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Associative Memories (AMs) are useful devices designed to recall output patterns from input patterns. Each input-output pair forms an
association. Thus, AMs store associations among pairs of patterns. An important feature is that since its origins AMs have been manually
designed. This way, during the last 50 years about 26 different models and variations have been reported. In this paper, we illustrate how new
models of AMs can be automatically generated through Genetic Programming (GP) based methodology. In particular, GP provides a way
to successfully facilitate the search for an AM in the form of a computer program. The efficiency of the proposal was conducted by means
of two tests based on binary and real-valued patterns. The experimental results show that it is possible to automatically generate AMs that
achieve good results for the selected pattern recognition problems. This opens a new research area that allows, for the first time, synthesizing
new AMs to solve specific problems.

Keywords: Computer science and technology; neural engineering; image quality; contrast; resolution; noise; image analysis.

Las memorias asociativas (AMs) son estructuras matemáticas especı́ficamente disẽnadas para recuperar patrones de entrada con patrones de
salida. Cada par asociado (entrada-salida) forma una asociación, es aśı que la AM almacena las asociaciones entre los pares. Desde sus
oŕıgenes las AMs han sido diseñadas manualmente, y durante losúltimos 50 ãnos se han reportado un aproximado de 26 modelos de AMs
con sus variantes. En este trabajo mostramos un nuevo modelo de AMs que es generado de forma automática por medio de Programación
Geńetica. Este trabajo abre una nuevaárea de investigación que permite por primera vez sintetizar nuevas AMs para resolver problemas
espećıficos. Para probar la eficiencia de nuestra propuesta la hemos aplicado para los casos de patrones en valores binarios y reales. Los
experimentos muestran que es posible la generación autoḿatica de AMs para alcanzar buenos resultados para algunos problemas comunes
del área de reconocimiento de patrones.

Descriptores: Ciencias de la computación y tecnoloǵıa; ingenieŕıa neuronal; calidad de imagen; contraste; resolución; ruido; ańalisis de
imágenes.

PACS: 89.20.Ff; 87.80.Xs; 87.57.Ce; 87.57.Nk

1. Introduction

Associative Memories (AMs) are simple and useful devices
designed to recall output patterns in terms of input patterns
by means of simple operations. AMs are considered as part
of Artificial Neural Networks (ANN), but instead of using
complex structures and operators based on transcendental or
trigonometric functions, AMs work in two simple phases us-
ing two elemental operators, one for association and one for
recall. During the association phase the AM is built in terms
of the associations(X,Y )k, for k an integer. Every pattern
association is carried out by the application of simple oper-
ations such as: additions, multiplications, maximums, min-

imums, and others. Associative MemoryM is represented
by a matrix, which is formed from all the pattern associa-
tions. The corresponding componentsmij can be seen as
the synapses of a simple neural network. OperatorM is
generated from a preset of finite known associations called
the fundamental set; this association set is represented as{
(Xk;Y k)|k = 1, . . . , p

}
, wherep is the number of asso-

ciations. If (Xk = Y k)∀k = 1, . . . , p, then M is con-
sidered auto-associative, otherwise it is hetero-associative.
If a distorted version of a pattern, denoted asX̃, is fed
to M and the obtained output is exactlyY k, then recall-
ing is considered as perfect. The simplicity of AMs mod-
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els is a result of a great development, which has been car-
ried out during the last 50 years; for some examples, refer
to [6,22,24,14,15,25,23,31]. Most of these models have sev-
eral limitations: limited storage capacity, difficulty to deal
with more than one type of pattern (binary, integer or real-
valued), lack of robustness to different kinds of noises (addi-
tive, subtractive, mixed, Gaussian, etc.); and above all, most
of these models work only for the purpose for which they
were specially designed and not for any other [32]. All these
models have been manually developed. The process of de-
signing one model could take one or two years.

A first attempt to automatically generate AMs has been
reported in [16]. This method was conceived for the case
of bidirectional associative memories (BAM). On the other
hand, the closest work to the approach presented in this
paper is concerned with the automatic design of Artifi-
cial Neural Networks [13], which uses some kind of ge-
netic programming (GP) for this purpose. Another reported
work applies Particle Swarm Optimization [4]. Bearing in
mind the relevant results obtained with GP techniques ver-
sus Genetic Algorithms [21], in this work we describe a
GP-based methodology to automatically generate AMs. GP
has been successfully applied in a huge range of areas. In
particular, we can mention some related to computer vi-
sion [1,29,10,12,27,28,35,36,20,26].

In this paper, we deal with the problem of automatically
generating AMs through GP; previous results can be found
in [33]. We improve our initial technique and provide a bet-
ter description of the problems involved in the recall of binary
and real-valued patterns.

The rest of the paper is organized as follows. In Sec. 2
we provide a brief description of our first approach fully
described in Ref 33. In Sec. 3 we present our new co-
evolutionary based-GP methodology for the automatic gen-
eration of AM through GP. In Sec. 4 we show the experi-
mental results for some representative databases. Finally, in
Sec. 5 we present the conclusions and suggestions for further
research.

2. Automatic design of AMs through GP

The proposed model for generating AMs using evolutionary
algorithms rests on the following two-stage rule. (1) Evo-
lution starts as a simple ANN with a pre-established topol-
ogy that is evolved from more than one connection [37]. (2)
Later, evolution of architecture is developed with the aim
of generating different topological structures. Common AM
models fix the connection structure and consider the full as-
pects of every design such as the capacity of memory recall,
as well as noise suppression. Our proposal is based on the
linear associator concept introduced in [7], in order to con-
sider the general association aspects between pattern sets,
but bearing in mind the local association parts focused on
the connectivity of every synapse that is carried out between
the vector pattern components. Taking into account our first
work, we present a very important modification using the co-
evolutionary paradigm. As we will see, this allows modeling
the two processes in AM designing: association and recall,
with the idea of preserving the local pattern aspects.

FIGURE 1. Framework of our cooperative co-evolutionary process.
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FIGURE 2. Proposed co-evolutionary model for the GP-
development of AMs.

Our proposal outlines the evolutionary process in three
steps and two phases. First, we define the function operators
used during association; second, we define the function oper-
ators and terminal elements for recalling, considering the fun-
damental aspects of the association matrix previously built;
and thirdly, we implement the co-evolutionary approach [2]
by joining two evolved individuals to create a new one.

3. Design of AMs

Our proposed GP based co-evolutionary model comprises
two populations, one for association, and one for recalling.
This is a first contribution with respect to previous works that
considered only one evolutionary process [33]. In this pa-
per, we consider two sequential processes instead of only one
bearing in mind the cooperative co-evolutionary paradigm,
we consider as more adequate to reach our goal of develop-
ing a simulated correlation between species. Thus, popula-
tion represents a separate part of the problem, in such a way
that every species cooperates to have a global solution in two
considered phases. Hence, every individual is a possible so-
lution for the problem in the pre-set common environment.
The basic idea of co-evolution consists in using the concept
of dividing and conquering the problem (system) into many
sub-problems (sub-systems), and evolving them separately,
then later combining them for implementing the entire solu-
tion [11].

Figure 1 shows the framework for implementing the co-
operative co-evolutionary process. Here, the solutions (ap-
propriate AMs fitting one pattern set with a perfect recall)
come from two search spaces. The first process (GP1) is a
clustered process developed to produce individuals for the
association stage of the AM, where every individual identi-
fied by each cluster is the winner of one evolutionary pro-
cess. Then, all winner individuals participate in the solution
of the second process (GP2, the recalling one), by recombin-

ing their learned features. After the whole process is com-
pleted we get an individual global winner.

Fitness function of the whole process is implemented
as the minimum of all the individual pairs after the second
phase. The components of our new model are defined in
terms of both functions and terminal sets per every popula-
tion for each GP evolutionary process, see Fig. 2. Thus, the
co-evolutionary model is composed of the following aspects:

• Opa
k represents the evolutionary operator used in each

pattern association. Its representation is generated as
an individual in the form of a tree. This correspond to
the encoded genotype. The local association matrixµi

is integrated by theOpa
k operator acting on the compo-

nents of each vector of the local association{Yj , X
T
j }.

• Mk describes the general association matrix. It is taken
as the sum of all local associations and provides the cu-
mulative knowledge inspired by the perceptron princi-
ple.

• Ta is theTerminal Setfor the association stage. It con-
sists of a set of nodes taking the vector entries, such as
Ta = {xj , yj}. These nodes belong to each pattern-
vector{X} and{Y }; this is in order to have a local
encoded correlation input.

• Fa is theFunction Setfor the association stage. These
functions have been defined by considering the solu-
tions reported in literature in order to target the space of
possible structures with the aim of producing individu-
als similar in performance to the reviewed AM models:
Fa = {+,−,∧,∨,×}
where∧,∨, and× are theminimum, maximumand
multiplicationoperators

• Opr
p is the evolutionary operator for pattern recall. It

comprises the input vectorXj , as well as the matrix
associationMk generated by the previous evolutionary
association operator.

• Tr is the Terminal Set for the recalling stage,
Tr={v, R1, R2, . . . , Rm,Mk}; with v ∈ X, as the in-
put vector, andRi as theith-row-vector belonging to
Mk, which is the correspondingkth-AM.

• Fr represents theFunction Set for the recalling
stage. Fr = {+,−,∧,∨,⊗}; ⊗ is defined as the
multiplication operator between vector components,
⊗(X,Y )=[x1 ∗y1, x2 ∗y2, . . . , xn ∗yn], and when the
association matrix is considered is defined as follows
⊗(X,Mk) = X ∗Mk; thus it satisfies the dimension-
ality of the multiplication operator between matrices.

• Ỹj is the approximatedYj pattern resulting from the
application obtained with the operator ruleOpr

p in the
recalling stage.
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FIGURE 3. Fitness model for the GP-development of AMs.

TABLE I. Winner individuals (pairs) of the association rules (first
column in competition), with its corresponding recalling rule (sec-
ond column), and the global fitness attained in cooperation. The
indexed operators in the first column are related to each association
rule. OperatorOpa

1 is related to Fig. 7(a); numbers two and three
are related to Figs. 7(b) and 8. OperatorOpr

1 in the second column
is related to the operator depicted in Fig. 9(a), and so on.

Association rule Recalling rule Global Fitness

Competition

(Opa
1 , Opa

2 , Opa
3) := Opa

1 Opr
1 1

Competition

(Opa
1 , Opa

2 , Opa
3) := Opa

1 Opr
2 1

Competition

(Opa
1 , Opa

2 , Opa
3) := Opa

1 Opr
3 1

The fitness function which provides the qualification to
every process as an essential evolutionary step in the whole
process is requested. For our purposes the fitness value is ap-
plied at the end of both stages (association and recall). The
fitness function covers the sum of all the local fitness (related
to local associations), and all the recalling set (one recalling
for every pattern relation), as shown in Fig. 2. For this evo-
lutionary approach we considered the normalized correlation
coefficient between the goal (Y ) and the source processed
pattern (̃Y ) [18]. The fitness functionf , known assimilarity
(0 ≤ f ≤ 1) , is defined as follows:

f =
Y · Ỹ

√
Y · Y

√
Ỹ · Ỹ

(1)

whereY andỸ are vectors of size1×N , andY · Ỹ is given
by the following equation:

Y · Ỹ =
1
N

N∑

j=1

Y (1, j) · Ỹ (1, j) (2)

Functionf tries to maximize the number of matching
component vectorsY andỸ . This seems a reasonable choice
for the fitness function. The optimum is found whenf = 1
corresponds to the matching of all pixels. The worst case
takes place forf = 0 , implying that not a single pixel
matches.

Thus, we used Eq. (1) as our fitness function, and was ap-
plied in the evaluation of every generated individualµi. For
the association stage, the training one, between the source set
X, and the goal setY , both conformed ourfundamental sets.
The fitness evaluation is carried out in three steps: First, the
associationbetween pattern setsX andY using the first stage

operatorOpa
k; second, we fix themultiplicationoperator for

the recalling task just to have a first estimation ofmultiplica-
tion operator. After this we have one recalled pattern set,Ŷ
and this local fitness is considered to have the winner individ-
ual for the first evolutionary processGP1, which is taken into
count for then batch processes (see Fig. 1, the association
block). Second, then−winner individuals from the first pro-
cess are considered for the secondGP process, the recalling-
one. At the end of this block, the fitness function is applied
again to get the winner individual for everym−population
as a local estimation to each operatorOpr

a. Here we wave
a pair of operators as one individual (Opa

k, Opr
a), thirdly, we

consider the global fitness for each pair of operators as the
high-fitness grade for the solution pair. To follow the expla-
nation, refer to Figs. 1, 2 and 3.

3.1. GP experiments and parameters

All the experiments were implemented on workstations with
64-bit architectures using Matlab with GPLab toolbox ver.
3.0 [17]. The co-evolutionary process was composed of two
phases, association and recalling. They were performed in
two batch processesn andm: GP1 and GP2, respectively.
After 50 generations with 70 individuals per every evolution-
ary process, we got one evolutionary solution for our prob-
lem.

For the experiments we considered the GP parameters
similar to those suggested in [8], rate values of 0.7 and 0.3
for the crossover and mutation operators respectively were
set up. In order to initialize populations, a ramped-half-and-
half initialization method for the mutation was used.

4. Results and analysis

In this section we present the set of experiments we have per-
formed to test the efficiency of the proposed methodology.
For this we have used two datasets. In the first case we show
how the proposal works. In the second we show the applica-
tion of the proposal to solve one classic pattern recognition
problem. For the first experiment we used simple vector sets
consisting of binary sets of digit characters from 0 to 9, within
a matrix size of7× 5, as shown in Fig. 4.

For these simple images we considered the line vector per
matrix whereX andY are the source and the goal vector sets,
respectively, using an auto-associative relationship.

The application of our methodology generates a set of
rules for association, and another set of rules for recall. Each
of these rules is co-evolved with the aim of maximizing the
global fitness. The winner is one pair set as shown in Fig. 5.
The AM shown in Fig. 5 is only one example of pairs selected
from a vast production of individuals, which fits to this kind
of pattern perfectly.

The solution depicted in Fig. 5 shows that an impor-
tant describing feature for this particular pattern set, is row
number 7, which belongs to the association matrixMk. It is
the only significant one during recalling regarding the auto-
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FIGURE 4. Matrices representing digit characters for the first AMs
generation.

FIGURE 5. Evolutionary AM for the auto-associative case re-
lated to digit characters set. 5(a) Rule for the pattern association;
5(b) Rule for the pattern recall.

associative relationship. As can be seen this solution is gen-
erated by the corresponding association rule 5(a).

We then tested the AMs formed by the individuals shown
in Fig. 5 adding mixed noise (salt and pepper) in order to
evaluate its robustness. The mixed noise was applied from
10% to 100 % scale in steps of 10%, see Fig. 6. These noisy
images were generated using Matlab. Remarkably, we got
perfect recall: error zero, so our GP-generated AM had better
behavior compared to the morphological and the alpha-beta
models [15] and [34].

After this excellent result we decided to implement our
methodology considering one association problem endowed
with more complexity, real valued pattern associations which
involved a bigger and more complex search space, which is
closer to a real application.

We applied our methodology to a very-well known
database problem, the Iris Plant classification database [30],
which considers 4 features, 3 classes and 150 instances. The
resulting AMs suitable for this problem, in real valued pat-
terns, are shown in Figs. 7 and 9. All the experiments were
implemented in the auto-associative case. We implemented
our model looking for three-individuals to be used as the as-
sociation rules (association stage). Later the co-evolutionary
process was executed to find three-individuals in order to

FIGURE 6. Digit characters represented as image matrices. With-
out noise in the first row, and after adding some mixed noise to the
original images.

FIGURE 7. Evolutionary AM for Iris Plant database, three different
rules for pattern association (considering the individual en Fig. 8
too), wherex andy are the input and target patterns components.

recall the patterns. By co-evolving each individual of the
association stage and by following the proposed cooperative
co-evolutionary model we wanted to achieve the desired so-
lution. Each individual has a tag per every evolutionary pro-
cess, and the global fitness for every winner pair is shown in
Table I.

As we can observe, according to Figs. 7, 9 and Table I,
the evolutionary process produces miscellaneous solutions,

Rev. Mex. F́ıs. 57 (2) (2011) 110–116
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FIGURE 8. Evolutionary AM for Iris Plant database, longest indi-
vidual.

FIGURE 9. Evolutionary AM for Iris Plant database, three different
rules for pattern recall, whereMk is the association matrix.

FIGURE 10. Robustness to noisy patterns for the three AM pairs.

from a complex one (Fig. 8) to just a simple one rule for the
recalling stage, see Fig. 9(c). According to Table I, the asso-

ciation rules, see Figs. 7(b) and 8, are not good enough for the
association stage. All the three-evolutionary rules obtained
for the recalling stage achieved the higher fitness through the
first association rule, Fig. 7(a).

Another important aspect revealed through this method-
ology are the main synapses or connections used. For this ex-
ample the winner rule for the recalling stage shows the rows
numbers 1, 2 and 4, which belong to their association matrix
Mk, generated by the association ruleOp

a
1 (Fig. 9(a)). These

rows are the most significant during the recalling phase,
which are related to the sepal length, sepal width and petal
width. So, the new AM shows only three of the four features
as the most relevant from the Iris Plant database [30].

We tested this new AM by adding random noise to the in-
put pattern setX; regarding the Iris database the noise scale
has only a small amount of noise, from0.01 to0.09 %; hence,
the resulting fitness is depicted in Fig. 10. We observed that
the recalling rate decreased slowly as noise increased.

5. Conclusions

In this paper we improved our first reported approach where
we originally proposed the GP-based methodology for the
synthesis of AMs. We extensively described the inherent
problems that were solved to achieve our final goal [33]. With
the new methodology we obtained several AMs that perfectly
fit each pattern set. The time necessary to generate such so-
lutions varies from hours to days, depending on the compu-
tational time necessary to synthesize ten or more models in-
stead of the traditional approach that takes years of research
performed by experts. This methodology is similar to the
development of ANN considering genetic algorithms. Our
methodology has one very important advantage, the possi-
bility to develop AMs specially designed for specific pattern
sets. The resulting new AMs are produced by the cost effec-
tive GP that searches for optimized solutions. In particular,
these can be implemented in order to have several solutions
per pattern applications employing a less time. At the mo-
ment we are working on improving our methodology with
the use of new fitness functions and metric spaces, according
to the kind of pattern sets for challenging real world applica-
tions.
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