we can also deduce thatergyE = ds\ 2
energye)- F,=0, Fy=m ((it) . (13)
ilf A=1, B =1,71 = 0thenenergyE — (1/2)s =
energyeq)- 4. Energy on the Timelike Particle in a Resul-

i If A =0 B =1, andr = 0, thenenergyF — tant Force Field

(1/2)s = energye ).
. Now, we reach to the point, where we define the work done
ivIfA=0B=-17=0and7n = V2 then pythe force during the motion of the partidiealong its tra-

energyll = energy€s . Since torsion of the curve jectory. Kinetic energy of the moving particle which has a
vanishes everywhere, it implies that the curve is pla-masgy, is defined by

nar.
2
Proof. If we use Theorem 4 together with Eq. (5), and K= lm (ds) . (14)
Eq. (6) for each case separately, then it is evident. 2 dt

Assuming the kinetic energy of the particle varies from
3. Classical Mechanics on a Particle with Dy- some initial and final value, total work done on that particle

namics is given by

Arc-length parameter is also significant to define accelera- 2 = Kfinal — Kinitial - (15)

tion of the particle. Here we attain equations of motion for

the timelike particle in De-Sitter spacetime. Equations of mo- By the work-energy theorem we also have following re-
tion and second law of Newton are obtained thanks to Frenetation between variation on the kinetic energy and resultant
Serret frame, which is adapted to the worldline of the timelikeforce F.

particle. It includes geometric features of the timelike curve

in De-Sitter spacetime. 20 o s, [ds (16)
Let the moving particld” has a unit timelike tangent vec- m T dtz
tor ey . Then, we have 0
¢ ds wherem # 0, [23].
v(t(s)) = o7 = &0 (8) Now, we compute energy on the moving timelike parti-

cle, which is acting under a resultant force, in terms of the
curvature and torsion of the particle in De-Sitter spacetime.
dv  d?s N (ds)2 N ds 2,3 ) Further, the relation between energy on the moving timelike
€o tr| | €
dt

and

a(t(s)) = at - de dt particle and work done by forces can be investigated easily
from (15) and (16).
Theorem 6. Let I" be a moving timelike particle in De-
Sitter spacetime. Then, energy on the timelike particle in the

According to second law of Newton the resultant force
acting on the particle, which has a mass is defined by

d2s resultant force fieldr is stated by
F=ma= m—e(o)
2 .
1
ds\ 2 ds\ 2 _ 1 [ 20 (e 2 :312
I e +m a3 g (10) energyF 5 /( 14+ m*(=(8+ (k" +1))s°%)
dt dt J
For the set of Frenet vector®),€), €2} and the + (3rE5 4+ 1'$%)2 + (k15%)% + (355)2))ds,

curveg itself we may write

where superposed dot denotes the time derivative of the func-
F = Fo€o) + Fi€u) + F2€0) + F3B, (11)  ton.
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Proof. From (2) and (3) we get '
energy(F) = % / po(dF(e)), dF(e(0)))ds. ", |
; ‘
By using Eq. (4), we have “F .
e Wk Vi
ps(dF(&)),dF(€))) = p(dw(F(&o))), dw(F(e)))) — :
+ p(Q(F(e))), Q(F(e))))- — *

Sinceeg) is a section, we also get

Moreover, it is clear that
Q(F(G(O))) = D(e<0))|: =ma = m((s + (52 + 1)53)6(0)
+

ey

eces

d(w) o d(F) = d(w o F) = d(ldc) = ich.
FIGURE 3. Energy on the moving timelike particle in resultant
force field and Frenet-Serret vector fields.

Finally, we have
(3r3s + '8 )e) + (3675 ) + (355)8)

S

1 .
Thus, we find from (1) and (10) energyF = 3 /(—1 +m?(— (5 + (k% 4 1)5%)?

0

+ (3k55 + K'5%)2 4 (k75%)% + (355)%))ds.

ps(dF(ew)),dF(€0))) = p(€o), €0))

er(De(O)Fa De(o)F) =

Corollary 7. LetI" be a moving timelike particle in De-

2 2 =3\2

—1+m(=(5 4 (k7 +1)87) Sitter space. Then, energy on the timelike particle in the re-

+ (3rE5 4 K1'8%)2 + (kT5%)% + (355)?). sultant force field= can be written in terms of the energy on
the same patrticle in tangent, normal, binormal, and its own

| vector field as the following.

Proof. It is obvious from Theorem 4 and Theorem 6.

2 S S S
+ % ( - /(s + (k* +1)%)2ds + /(3555 + K'5%)%ds + +/(3§é)2ds>,
0

0 0

energyF — energy€g) = —

N ®»

2 [ r r 1
energyF — energyeq) = m? ( - /(s + (k% 4+ 1)§%)2ds + /(6l€,‘ilé4§ + k"25%)ds + /7’2 (/{%6 - m2> ds
0 0

[ (o3 1) as 55323
+O/m (9(53) +m2>d +0/(3 )d),

S S

2 S
energyF — energy€o) = 5 < - /(s + (k? +1)5%)%ds + /(3/<a§é + 1'5%)%ds + /72 (/{236 - 2> ds
m
0

0

+ (353')2(13),

o,

2 S
energyF — energyf = = + % /(—(S—I- (k? +1)8)* + (3658 + K'6%)? + (k15)? + (358)?)ds.
0

NN VA

Corlloray 8. LetI" be a moving timelike particle in De- .
Sitter space. Then, energy on the timelike particle in the tan- 1 o o ) 9.0
gential, normal and binormal resultant force figidin De- energyFo = 5 /(_1 +m*(=$7 4+ (k” 4+ 1)§°57))ds,
Sitter spacetime is given by 0
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S

Theorem 9.LetT" be a moving timelike particle such that

1 . .

energyF 1 = 3 /(—1 +m?(—r"8% + (2k85 + K'§7)? it is under the action offf, (W), (N) in De-Sitter spacetime.
0 Then, energy on the timelike particle in the resultant force
+ 12725%))ds, field F is stated by
energyF o = 0, s
s 1

1 F=-[(-1+(1+k? —9N)?

energyFs = 3 /(71 - m2(786 + (2§é)2)ds. energy 2 /( + (1417 (mg )
0

0
2 2 2
Proof. Using Eq. (12) and Eq. (13) together with the + (77 = £7)(mg + eN)7)ds.

Sasaki metric given in Eq. (4), we can easily reach the result
for each case.

What we found so far is that the general formulation for
the energy of the moving timelike particle with a mass# 0
in the resultant force vector field in De-Sitter spacetime As De)F = De, (f+N+W)
is known, there might be different type of forces affecting re- — D, f+D
sultant force acting on the particle such as gravitational force, @

normal force, frictional force, electric force, magnetic force Main Result 10. We have following result of the energy

_etc. Now, in the foIIowmg section, we consider MO phy_s- on the moving timelike patrticle in the resultant force field in
ical phenomena supposing that they take place in De-Sittgho_gitter spacetime

spacetime. One is related to classical Newtonian mechanics.
The system includes a block sliding down on the given fixedmz
timelike curve. We determine each individual force acting
on it with the help of Frenet vector elements to obtain resul-+ (355)?) = (1 + x?)(mg — IN)? + (7% — k?)(mg + cN)?.
tant forceF Other is related to electrodynamics. It includes

a moving charged particle, which is under the action of mag-  Proof. We reach the result by considering Theorem 6 and
netic or electric force only. We compute the energy on theTheorem 9.

charged particle by assuming that its motion corresponds to

a timelike curve in De-Sitter spacetime. As it is seen, thanks

to this novel approach we compute the energy on the parti-

s Ims s7(0) 0
cle in the resultant or any other force field such a uniqueand |_______ [ J ! L s t )

elegant fashion by using geometric tools of Frenet frame. ! s Bes

Proof. We can verify this result similarly as in Theorem
6 bearing in mind the fact that

N+ D, W.

€(0) €(0)

(= (5 + (k* + 1)8%) + (3k85 + 1/5%)2 + (k78°)

5. Energy on the Timelike Particle in Dynam- T | = / tm ‘ ‘l

ical Force Fields

3770 0

In this section, we apply our findings to a well-known phys-
ical problem to show its originality and usefulness. We sup- | 7/ / . ﬁ\ 5(0) =0
pose that under the action of gravity on a downward concave ’ ’ ' | ==
surface there is a point particle sliding to the downward such a)‘ :
that it follows a trajectory of a fixed curve in De-Sitter space- .
time. Let assume that motion of the particle corresponds to

) $'7(0) 0
s Res

a timelike curve and it has a Frenet characterization given by ., .
(1) in De-Sitter spacetime. Then, there are three distinct force ~
affecting action of the particle. These forces are frictifjn (2.0 4
Wel_ght of the pa_rtlcle\(\/), and normal forceN). They are 18
defined geometrically as the following. A
1.0 /
f= —19N8(0), N = CNe(l), ”
05 \ L -
W= mge) + myge) a7 oo - -
where N =|| N ||, ¢ = +£1, 9 is friction’s coefficient, g b) 08 " L - 8

is gravitational constant and is the mass of the particle [24]rigure 4. a) Trajectories of the curvature of the moving time-
Thus, we get the following equality for resultant force field. jike particle in De-Sitter spacetime. b) Values of the curvature for
particular input of the arc-length of the moving timelike particle in

F=f+N+W De-Sitter spacetime.
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| [ 1 s(O) 1 o

g—\ s / ““»‘}7 s"(0) 0
b L 1 e [ 20}

s"(0) 0

sy 0

energyF

4 FIGURE 6. Energy on the timelike particle in resultant force field
together with normal, weight, and frictional force field.

S

1
energyf = — /(—1 + (k% + 1)92N?)ds,

2
- 0
\ S
_al \ 1
+ \ energyW = 3 /(—1 + (1 4+ 7Hm2g?)ds,
b)
0
FIGURE5. a)Trajectories of the torsion of the moving timelike par-
ticle in De-Sitter spacetime. b)Values of the torsion for particular s
. _ . . . . . _ . 1
input o_f the arc-length of the moving timelike particle in De-Sitter energyN = = /(_1 LON2R2 4 N272)d5.
spacetime. 2

0

Thus, we obtain a sample solution family of third order ~ Proof. Let we consider each equality given in (17) sepa-
non-linear ordinary differential equation system. It gives therately. If we apply the argumentin (2), (3), (4) to the Eq. (17),
following illustrations for particular values of the curvature then the proof is obvious.
and the torsion of the wordline of the timelike particle in De- ~ Corollary 13. Let I' be a moving timelike particle in
Sitter space together with the particular valuesVot=|| N |, ~ De-Sitter spacetime. Then, energy on the moving timelike
c = =+1, 9, andm. particle in the friction force fieldf§, weight force field V),

Corollary 11. LetT be a moving timelike particle in De- normal force field ) can be expressed by the energy on the
Sitter space. Then, energy on the particle in the resultarfRarticle in each Frenet vector field as the following.
force field & = f + N + W) can be written in terms of the 1— 92N2

energy on the same particle in tangent, normal, binormal, and energyf = energyB + 192N2energye(0),

. ! : 2
its own vector field as the following. | g2
—2m2g
energyF = (1 — (mg — IN)? — (mg+]N)%energyB energyW = 5 energyB +m*g*energye ),
+ (mg + 9N)%energye 1—N?
(mg ) V=) energyN = energyB + NQenergye(l).

+ (mg + YN )?energye).

Proof. It is obvious from Theorem 4 and Theorem 9. 6. Energy on the Timelike Particle in Electro-
We can also compute energy on the moving timelike par- dynamical Force Fields
ticle in each individual force field in De-Sitter spacetime. By
this way, we might have an idea regarding energy variatiorNow, we investigate some consequences on another famous
and distribution on the resultant force fields by consideringphysical phenomena under the light of our findings. Let as-
how much energy does the particle store on each force fieldsume that we have a moving timelike charged particle, whose
Corollary 12. LetI' be a moving timelike particle such mass is denoted by.. We also assume that it is under the ac-
that it is under the action of), (W), (N) in De-Sitter space- tion of an electric force only in the electromagnetic field. The
time. Then, energy on the particle in the friction force field Lorentz force equation is described by
weight force field W), and normal force fieldN) are stated

by using Sasaki metric as the following. ma=F =q(E+VxB)

Rev. Mex. Fis63(2017) 560-568
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for the charged particle of velocity, massm, and electric
chargey under the magnetic fiel® and electric fieldZ, [23].
By the assumption the magnetic force vanishes, thus we have *

De(o)
=qF
ds q
Hence, we obtain
M m
q q

Corollary 14. LetI" be a moving timelike charged parti-
cle in De-Sitter space. Then, energy on the timelike charged
particle in the electric force fieldX) is stated by

S
1 2
energyE = 5/ (— 1+ (?) (—(k*+1)?
0

+ K7+ (m)2)>ds.

a)
Proof. It is obvious, if we consider (18) and (2), (3), (4). X
Main Result 15. We have following result of the energy 100
on the timelike particle in the resultant force field if there
exists only an electric force acting on the particle in the elec- 50 f
trodynamical field.
0
P
T ) 0 =1 =50¢F
// s s7(0) 0
e -100
b)
\ IGURE 8. a)Trajectories of the torsion of the moving timelike
h FIGURE 8. a)Trajectories of the torsion of the moving timelik
\ charged particle under the action of electric force in De-Sitter
- spacetime. b)Values of the torsion of the moving timelike charged
= particle under the action of electric force in De-Sitter spacetime.
" ///f
/ 7

— (54 (k* +1)§%)? + (3655 + 1'53)?

a) . s
1
. + (k75%)% + (385)° = S (—(K* + 1) + &2 + (k7)?).
q
4
) - Proof. We reach the result by considering Theorem 6 and
) S Corollary 14.

b)

FIGURE 7. a)Trajectories of the curvature of the moving time-
like charged particle under the action of electric force in De-
Sitter spacetime. b)Values of the curvature of the moving time-

Thus, we obtain a sample solution family of third order
non-linear ordinary differential equation system. It gives the
following illustrations for particular values of the curvature
and the torsion of the wordline of the timelike particle in
De-Sitter space together with the particular values of electric
chargey.

7. Conclusion

like charged particle under the action of electric force in De-Sitter Computing the energy on the moving particle has a wide

spacetime.

range of application in the theoretical and applied physics. As
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was stated aforementioned, this computation is deeply interlectric force. In the future studies, we turn our focus to
ested on dynamics of the particle including work done, forcel oretnz force of the particular magnetic fields in three dimen-
and energy related concepts. It has also deep connection gion since they are quite important for some reasons. First of
mass-equivalence relation in special relativity theory. all, vector fields and 2-forms are in correspondence. Also,

In this study, we have studied motion of the timelike par-magnetic fields on three dimensional Riemannain manifolds
ticle and energy on the timelike particle in the different forcecome from vector fields of divergence free. Further, uniform
fields in De-Sitter space. Firstly, we set a connection betweemagnetic fields and parallel vector fields correspond to each
energy on the timelike particle in these force fields and energgther.
on the particle in Frenet vector fields. This is important for  This study will also lead up to further research on the
our future work since a simple characterization on the energyelativistic dynamics of the particle in terms of computing
of a vector field can be described as it is up to constants, ienergy on the relativistic particle in different spacetimes by
other words, it is squar, norm of the vector field’s covari- considering mainly its geometric descriptions.
ant derivative. Thanks to this definition, we will correlate

the concept of the energy on the moving particle in differ-
ent force fields with the concept of total bending functionalAcCknowledgments
and volume in these force fields in that space.

Furthermore, we app|y our ﬁndings to compute the en.The authors wish to thank anonymous Referee for interesting
ergy on the moving timelike particle in the existence of elec-suggestions on the physical relevance of energy on the unit
tromanetic force in De-Sitter space. We have examined eriector fields in De-Sitter space and its relation with bending
ergy on the charged particle while it is under the action ofénergy on stiff polymers.
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