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In modeling automatic engines, like in physiological or biological systems or ecology dynamics, oftently is necessary to include delay effects

in the equations. This effect is related to reaction or transfer times and can be extended to the spatial case, for example, in cases such ¢
the influence in local green biomass density due to dispersal of seeds. Spatial delay effects are present in liquid mixtures models such a
the Cummings-Stell model (CSM) for associating molecules: in a series of publications they solve, for particular cases, an equation with

spatial delay that must be satisfied by an auxiliary (Baxter’s) function. In this paper, we present an analytical and general solution of the first
order Delay-Differential Equation (or Differential-Difference Equation) DDE, for the auxiliary Baxter’s function that appears in the CSM.

A n-partition of the domain leaves a set of DDE’s defined in the subintervals. We use recursive properties of these auxiliary functions and a
matrix composed by differential and shift operators (MDSO) in order to obtain the solution of the original problem with an arbitrary value

of n. The problem of solving spatial DDE’s is common to other models of associative fluids, such as homogeneous and inhomogeneous
mixtures of sticky shielded hard spheres, or models of chemical ion association and dipolar dumbbells and polymers. In all the cases the
location of the potentiall. = mo /n, has different physical effects.

Keywords: Delay-differential equations; molecular association; biological.

En la modeladn de naquinas autosticas, sistemas fisiagjicos o biobgicos, ascomo en diamica de ecosistemas se hace necesario,
muchas veces, incluir una correggien las ecuaciones diferenciales correspondientes. Esta comreoasiste en la inclusn de un tiempo

de “retraso” que eétrelacionado con tiempos de reduntio de transferencia, la cual puede hacerse para el caso espaci@ntarRbr
ejemplo, en el caso en el que la densidad de biomasa vegetal local se ve afectada por lardggsesnilla en otro sitio. En otros modelos
se haincluido un “retraso” espacial como es el caso del modelo decoias reactivas de Cummings y Stell (CSM): en una serie thelks

ellos resuelven, para casos particulares, una emu@oin corri- miento (o “retraso”) espacial que debe ser satisfecha por l&fuggxiliar

de Baxter. En este trabajo presentamos una smugeneral y andéica para la ecuaén diferencial con corrimiento (Delay Differential
Equation) de la funéin auxiliar de Baxter que aparece en el CSM. Una partidie tamé&on del intervalo de integs lleva a la formuladin

de un sistema de ecuaciones diferenciales (DDE) definidas en los subintervalos. Usando propiedades recursivas y una matriz de operador
diferenciales y de “corrimiento” (MDSO) se obtiene una sdincanaitica del problema original para arbitrario. El problema es cdim

a otros modelos de fluidos reactivos tales como mezclas hameag e inhomdameas de esferas duras con potencial interno de pegado. Lo
mismo para asocia@n ibnica, mancuernas dipolares y fmoéros. En todos los casos el sitio del potencial de pegado no /n, ocasiona
diferentes efectoddicos.

Descriptores: Ecuaciones diferenciales con retardo; asobiaanolecular; biologa.

PACS: 02.30.Ks; 61.20.Qg; 61.25.Em; 82.30.Nr

1. Introduction In these equations andy denote arterial concentrations
of CO, and Q respectively,IW is the ventilation function
In modeling automatic engines, phiSiOlogical or bi0|OgicaI (V0|ume of gas moved by the respiratory System) and 0
systems (such as human respiration [1], the dynamics gk the transport delay. The quantities andy; are the in-
HIV [2], ecology dynamics [3] or another nonlinear sys- spirated concentrations of G@nd G, respectivelyp is the
tems [4]) it is often necessary, in order to obtain reali:sticco2 production rate and the O, consumption ratec and

models involving feedback, to include delay effects such as; are positive constants referring to the diffusibility of €O
a reaction time. In 1994 Cooke and Turi published a discusand G, respectively.

sion on stability of a set of delay equations to model patterns

of ventilation in human respiration [1]: In nonlinear models of human inmunodeficiency virus
g (HIV) infection where an intracellular delay is included,
dj =p—(2(t) —xp)aW (@t — 7),5(t — 7)) more accurated representations of the biological data are ob-
t

tained [2]. In ecosystems, the growth rate of species pop-
ulation will not respond immediately to changes in its own
population, rather it will do so after a time lag. The effects

dy

Y o+ (g1 — GENBW(E(E — 7),5(t — 7))
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of overgrazing_ may depend not so much on the actL_JaI her- haj (r)=ci; (r)+ Z pk,o/cik(S)hw(lr —s)ds (3)
bivore population, but on an average reaching back into the

past over a time roughly equal to the characteristic regenera-

tion time for the vegetation [3]. As an example a prototypewhere the integral is evaluated in the whole space, ||s||,
model that considers a single species with growthraad 4, j = A or B andpy, ¢ is the numeric density of particles with
a maximum sustainable populatidn of herbivores grazing species:. In the CSM both densities are considered equal.

k=A,B

over vegetation with recovery time, modifies the original The CSM [7] for chemical reactions represents the asso-
logistic equation [5] as ciation of two speciesl + B = AB. The potential proposed
in the CSM consists of a hard sphere repulsion between like
dN(t) = rN(t) [1 _ N(t_T)] ) species i — A or B — B) and a mound of widtlr with a
dt K deep, narrow and attractive square well, with widthand
This equation can be rewrote in a discrete form known agentred on. HereL < o/2andl +w/2 < o/2 for AB
thedelayed logistic modél Interactions:
nesr = rg(1— ng_1), 1) €1 !f O<r<L-—w/2
—ey If L—w/2<r<L+w/2
so that the original behavior of the solutions of the discrete $ap/kp = q if Lyw/2<r<o )
logistic model (nontrivial stable fixed points far< r < 3, 0 it r>o
and bifurcations for- > 3) changes to a stable fixed point
for » < 2 and a stabléimit cyclefor » > 2 [6]. The geometric consideration of this model f8B interac-

In Refs. 4, 1, 7, and 8 the parametedefines regions, tions ensures steric saturation in the system (there is no for-
in such way that the original domain must be partitioned andnation ofn-mers forn > 3) due to overlapping. In addition,
the local solutions joined over all the frontiers of the subin-this model has an analytical solution in the Percus-Yevick
tervals. In each one, the solution depends on the new formapproximation (PYA), mapping the square well onto an in-
of the equation due to the solution in the previous intervalfinitely deep and stretch well like the Baxter sticky poten-
Same arguments can be applied to spatial delay models. Al [10]. The connection between the Baxter’s original po-

an example, consider the equation tential and this model, is obtained by comparing the second
dq(r) virial coefficients by considering the limif — oo, e — oo,
— 5 = q(r—1L) (2) w — 0. The limitse; — oo andw — 0 are taken to main-
.

tain tractable the problem in the PY approximation [10]. The
whose solution, ifL. = 0, is obvious. The solution in the limit ¢, — oo (in the repulsive part: see Fig. 1) has a little
first interval[0, L) depends on the values @fr) in [-L,0).  effect on the results and simplifies the solution [12].

This posibility of delay in differential equations models was  Briefly reviewing the formulation of the CS model, we

an indirect result of the application of Baxter’s technique inneed the factorized form of the Ornstein-Zernike (0Z) [13]
classical theory of liquids. In this work we focus our atentionEgs. (3) with the PY closures

on a problem related with classical theory of liquids and we

obtain an exact solution for a particular type of DDE. haa(r) =hpp(r)=-1, r<o 5)
caa(r) =cpp(r) =0, r>o
2. The CSM of association: hard spheres with

. . ) . and, in the considered limits
shielded sticky interaction

In 1984 Cummings and Stell [9] proposed a simplified hamil-
tonian model for a reactive system of two types of homo-
geneus fluids with the same density and diameten this  Gjyen the conditions of the problem, the factorized OZ equa-
model, two type of moleculed and B, can be associated by ions are written as [14,9,12,15]

means of a selective square interaction that, in the appropi- B

hap(r)=—-1+3Ls(r—L), r<o ©)
cap(r) =0, r>o.

ate limits, can be reduced to a sticky Baxter’s potential [10] ‘
located inside the hard core at a distaiice- o/n from the rhi1(r) = —qi,(r) + 2mp /dt(r —t)
center of the particle (see Fig. 1 and Eqgs. (8)). This model re- 0
quires the explicit form of the auxiliary Baxter's function and
this function must satisfy spatial Delay-Differential Equa- * g @®har(fr =) + qr2(O) a2 (lr = 1))]
tions (see Eqgs. (8)) in this case related to interactions between A
different chemical species in the system. rhis(r) = —qio(r) + 27rp/dt('r —1)
The total and direct correlation functions are related by 0
the Ornstein-Zernike (OZ) equation that, for this binary mix-
ture, can be written as [11] X [qu(t)hia(|r —t]) + g2 (|r — )] . (7)
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where we changed the indexofi 4 andh 4 p to hy; andhqo
respectively. Same for all functions.

Substituting the closure relations (5) and (6) in the set of
OZ Egs. (7), the following system of difference-differential
equations (DDE) for the auxiliary Baxter’s functions (r)
is obtained:

¢11(r) + plgr2(r + L) — qia(r — L)]
= (a11 + Dai2)r + b11 + Db12

u

—— -

el

¢1o(r) + plgii(r + L) — q11(r — L)] = (Day1 + a2)r | -

AL
+ Dbiq + b1z — 1—25(1"7[,), C))

wherep = mpAL? /6 and

o o ¥

Q5 = (5”' - 27Tp/q”(t)dt bij = 27Tp/tq”(t)dt 2
0 0
fulfilling the boundary conditions

q11(0) = qi2(0) =0

) FIGURE 1. The image shows the basic form of the potential, in-
(L) = (L*) " & ©) cluding a coulombian part (dashc_ad curves “‘AA’ a_nd “AB"). Below
d12 q12 192 are shown structural effects for differebtvalues (dimers for small
After integration, a step discontinuity appears-at L for values ofL, stripgs for mliddle values, and clusters for high values
the auxiliary functiong» () due to delta in the term associ- °f £+ near ofo, in according to [20].
ated with the well.

The cased = o/n for n = 2, 3, 4 for the Baxter’s func- and

tion have been solved in 9, 12 y 15 using the same formalism 0, r<L-05w
and, at [16], the results were applied for a pair of reactive flu- Uas(") = § —€as— D, L—05w<r <l+05w
0, r>L4+05w,

ids and a solvent. Lee and Rasaiah solvedlthe ¢/4 and
L = o/5 cases and proposed a solutionfor= o /ninasys- whereL is the bounding distance; the intracore square well
tem with chemical association and dipolar dumbbells [17]. width andi, j represents the species in the mixture. The final
The model of Lee and Rasaiah of association in elecpotential (see Fig. 1) is equivalent to the original Cummings-
trolytes AT 4+ B~ = AB is studied in Ref. 18. In this case Stell in the adecuate limits for sticky approximation. This

the authors add a selective coulombian interactioe? /r,  ideais implemented by Pizio and Blum [21] for a hard-sphere
out of core, to the original CSM model (see in Fig. 1 thefluid with dimerizationA + A = A,.
dashed lines at > o). Most of the models maintaih as a parameter (bound-

The sticky site inside the hard core incorporates geometing distance) but, at the end, they take the chse o/2,
rical conditions of steric saturation in the molecule. Thisalthough other possibilities have the analytical solution for
idea is shown, using computational simulations in differentarbitrary L. Kalyuzhnyi and Stell [22] present a recount of
ensembles, in Ref. 19. For different bounding length parameases with different ranges of the locatian As we men-
eters the system allows dimers formation for snglthains  tioned above, the sticky potential into the hard sphere shell
for slightly larger L values and vulcanization of species for produces a step discontinuity in the Baxter’s auxiliary func-
bounding length values close to the diametesf particles. tions. This allows us to think in systems with more than one
Huerta and Naumis studied the connectivity of a binary mix-sticky site inside the shell or, even, a distribution of sticky
ture using a selective superposition of hard sphere potentiatells.
with an associating term [20]: The vertical dashed arrows shows the Baxter's sticky

Ui (r) = Uhd(r) + (1= 6;)Undlr) Iim_it [9]. The molecular diameter is and the daghed curves
*J i t3/8s (with labels “AA” and “AB”) correspond to selective coulom-

where bian attractive and repulsive interaction for an electrolyte
hd 00, <1 with A andB ions [18].
Ui (r) = { 0, r>1 In the following sections, we develop the matrix of differ-
ential and shift operators MDSO, and its inverse, for the sim-
o 0o, 1 <L—-05w plest casen = 2, followed by an inversion of the MDSO's for
Ujlr)=49 D» L=-05w<r<1 a very general case that corresponds to the sef@DE’s, to
0, r>1 n subintervals of [Q5] and for a sticky locatior, = mo/n.

Rev. Mex. .57 (2) (2011) 117-124



120
3. The MDSO

J.F. ROJAS AND |. TORRES

3.1. Thecase: =2

In the first work of Cummings and Stell [9] a new pair of ¢ first case yields to a system of two coupled differen-

functions were used and defined as the sum

q+(r) = qui(r) + qu2(r)
and difference

q-(r) = q11(r) — q12(r)

tial equations associated with the two subintervals defined by
L=0/2,

dq1 (T)

f
dr or

+pga(r+0/2)=ar+b, 0<r<o/2 (13)

of the originalsg11 (r) andgi2(r). The advantage of this trick gpq

is to obtain two uncoupled equations, one §ar(r) and an-

other forg_ (r) which can be solved in a separate way. With

this definition and adding and substracting Eqgs. (8),
¢y (r) +plas(r+ L) — ¢4 (r = L)]

=aqr+by — )\TL;fS(T - L) (10)
and
q_(r) = plg-(r+ L) —q-(r - L)]
=a_r+b_+ )\I—L;(S(r - L), (11)

with the obvious definitior{&

ay = (1+D) [1 - 27r,0/dtqi(t)]
and
by = (1£ D)2mp | ditqe(t).
/

The last term in (10) and (11) can be neglected since it is

equal to zero in all subintervals except where: L = o /n.

This condition is fixed in the boundary conditions (9). |
the rest of subintervals, for the general case, must imply

that [9,17]

q(mo/n")=q(mo/nt), for m=2,3,...n—-1. (12)

We use, from hereg(r) = q11(r) + ¢i2(r). The aim

n

dga(r)
dr

—pqi(r—o/2)=ar +0b,

for o/2<r<o. (14)
where, evidentlyg, corresponds to the first half of the in-
terval andg; to the second one. We define the differential

operatorD as

and the shift operatof* by £**f(x) = f(x £ s). With
this operators defined, the set of Eqgs. (13) and (14) can be
rewritten as
Dqi(r) + pE”/qu(r) =ar—+b
and

Daa(r) — pE~*qu(r) = ar +b

or, in matricial form, as

)5 () e

These equations can be reduced to a symbolic form

pgo'/2

< fro R
—pE~T D

fa(r)

q1(r)
q2(r)

of this proposal is to find an analytical form of the function

¢(r) assuming that: i) the solution must be obtained in subin-

tervals [23], ii) this implies thay(r) will be defined also in
subintervals, and iii) the original functiong; (r) can be re-
covered with the relations
)+ q_(r
gufr) = )0
and

¢+(r) —g-(r)

qi2(r) = 5

Identical procedure shows that it is sufficient to replac

A——\,p — —p,v — —v to obtaing_(r).

The cases shown in Refs. 9, 12, 15, and 17 are solved here

by using MDSO. For convenience we show the case o /2
of the CSM [9] in detail, and the casés= o/3 andL = o /4
summarized.

Maq(r) = f(r) (16)
where M, is the matrix of differential and shift operators, or
MDSO, that appears in (15), applied to the veejaf func-
tionsg;(r). The right side is the vectaf of functions f;(r)
that, in this case, are linear functionsrofThe index inM,
corresponds to the number of equations (or partitions in the
interval of solution).

The main idea of this paper is to find a solution for the
gSystem represented in (16) as

q(r) = My f(r).

This implies the knowledge of an explicit analytical form of
the inverse ofM5, and how it operates ofi(r). One way of

Rev. Mex. .57 (2) (2011) 117-124
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defining the inverse of the differential operaf@iis by using 3.2. The caser > 2
the equation _
In the casel. = /3 there are three equatidtisassociated

y'(z) £ ay(z) = f(z) (17)  with three subintervals of length/3:
or
dq (r)
———= +pg(r+o/3)=ar+b, for 0<r<o/3
(D +a)y(x) = f(z) dr
: , . dga(r
whose solution leads us to define the inverse operator q;(” +pgs(r+0/3) —pqi(r —o/3) = ar + b,

(D+a)tas "
for o/3<r<20/3

dgs(r)

In the previous expression, the caseder 0 implies that the dr
inverse MDSO is reduced to the trivial definition of inverse for 20/3<r<o (23)
differential operator as an integral operator. The case where

a is a complex number (or imaginary) implies harmonic so-With the MDSO given as

lutions [7] and Fourier transform of the right hand side of

(D+a) ' f(z) = CeT*® + eia”"/eia”,f(x’)dx’. (18)

—pga(r—o/3) =ar +b,

differential equation. ? /3 pe? 0/3
Continuing with the casé = /2, the inverse of\, is Msg=1| —p& 7 D P 2o
0 —pE~° D
_ 1 D —p5_0/2 1 -
1 = __
My = Ag ( pET/? D - A2M2 (19) and the inverse operator 83
where the commutation properties of the operaferand& . 1
were used. Direct calculation gives the determinant-operator My = D(D2 & 992
oo (D% +2p?)
of M5 " as®

2 2 | | D2 +p2 _nga/B p2520/3
Ay =D +p* = (D +ip)(D — ip), (20) x| pDEP D> —pDE?

20—20/3 —o/3 2 2
so that (19) and (20) define completely the inverse determi- p?€7%/% pDE=/S D4 p

nant-operator of\, as the product of two inverse operators

of the form of (18): where
1 1
1 = -1 = 1 1 _— —
5% TDipDogp 1) As  D(D?+27)

This is the formal inverse determinant of the MDSO, — 1 1 1
however we still need to find the appropiate coefficients to (D —0) (D +iv2p) (D —iv2p)
satisfy the boundary conditions. So that, the direct applica- .
tion of the inverse MDSO, (19), on (13) and (14) gives and™*

D2 +p2 —pDSU/S p2€20/3
Mz = | pDE/3 D2 —pDE/3 | . (24)
a a b p25720/3 pD576/3 D2 +p2
g2(r) = Ccospr + Dsinpr + —r + —2(1 —v/2)+ -
p p p

a a b
q1(r) = Acospr + Bsinpr — —-r+ —(1 —v/2) — —
(r) ’ p2( /2) »

Obviously1/Aj is a inverse product of operators in the
with v = po. Now, considering (9) and the fact that (14) form of (18). Applying these to the right hand side of (23)

must be satisfied we obtain we obtain,
. a a b
q1(r) = Acospr + Bsinpr — 57’ + }?(1 —v/2) - » q1(r) = Ay cos V2pr + By sin vV2pr + gr2
q2(r) = Asinp(r — 0/2) + Beosp(r — o /2) _ 2i(l —2/3)r +br + Fy
p
a a b
+§T+]§(1_V/2)+;’ (22) qQ(r):Agcosx/ipr—i—Bgsin\[Qpr—&—FQ

which agree with the results in Ref. 9. The second equation q3(r) = As cos V2pr + B sin v/ 2pr + @2
has the same set of constants that the first one and the har- 2
monic functions have been interchanged and their arguments + ﬂ(l —20/3)r + br + Fj
shifted by—a/2. D
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and, imposing bound conditions in the respective subintervaland

and the fact that (23) must be satisfied (as in (22)fer 2),
we obtainAs, Az, B, andBg in terms ofA; and B,

q1(r) = Ay cos V2pr + By sin v 2pr

_A'_ETQ_ a
2 2p

q2(r) = V2A, sinvV2p(r — 0/3)

+ V2B cos V2p(r — ¢ /3)
q3(r) = —A; cos V2p(r — 20/3) — By sinV2p(r — 20/3)
2

The casel. = ¢/4 has a tridiagonal matriM 4, whose de-
terminantA, = D* + 3D?%p? + p* has roots

(1—2v/3)r+br

+—r? 4 %(1—21//3)7"4—1)7“. (25)

Vb4 1
2 b

y:

and correspond to the,’s defined below.

The casen = 5 or L = ¢/5 has a determinant
As=D°+4D3p?>+3Dp* whose roots are Ozip, +iv/3p,
and the solutions have the same structure as (22) and (25),
and those in Refs. 9, 12, 15, and 16.

4. The general MDSO

4.1. The matrix

Computing the same construction ferdivisions in the so-
lution interval for a givenL. = o /n, we obtainn functions
¢; that represent a continuous solution. Each of them must

5—1 i
LYo —1 fulfill
and 4 (r) + plgiy1(r +0/n) — i1 (r —o/n)] = ar +b,
1 .
ii\/g—H for ' o<r<- o (26)
B p n n
so that wherei = 1,2,3...,nandgy = ¢n+1 = 0, in which
AV5-1 V/5—1 r), Seo<r<ico
Ay=|D+i 5 P D—u 5 P qi(r) = w5 " (27)
0, otherwise
x | D+ i\/S + 1p lp _ Z_\/S + 1p The generalized MDSO for arbitraryhas a tridiagonal form
2 2 ’
D for 1=7
Lee and Rasaiah, in Ref. 17, called these roots a/n =i
M)y ={ P& for i=j—=1 (5
V5 —1 —pE—o/m for i=j+1
i 0 oherwise
| or, in matrix form
D pE* 0 0
—pE~* D pE? 0 0
B 0 —pE~* pE* e 0
Mo = 0 0 pE? 0 (29)
—pE~F D pE?®
0 0 0 —pE~ D
Due to symmetry of\,, the shift operators are mutually
canceled in the inverse df,,. This fact enables us to write Ag=1
all solutionsg; (r) in terms of inverse differential operators of
the form (18) and (21). A =D
Ay =D? +p?

4.2. The determinant inverse operator

From the tridiagonal matrix obtained, (29), the determinants
for different values of: can be evaluated:

Rev. Mex. .57 (2) (2011) 117-124
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As = D° + 4D3p? + 3Dp?

Ag = D + 5D*p? + 6D?*p* + p°
Ay = D" +13D2p? + 66Dp* + 165D%p°
+ 210D%° + 126D*p'° + 28D%p'2 4 p'*
Ay = DY +14D"3p? 4 78D p* + 220D%p°

+330D7p® + 252D5p0 + 84D3p'2 + 8Dp*

Itis easy to prove that the recurrence relation between MDS(%

determinants of different order is, far> 2,
An = DAn—l +p ATL—Q (30)

whereA; = D andAy = 1. The index ofA,, corresponds

123

Same as beforey, is defined by mean aof;, = isy = iagp
andD;,* = (D?)~'. In the general case, an even partition
of the interval ), o] results in

m

DDy 2 ... D2 (er +d) = [A; cos sir + By sin sy 7]

k=1

(cr +d). (35)

Lt
| J
In both cases (34) and (35) is obvious that in the homogeneus
case the solution is an oscilatory one, as shown in Ref. 7.
It is easy to see that if we define the vectorial funcion

), using the definition in (19) or (24), as the application of
M to the vectorf (r),

v(r) = M, f(r),

to the MDSO order. From this recurrence relation we obtain

the general expression fd,,
2j—1
H (n—k)

=D" +Z
k=i

~ D" pP (n — j)!
G (-2
which, finally, can be reduced to

m n—. niA .
An—z< jj )D 2Ip?I

Jj=0

Dn— 27 2J

(31)

where additionally, in terms of the imaginary roots of (31),
A, =[] - ap).
k=1
In these expressions: =| n/2] is the integer part ofi/2.
In (32) we have writte\,, in factorized polynomial form.
Herez are all then roots of A,, which are all pure imagi-
nary and proportional tp. Whenn is even there are exactly
m = n/2 pairs of complex conjugated roété +ia;.p and,
if n is odd, there is an additional null root df,,, which re-
quires an additional integration to obtain #efunctions.
We can writeA,,, with m as defined above, as
n even

A, — [Tx=:
n odd

DO rrL D2
where we definé),%z(D—xk)(D—a}k) andz,=is; = iqip.
Also, 7, is the complex conjugate af;, o, is a real number,
andD, is the operator associated with the ragt= 0 for n
odd.

Direct application of individual invers®; on a linear
function gives

D, 2(cr +d)

(32)

for
(33)
for

= A} cos sr

! 5 (cr +d).
s7

+ By sin sgr + — (34)

we obtain a linear functiom(r)*. The general solution of
the system of equations become

a(r) = 3-(r)
where
@(r)
at = | =01,
e

andg;(r) is as defined in (27). The constants and B; that
appear in (35) can be established from bound conditions at
the frontiers of the subintervals given by (9) and (12) and the
recurrence established in the original set of equations.

5. Comments

A general solution of the set of DDE'’s for the original CSM
has been discussed here. It requires the roots of the polino-
mial expresion for the inverse determinahf;! which are
black imaginary numbers of the forms;p with s; a real
number. One of the advantages of this method in the CSM
is that it allows us to choose the site of the sticky potential,
not only atL. = o/n for a few values of:: the solution is
valid for anyn. Furthermore, it allows to change the sticky
potential site to positions close (or further) to the center of the
particle. For example in the case= 3 the step of disconti-
nuity AL?/12 can be defined &t = o /3 or atL = 20/3.

The symmetry of the MDSO comes from the symmetry in
the original set of differential equations. This fact is a partic-
ular characteristic of the model that enables us to set the well
atr = mo/n(m < n), to obtain different molecular struc-
tures [20] by locating the stepL?/12 in the site of sticky.
This term will represents a step discontinuity in the solution
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at the position, = mo /n. With this in mind one can think, off and only the inverse (integral) part & ! is applied on
also, the posibility of two or more sticky square wells insidethe right hand side of the equations (26). It is possible that
the spheric shell adding step discontinuities at the sites afising some auxiliary function, this technique could be ap-
wells: it only requires to modify the border conditions in the plied to another set of DDEs that does not have “positive”
adequate sites (see Egs. (9)). This fact is applied by O. Pizi@nd “negative” delay together, such as the time delay models.
based in a solution restricted 493 < L < o/2 values [24],
to solve the restricted primitive model of electrolytes [25].

The CSM has a set of symmetrical DDEs with “positive”
and “negative” delays respect to With this property the
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V1.

.. Originally represents a population whose individuals need a 7.

certain time to reach sexual madurity and was proposed by
Maynard Smith [5].

It will be detailed in next section.

From [15] D = 1, so thata— = b_ = 0. This does not imply 8.
changes in the results. We asume this fact in the rest of paper. 9.

The application of inverse shifting operators is the identity: 10.
EEf(@) =E fla+s) = flw+s5—3) = f(a). "

. This fact allows us to establish the same set of constants for the

harmonic part of the solution. 12

The first and last equations always have one term less, due t?3
the condition of PYAg(r) = 0 out of [0o].
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