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In modeling automatic engines, like in physiological or biological systems or ecology dynamics, oftently is necessary to include delay effects
in the equations. This effect is related to reaction or transfer times and can be extended to the spatial case, for example, in cases such as
the influence in local green biomass density due to dispersal of seeds. Spatial delay effects are present in liquid mixtures models such as
the Cummings-Stell model (CSM) for associating molecules: in a series of publications they solve, for particular cases, an equation with
spatial delay that must be satisfied by an auxiliary (Baxter’s) function. In this paper, we present an analytical and general solution of the first
order Delay-Differential Equation (or Differential-Difference Equation) DDE, for the auxiliary Baxter’s function that appears in the CSM.
A n-partition of the domain leaves a set of DDE’s defined in the subintervals. We use recursive properties of these auxiliary functions and a
matrix composed by differential and shift operators (MDSO) in order to obtain the solution of the original problem with an arbitrary value
of n. The problem of solving spatial DDE’s is common to other models of associative fluids, such as homogeneous and inhomogeneous
mixtures of sticky shielded hard spheres, or models of chemical ion association and dipolar dumbbells and polymers. In all the cases the
location of the potential,L = mσ/n, has different physical effects.

Keywords: Delay-differential equations; molecular association; biological.

En la modelacíon de ḿaquinas autoḿaticas, sistemas fisiológicos o bioĺogicos, aśı como en dińamica de ecosistemas se hace necesario,
muchas veces, incluir una corrección en las ecuaciones diferenciales correspondientes. Esta corrección consiste en la inclusión de un tiempo
de “retraso” que está relacionado con tiempos de reacción o de transferencia, la cual puede hacerse para el caso espacial también. Por
ejemplo, en el caso en el que la densidad de biomasa vegetal local se ve afectada por la dispersión de semilla en otro sitio. En otros modelos
se ha incluido un “retraso” espacial como es el caso del modelo de moléculas reactivas de Cummings y Stell (CSM): en una serie de artı́culos
ellos resuelven, para casos particulares, una ecuación con corri- miento (o “retraso”) espacial que debe ser satisfecha por la función auxiliar
de Baxter. En este trabajo presentamos una solución general y analı́tica para la ecuación diferencial con corrimiento (Delay Differential
Equation) de la función auxiliar de Baxter que aparece en el CSM. Una partición de tamãnon del intervalo de inteŕes lleva a la formulación
de un sistema de ecuaciones diferenciales (DDE) definidas en los subintervalos. Usando propiedades recursivas y una matriz de operadores
diferenciales y de “corrimiento” (MDSO) se obtiene una solución anaĺıtica del problema original paran arbitrario. El problema es coḿun
a otros modelos de fluidos reactivos tales como mezclas homogéneas e inhomogéneas de esferas duras con potencial interno de pegado. Lo
mismo para asociación iónica, mancuernas dipolares y polı́meros. En todos los casos el sitio del potencial de pegado,L = mσ/n, ocasiona
diferentes efectos fı́sicos.

Descriptores: Ecuaciones diferenciales con retardo; asociación molecular; bioloǵıa.

PACS: 02.30.Ks; 61.20.Qg; 61.25.Em; 82.30.Nr

1. Introduction

In modeling automatic engines, phisiological or biological
systems (such as human respiration [1], the dynamics of
HIV [2], ecology dynamics [3] or another nonlinear sys-
tems [4]) it is often necessary, in order to obtain realistic
models involving feedback, to include delay effects such as
a reaction time. In 1994 Cooke and Turi published a discus-
sion on stability of a set of delay equations to model patterns
of ventilation in human respiration [1]:

dx̃

dt
= p− (x̃(t)− xI)αW (x̃(t− τ), ỹ(t− τ))

dỹ

dt
= −σ + (yI − ỹ(t))βW (x̃(t− τ), ỹ(t− τ)).

In these equations̃x andỹ denote arterial concentrations
of CO2 and O2 respectively,W is the ventilation function
(volume of gas moved by the respiratory system) andτ > 0
is the transport delay. The quantitiesxI andyI are the in-
spirated concentrations of CO2 and O2 respectively,p is the
CO2 production rate andσ the O2 consumption rate.α and
β are positive constants referring to the diffusibility of CO2

and O2 respectively.

In nonlinear models of human inmunodeficiency virus
(HIV) infection where an intracellular delay is included,
more accurated representations of the biological data are ob-
tained [2]. In ecosystems, the growth rate of species pop-
ulation will not respond immediately to changes in its own
population, rather it will do so after a time lag. The effects
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of overgrazing may depend not so much on the actual her-
bivore population, but on an average reaching back into the
past over a time roughly equal to the characteristic regenera-
tion time for the vegetation [3]. As an example a prototype
model that considers a single species with growth rater and
a maximum sustainable populationK of herbivores grazing
over vegetation with recovery timeτ , modifies the original
logistic equation [5] as

dN(t)
dt

= rN(t)
[
1− N(t− τ)

K

]
.

This equation can be rewrote in a discrete form known as
thedelayed logistic modeli

nt+1 = rnt(1− nt−1), (1)

so that the original behavior of the solutions of the discrete
logistic model (nontrivial stable fixed points for1 < r < 3,
and bifurcations forr > 3) changes to a stable fixed point
for r < 2 and a stablelimit cyclefor r > 2 [6].

In Refs. 4, 1, 7, and 8 the parameterτ defines regions,
in such way that the original domain must be partitioned and
the local solutions joined over all the frontiers of the subin-
tervals. In each one, the solution depends on the new form
of the equation due to the solution in the previous interval.
Same arguments can be applied to spatial delay models. As
an example, consider the equation

dq(r)
dr

= q(r − L) (2)

whose solution, ifL = 0, is obvious. The solution in the
first interval[0, L) depends on the values ofq(r) in [−L, 0).
This posibility of delay in differential equations models was
an indirect result of the application of Baxter’s technique in
classical theory of liquids. In this work we focus our atention
on a problem related with classical theory of liquids and we
obtain an exact solution for a particular type of DDE.

2. The CSM of association: hard spheres with
shielded sticky interaction

In 1984 Cummings and Stell [9] proposed a simplified hamil-
tonian model for a reactive system of two types of homo-
geneus fluids with the same density and diameterii. In this
model, two type of moleculesA andB, can be associated by
means of a selective square interaction that, in the appropi-
ate limits, can be reduced to a sticky Baxter’s potential [10]
located inside the hard core at a distanceL = σ/n from the
center of the particle (see Fig. 1 and Eqs. (8)). This model re-
quires the explicit form of the auxiliary Baxter’s function and
this function must satisfy spatial Delay-Differential Equa-
tions (see Eqs. (8)) in this case related to interactions between
different chemical species in the system.

The total and direct correlation functions are related by
the Ornstein-Zernike (OZ) equation that, for this binary mix-
ture, can be written as [11]

hij(r)=cij(r)+
∑

k=A,B

ρk,0

∫
cik(s)h

kj
(|r − s|)ds (3)

where the integral is evaluated in the whole space,s = ‖s‖,
i, j = A orB andρk,0 is the numeric density of particles with
speciesk. In the CSM both densities are considered equal.

The CSM [7] for chemical reactions represents the asso-
ciation of two speciesA+B À AB. The potential proposed
in the CSM consists of a hard sphere repulsion between like
species (A − A or B − B) and a mound of widthσ with a
deep, narrow and attractive square well, with widthw and
centred onL. HereL < σ/2 andL + w/2 6 σ/2 for AB
interactions:

φAB/kB =





ε1 if 0 < r < L− w/2
−ε2 if L− w/2 < r < L + w/2
ε1 if L + w/2 < r < σ

0 if r > σ

(4)

The geometric consideration of this model forAB interac-
tions ensures steric saturation in the system (there is no for-
mation ofn-mers forn > 3) due to overlapping. In addition,
this model has an analytical solution in the Percus-Yevick
approximation (PYA), mapping the square well onto an in-
finitely deep and stretch well like the Baxter sticky poten-
tial [10]. The connection between the Baxter’s original po-
tential and this model, is obtained by comparing the second
virial coefficients by considering the limitε1 →∞, ε2 →∞,
w → 0. The limitsε2 → ∞ andw → 0 are taken to main-
tain tractable the problem in the PY approximation [10]. The
limit ε1 → ∞ (in the repulsive part: see Fig. 1) has a little
effect on the results and simplifies the solution [12].

Briefly reviewing the formulation of the CS model, we
need the factorized form of the Ornstein-Zernike (OZ) [13]
Eqs. (3) with the PY closures

hAA(r) = hBB(r) = −1, r < σ

cAA(r) = cBB(r) = 0, r > σ

}
(5)

and, in the considered limits

hAB(r) = −1 + λL
12 δ(r − L), r < σ

cAB(r) = 0, r > σ.

}
(6)

Given the conditions of the problem, the factorized OZ equa-
tions are written as [14,9,12,15]

rh11(r) = −q′11(r) + 2πρ

σ∫

0

dt(r − t)

× [q11(t)h11(|r − t|) + q12(t)h12(|r − t|)]

rh12(r) = −q′12(r) + 2πρ

σ∫

0

dt(r − t)

× [q11(t)h12(|r − t|) + q12(t)h11(|r − t|)] . (7)
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where we changed the index ofhAA andhAB to h11 andh12

respectively. Same for all functions.
Substituting the closure relations (5) and (6) in the set of

OZ Eqs. (7), the following system of difference-differential
equations (DDE) for the auxiliary Baxter’s functionsqij(r)
is obtained:

q′11(r) + p[q12(r + L)− q12(r − L)]

= (a11 + Da12)r + b11 + Db12

q′12(r) + p[q11(r + L)− q11(r − L)] = (Da11 + a12)r

+ Db11 + b12 − λL2

12
δ(r − L), (8)

wherep = πρλL2/6 and

aij = δij − 2πρ

σ∫

0

qij(t)dt bij = 2πρ

σ∫

0

tqij(t)dt

fulfilling the boundary conditions

q11(σ) = q12(σ) = 0

q12(L−) = q12(L+) +
λL2

12
. (9)

After integration, a step discontinuity appears atr = L for
the auxiliary functionq12(r) due to delta in the term associ-
ated with the well.

The casesL = σ/n for n = 2, 3, 4 for the Baxter’s func-
tion have been solved in 9, 12 y 15 using the same formalism
and, at [16], the results were applied for a pair of reactive flu-
ids and a solvent. Lee and Rasaiah solved theL = σ/4 and
L = σ/5 cases and proposed a solution forL = σ/n in a sys-
tem with chemical association and dipolar dumbbells [17].

The model of Lee and Rasaiah of association in elec-
trolytesA+ + B− À AB is studied in Ref. 18. In this case
the authors add a selective coulombian interaction,±e2/r,
out of core, to the original CSM model (see in Fig. 1 the
dashed lines atr > σ).

The sticky site inside the hard core incorporates geomet-
rical conditions of steric saturation in the molecule. This
idea is shown, using computational simulations in different
ensembles, in Ref. 19. For different bounding length param-
eters the system allows dimers formation for smallL, chains
for slightly largerL values and vulcanization of species for
bounding length values close to the diameterσ of particles.
Huerta and Naumis studied the connectivity of a binary mix-
ture using a selective superposition of hard sphere potential
with an associating term [20]:

Uij(r) = Uhd
ij (r) + (1− δij)Uas(r)

where

Uhd
ii (r) =

{ ∞, r < 1
0, r > 1

Uhd
ij (r) =




∞, r < L− 0.5 w
D, L− 0.5 w < r < 1
0, r > 1

FIGURE 1. The image shows the basic form of the potential, in-
cluding a coulombian part (dashed curves “AA” and “AB”). Below
are shown structural effects for differentL values (dimers for small
values ofL, strings for middle values, and clusters for high values
of L, near ofσ, in according to [20].

and

Uas(r) =





0, r < L− 0.5 w
−εas−D, L− 0.5w < r < l + 0.5 w

0, r > L + 0.5 w,

whereL is the bounding distance,w the intracore square well
width andi, j represents the species in the mixture. The final
potential (see Fig. 1) is equivalent to the original Cummings-
Stell in the adecuate limits for sticky approximation. This
idea is implemented by Pizio and Blum [21] for a hard-sphere
fluid with dimerizationA + A ­ A2.

Most of the models maintainL as a parameter (bound-
ing distance) but, at the end, they take the caseL = σ/2,
although other possibilities have the analytical solution for
arbitraryL. Kalyuzhnyi and Stell [22] present a recount of
cases with different ranges of the locationL. As we men-
tioned above, the sticky potential into the hard sphere shell
produces a step discontinuity in the Baxter’s auxiliary func-
tions. This allows us to think in systems with more than one
sticky site inside the shell or, even, a distribution of sticky
wells.

The vertical dashed arrows shows the Baxter’s sticky
limit [9]. The molecular diameter isσ and the dashed curves
(with labels “AA” and “AB”) correspond to selective coulom-
bian attractive and repulsive interaction for an electrolyte
with A andB ions [18].

In the following sections, we develop the matrix of differ-
ential and shift operators MDSO, and its inverse, for the sim-
plest casen = 2, followed by an inversion of the MDSO’s for
a very general case that corresponds to the set ofn DDE’s, to
n subintervals of [0,σ] and for a sticky locationL = mσ/n.

Rev. Mex. F́ıs. 57 (2) (2011) 117–124
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3. The MDSO

In the first work of Cummings and Stell [9] a new pair of
functions were used and defined as the sum

q+(r) = q11(r) + q12(r)

and difference

q−(r) = q11(r)− q12(r)

of the originalsq11(r) andq12(r). The advantage of this trick
is to obtain two uncoupled equations, one forq+(r) and an-
other forq−(r) which can be solved in a separate way. With
this definition and adding and substracting Eqs. (8),

q′+(r) + p[q+(r + L)− q+(r − L)]

= a+r + b+ − λL2

12
δ(r − L) (10)

and

q′−(r)− p[q−(r + L)− q−(r − L)]

= a−r + b− +
λL2

12
δ(r − L), (11)

with the obvious definitionsiii

a± = (1±D)


1− 2πρ

σ∫

0

dtq±(t)




and

b± = (1±D)2πρ

σ∫

0

dttq±(t).

The last term in (10) and (11) can be neglected since it is
equal to zero in all subintervals except wherer = L = σ/n.
This condition is fixed in the boundary conditions (9). In
the rest of subintervals, for the general case, must imply
that [9,17]

q(mσ/n−)=q(mσ/n+), for m=2, 3, . . ., n− 1. (12)

We use, from here,q(r) ≡ q11(r) + q12(r). The aim
of this proposal is to find an analytical form of the function
q(r) assuming that: i) the solution must be obtained in subin-
tervals [23], ii) this implies thatq(r) will be defined also in
subintervals, and iii) the original functionsqij(r) can be re-
covered with the relations

q11(r) =
q+(r) + q−(r)

2
and

q12(r) =
q+(r)− q−(r)

2
.

Identical procedure shows that it is sufficient to replace
λ→−λ, p → −p, ν → −ν to obtainq−(r).

The cases shown in Refs. 9, 12, 15, and 17 are solved here
by using MDSO. For convenience we show the caseL = σ/2
of the CSM [9] in detail, and the casesL = σ/3 andL = σ/4
summarized.

3.1. The casen = 2

The first case yields to a system of two coupled differen-
tial equations associated with the two subintervals defined by
L = σ/2,

dq1(r)
dr

+pq2(r+σ/2)=ar+b, for 0 < r < σ/2 (13)

and

dq2(r)
dr

− pq1(r − σ/2) = ar + b,

for σ/2 < r < σ. (14)

where, evidently,q1 corresponds to the first half of the in-
terval andq2 to the second one. We define the differential
operatorD as

Df(x) ≡ df(x)
dx

and the shift operatorEs by E±sf(x) ≡ f(x ± s). With
this operators defined, the set of Eqs. (13) and (14) can be
rewritten as

Dq1(r) + pEσ/2q2(r) = ar + b

and

Dq2(r)− pE−σ/2q1(r) = ar + b

or, in matricial form, as

( D pEσ/2

−pE−σ/2 D
) (

q1(r)
q2(r)

)
=

(
f1(r)
f2(r)

)
. (15)

These equations can be reduced to a symbolic form

M2q(r) = f(r) (16)

whereM2 is the matrix of differential and shift operators, or
MDSO, that appears in (15), applied to the vectorq of func-
tionsqi(r). The right side is the vectorf of functionsfi(r)
that, in this case, are linear functions ofr. The index inM,
corresponds to the number of equations (or partitions in the
interval of solution).

The main idea of this paper is to find a solution for the
system represented in (16) as

q(r) = M−1
2 f(r).

This implies the knowledge of an explicit analytical form of
the inverse ofM2, and how it operates onf(r). One way of
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defining the inverse of the differential operatorD is by using
the equation

y′(x)± ay(x) = f(x) (17)

or

(D ± a)y(x) = f(x)

whose solution leads us to define the inverse operator
(D ± a)−1 as

(D ± a)−1f(x) ≡ Ce∓ax + e∓ax

∫
e±ax′f(x′)dx′. (18)

In the previous expression, the case fora = 0 implies that the
inverse MDSO is reduced to the trivial definition of inverse
differential operator as an integral operator. The case where
a is a complex number (or imaginary) implies harmonic so-
lutions [7] and Fourier transform of the right hand side of
differential equation.

Continuing with the caseL = σ/2, the inverse ofM2 is

M−1
2 =

1
∆2

( D −pE−σ/2

pEσ/2 D
)
≡ 1

∆2
M̌2 (19)

where the commutation properties of the operatorsD andE
were used. Direct calculation gives the determinant-operator
of M−1

2 asiv

∆2 ≡ D2 + p2 = (D + ip)(D − ip), (20)

so that (19) and (20) define completely the inverse determi-
nant-operator ofM2 as the product of two inverse operators
of the form of (18):

1
∆2

= ∆−1
2 =

1
D + ip

1
D − ip

. (21)

This is the formal inverse determinant of the MDSO,
however we still need to find the appropiate coefficients to
satisfy the boundary conditions. So that, the direct applica-
tion of the inverse MDSO, (19), on (13) and (14) gives

q1(r) = A cos pr + B sin pr − a

p
r +

a

p2
(1− ν/2)− b

p

q2(r) = C cos pr + D sin pr +
a

p
r +

a

p2
(1− ν/2) +

b

p

with ν ≡ pσ. Now, considering (9) and the fact that (14)
must be satisfied we obtain5,

q1(r) = A cos pr + B sin pr − a

p
r +

a

p2
(1− ν/2)− b

p

q2(r) = A sin p(r − σ/2) + B cos p(r − σ/2)

+
a

p
r +

a

p2
(1− ν/2) +

b

p
, (22)

which agree with the results in Ref. 9. The second equation
has the same set of constants that the first one and the har-
monic functions have been interchanged and their arguments
shifted by−σ/2.

3.2. The casen > 2

In the caseL = σ/3 there are three equationsvi associated
with three subintervals of lengthσ/3:

dq1(r)
dr

+ pq2(r + σ/3) = ar + b, for 0 < r < σ/3

dq2(r)
dr

+ pq3(r + σ/3)− pq1(r − σ/3) = ar + b,

for σ/3 < r < 2σ/3

dq3(r)
dr

− pq2(r − σ/3) = ar + b,

for 2σ/3 < r < σ (23)

with the MDSO given as

M3 =




D pEσ/3 0
−pE−σ/3 D pEσ/3

0 −pE−σ/3 D




and the inverse operator ofM3

M−1
3 =

1
D(D2 + 2p2)

×



D2 + p2 −pDEσ/3 p2E2σ/3

pDE−σ/3 D2 −pDEσ/3

p2E−2σ/3 pDE−σ/3 D2 + p2




where

1
∆3

=
1

D(D2 + 2p2)

=
1

(D − 0)
1

(D + i
√

2p)
1

(D − i
√

2p)

andvii

M̌3 =




D2 + p2 −pDEσ/3 p2E2σ/3

pDE−σ/3 D2 −pDEσ/3

p2E−2σ/3 pDE−σ/3 D2 + p2


 . (24)

Obviously1/∆3 is a inverse product of operators in the
form of (18). Applying these to the right hand side of (23)
we obtain,

q1(r) = A1 cos
√

2pr + B1 sin
√

2pr +
a

2
r2

− a

2p
(1− 2ν/3)r + br + F1

q2(r) = A2 cos
√

2pr + B2 sin
√

2pr + F2

q3(r) = A3 cos
√

2pr + B3 sin
√

2pr +
a

2
r2

+
a

2p
(1− 2ν/3)r + br + F3
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and, imposing bound conditions in the respective subintervals
and the fact that (23) must be satisfied (as in (22) forn = 2),
we obtainA2, A3, B2 andB3 in terms ofA1 andB1

q1(r) = A1 cos
√

2pr + B1 sin
√

2pr

+
a

2
r2 − a

2p
(1− 2ν/3)r + br

q2(r) =
√

2A1 sin
√

2p(r − σ/3)

+
√

2B1 cos
√

2p(r − σ/3)

q3(r) = −A1 cos
√

2p(r − 2σ/3)−B1 sin
√

2p(r − 2σ/3)

+
a

2
r2 +

a

2p
(1− 2ν/3)r + br. (25)

The caseL = σ/4 has a tridiagonal matrixM4, whose de-
terminant∆4 = D4 + 3D2p2 + p4 has roots

±i

√
5− 1
2

p

and

±i

√
5 + 1
2

p

so that

∆4 =

[
D + i

√
5− 1
2

p

] [
D − i

√
5− 1
2

p

]

×
[
D + i

√
5 + 1
2

p

][
D − i

√
5 + 1
2

p

]
.

Lee and Rasaiah, in Ref. 17, called these roots

x =
√

5− 1
2

and

y =
√

5 + 1
2

,

and correspond to theαk ’s defined below.
The casen = 5 or L = σ/5 has a determinant

∆5=D5+4D3p2+3Dp4 whose roots are 0,±ip, ±i
√

3p,
and the solutions have the same structure as (22) and (25),
and those in Refs. 9, 12, 15, and 16.

4. The general MDSO

4.1. The matrix

Computing the same construction forn divisions in the so-
lution interval for a givenL = σ/n, we obtainn functions
qi that represent a continuous solution. Each of them must
fulfill

q′i(r) + p[qi+1(r + σ/n)− qi−1(r − σ/n)] = ar + b,

for
i− 1

n
σ < r <

i

n
σ (26)

wherei = 1, 2, 3 . . . , n andq0 = qn+1 = 0, in which

qi(r) =

{
q(r), i−1

n σ < r < i
nσ

0, otherwise.
(27)

The generalized MDSO for arbitraryn has a tridiagonal form

(Mn)ij =





D for i = j
pEσ/n for i = j − 1

−pE−σ/n for i = j + 1
0 oherwise

(28)

or, in matrix form

Mn =




D pEs 0 0 . . . 0
−pE−s D pEs 0 . . . 0

0 −pE−s D pEs . . . 0
0 0 . . . . . . pEs 0

. . . . . . . . . −pE−s D pEs

0 0 0 0 −pE−s D




(29)

Due to symmetry ofMn the shift operators are mutually
canceled in the inverse of∆n. This fact enables us to write
all solutionsqi(r) in terms of inverse differential operators of
the form (18) and (21).

4.2. The determinant inverse operator

From the tridiagonal matrix obtained, (29), the determinants
for different values ofn can be evaluated:

∆0 ≡ 1

∆1 = D
∆2 = D2 + p2

∆3 = D3 + 2Dp2

∆4 = D4 + 3D2p2 + p4
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∆5 = D5 + 4D3p2 + 3Dp4

∆6 = D6 + 5D4p2 + 6D2p4 + p6

. . .

∆14 = D14 + 13D12p2 + 66D10p4 + 165D8p6

+ 210D6p8 + 126D4p10 + 28D2p12 + p14

∆15 = D15 + 14D13p2 + 78D11p4 + 220D9p6

+ 330D7p8 + 252D5p10 + 84D3p12 + 8Dp14

. . .

It is easy to prove that the recurrence relation between MDSO
determinants of different order is, forn > 2,

∆n = D∆n−1 + p2∆n−2 (30)

where∆1 ≡ D and∆0 ≡ 1. The index of∆n corresponds
to the MDSO order. From this recurrence relation we obtain
the general expression for∆n

∆n = Dn +
m∑

j=1

Dn−2jp2j

j!

2j−1∏

k=j

(n− k)

=
m∑

j=0

Dn−2jp2j

j!
(n− j)!
(n− 2j)!

which, finally, can be reduced to

∆n =
m∑

j=0

(
n− j

j

)
Dn−2jp2j (31)

where additionally, in terms of the imaginary roots of (31),

∆n =
n∏

k=1

(D − xk). (32)

In these expressionsm =bn/2c is the integer part ofn/2.
In (32) we have written∆n in factorized polynomial form.
Herexk are all then roots of∆n which are all pure imagi-
nary and proportional top. Whenn is even there are exactly
m = n/2 pairs of complex conjugated rootsviii ±iαkp and,
if n is odd, there is an additional null root of∆n, which re-
quires an additional integration to obtain theqi functions.

We can write∆n, with m as defined above, as

∆n =

{ ∏m
k=1D2

k for n even

D0

∏m
k=1D2

k for n odd
(33)

where we defineD2
k≡(D−xk)(D−x̃k) andxk≡isk ≡ iαkp.

Also, x̃k is the complex conjugate ofxk, αk is a real number,
andD0 is the operator associated with the rootx0 = 0 for n
odd.

Direct application of individual inverseD2
k on a linear

function gives

D−2
k (cr + d) = Ak cos skr

+ Bk sin skr +
1
s2

k

(cr + d). (34)

Same as before,sk is defined by mean ofxk ≡ isk ≡ iαkp
andD−2

k ≡ (D2
k)−1. In the general case, an even partitionn

of the interval [0, σ] results in

D−2
1 D−2

2 . . .D−2
m (cr + d) =

m∑

k=1

[Ak cos skr + Bk sin skr]

+
1∏m

k=1 s2
k

(cr + d). (35)

In both cases (34) and (35) is obvious that in the homogeneus
case the solution is an oscilatory one, as shown in Ref. 7.

It is easy to see that if we define the vectorial funcion
v(r), using the definition in (19) or (24), as the application of
M̌n to the vectorf(r),

v(r) = M̌nf(r),

we obtain a linear functionv(r)ix. The general solution of
the system of equations become

q(r) =
1

∆n
v(r)

where

q(r) ≡




q1(r)
q2(r)
. . .

qn(r)


 ,

andqi(r) is as defined in (27). The constantsAi andBi that
appear in (35) can be established from bound conditions at
the frontiers of the subintervals given by (9) and (12) and the
recurrence established in the original set of equations.

5. Comments

A general solution of the set of DDE’s for the original CSM
has been discussed here. It requires the roots of the polino-
mial expresion for the inverse determinant∆−1

n which are
black imaginary numbers of the formiskp with sk a real
number. One of the advantages of this method in the CSM
is that it allows us to choose the site of the sticky potential,
not only atL = σ/n for a few values ofn: the solution is
valid for anyn. Furthermore, it allows to change the sticky
potential site to positions close (or further) to the center of the
particle. For example in the casen = 3 the step of disconti-
nuity λL2/12 can be defined atL = σ/3 or atL = 2σ/3.

The symmetry of the MDSO comes from the symmetry in
the original set of differential equations. This fact is a partic-
ular characteristic of the model that enables us to set the well
at r = mσ/n(m < n), to obtain different molecular struc-
tures [20] by locating the stepλL2/12 in the site of sticky.
This term will represents a step discontinuity in the solution
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at the positionL = mσ/n. With this in mind one can think,
also, the posibility of two or more sticky square wells inside
the spheric shell adding step discontinuities at the sites of
wells: it only requires to modify the border conditions in the
adequate sites (see Eqs. (9)). This fact is applied by O. Pizio,
based in a solution restricted toσ/3 6 L 6 σ/2 values [24],
to solve the restricted primitive model of electrolytes [25].

The CSM has a set of symmetrical DDEs with “positive”
and “negative” delays respect tor. With this property the
shifting in the inverse determinant of the MDSO is carried

off and only the inverse (integral) part of∆−1
n is applied on

the right hand side of the equations (26). It is possible that
using some auxiliary function, this technique could be ap-
plied to another set of DDEs that does not have “positive”
and “negative” delay together, such as the time delay models.
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i. Originally represents a population whose individuals need a
certain time to reach sexual madurity and was proposed by
Maynard Smith [5].

ii. It will be detailed in next section.

iii. From [15]D = 1, so thata− = b− = 0. This does not imply
changes in the results. We asume this fact in the rest of paper.

iv. The application of inverse shifting operators is the identity:
EsE−sf(x) = Esf(x + s) = f(x + s− s) = f(x).

v. This fact allows us to establish the same set of constants for the
harmonic part of the solution.

vi. The first and last equations always have one term less, due to
the condition of PYA,q(r) = 0 out of [0,σ].

vii. With this we are definingM−1
n = 1

∆n
M̌n.

viii. This was proved forn = 1, 2, . . . , 26.

ix. The harmonic part comes from the inverse determinant.
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7. G.M. Mungúıa-Gámez and M.G. Garcı́a-Alvarado,Memorias
de la XVII Semana Regional de Nivel Superior Investigación
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