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We examine quark flavour mixing matrices for three and four generations using the recursive parametrizationasfd.SU (n) matrices
developed earlier. After a brief summary of the recursive parametrization, we obtain expressions for the independent rephasing invariants
and also the constraints on them that arise from the requirement of mod symmetry of the flavour mixing matrix.
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Las matrices de mezcla de sabor de quarks para tres y cuatro generaciones son examinadas usando la pamas@irseaide las matrices

U(n)y SU(n) desarrolladas con anterioridad. Despues de un breve resumen de la pararetrezagisiva, se obtienen las expresiones

para los invariantes independientes de un cambio de fase y las restricciones sobre estos que se producen del requerimiento de que la matriz
de mezcla de sabor sea modulo &trica.

Descriptores: Matriz de mezcla de quarks; parametrizaciecursiva.

PACS: 12.15.-y; 12.15.Ff; 12.15.Hh; 14.65.Jk

1. Introduction In Sec. 2, rephasing invariants fomax n unitary ma-
trices are defined. In addition, relations between plaquettes
for the particular cases = 3 and 4 are given. In Sec. 3,
It has been over thirty-five years since the first explicitrecursive parametrization [15,16] for thex n case is given
parametrization for the six-quark case was given in Ref. Xogether with that fon = 2, 3, and 4. Rephasing invariants
for the so-called Cabibbo-Kobayashi-Maskawa (CKM) ma-in the recursive parametrization are presented in Sec. 4. A
trix. Since then many different parametrization have beemmoduli symmetric unitary matrix has fewer parameters and
suggested [2-14] Still there is no deep understanding of the the results fom = 3 and 4 are given in Sec. 5. In Sec. 6
observed quark mixing. the standard PDG parametrization [17] is obtained using the

L . ) . recursive approach. The conclusions are presented in Sec. 7.
Study of flavor mixing in weak interactions provides a

low energy window for new physics. Currently, experiments

are underway at Belle and BaBar to check the “unitarity tri-2 Rephasing invariants OfU(n) matrices

angle” for the3 x 3 flavor mixing matrix, as accurately as

possible. If there is a significant deviation then it would be aWe begin by recalling some known facts about the group
signal for the existence of more than three generations. FulZ (n) of nxn unitary matriced” = (V),x, (4,k=1,...,n).
thermore, thes x 3 CKM mixing matrix contains only one This group is of real dimension?, i.e., we need»? real in-
CP-violating phase thus implying that CP-violations in differ- dependent parameters or coordinates to label the elements of
ent processes are related. Again, the violation of any one df. Of these, some may be taken to be of the modulus type
these relations would be a signal for more generations. Corand the rest to be of the phase type. The number of inde-
sequently, in this paper we study some general properties gfendent modulus type parameters, chosen from out of all the
a4 x 4 flavor mixing matrix. Such a matrix in general has six n? moduli |V} is n(n — 1)/2. The number of independent
angles and three phases. However, a moduli symmétrid phase type parameters chosen from out of alkth@hases
unitary matrix has fewer parameters. We study such a matrixrg(V;y), isn(n+1)/2. The reduction fromm? ton(n—1)/2

in detail and present parametrizations which would be usefuindn(n + 1)/2 in the two cases respectively is the result of
for confrontation with experiments in the future. the unitarity conditions on the matrix elemerits,. The re-
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cursive parametrisation @f (n) taken from [15] and which U (n) remain rephasing invariant, while out of thén+1) /2
we describe in Sec. 3 makes it particularly easy to arrive aindependent phase type coordinates dmly- 1)(n — 2)/2
these numbers of independent parameters of each type.  survive as rephasing invariant.

The rephasing transformation is the multiplication of a

generalV € U(n) by independent diagonal matriceslofn) Ajokm = ViV Vem Vi, (5 < 4, k< m). 3)
on the left and on the right is expressed as:
e i 2(2
V V' = D(§")VD(0), 1) The number qf such Bls is cI_earIyL (@ — 1)/4 and
. each of them is rephasing invariant. It is from the phases
with arg(Ajeem) that we essentially pick up the expected number
D(0') = diag{e', ..., e} (n—1)(n—2)/2 of independent ones.
_ » » Simple algebra shows that aff (n—1)?/4 BI'sin Eq. (3)
and D(0) = diag{e™,... e }. (2)  can be expressed in terms of jiist— 1)? “elementary” BI's

Of course all the:? (non independent) modull;,.| are in-  of the form

variant under this transformation and so alsosifie — 1)/2

independent modulus parameters formed out of them (these ~ Qjk = Ajj+1kk+1 (LE=12,...n—-1), (4)

are essentially the Cabibbo angles). On the other hand, out

of the n(n + 1)/2 independent phase type parameters of@Part from modulus type factors. Therefore in searching for

U(n), only (n — 1)(n — 2)/2 suitably formed combinations independent rephasing invariants phases, as a first step we

are rephasing invariants (these are essentially the Kobayasiian limit ourselves to af@\ ;4 ), (n — 1)? in number.

Maskawa angles). These can be obtained in more than one To proceed further, the restrictions coming from the uni-

way, one of which is to use “plaquettes” or (the phase of)tarity of V have to be analysed. As shown in Ref. 15 this is

Bargmann invariants (BI’s), as outlined below. a somewhat intricate analysis and leads to the result that the
To avoid possible ambiguities, it is worth repeating thatindependent rephasing invariant phases are the phases of the

all the n(n — 1)/2 independent modulus type coordinates of (n—1)(n —2)/2 primitive Bl's Ay, for j < k < n—1. Thus
| one has the recursive reduction in numbers:

algebraic simplification
n2(n — 1)2/4 Bl's: Ajgkm. —
unitarity simplification

(n—1)? Elementary Bl's : Ajy. — (5)
n—1)(n—2)/2 Primitive Bl's: A, 7 <k <n-—1.
j

At the conclusion of this analysis then, the independent
(n—1)(n—2)/2 rephasing invariant phases are(axg;,) for .
J<k<n-1 Agy = —|Via*[Vaal” = A,

Forn = 3 andn = 4, the reductions and relations are Aoy = —|Vao|2[Vas|? — AL, 8)
explicitly given below.

Aoy = Voo P(|Vas|® — [Va2|*) + A1z
2.1. Relations between plaquettes fon = 3
(for ease in counting, we have used 4 modulus type param-
The number of independent modulus type invariant parameaters here; there is no conflict with the fact that there are
ters is 3 and of phase type is 1. Here there is only one primgnly three independent parameters of this type, as by uni-
itive, viz, Aiqs. Orthogonality of the rows of/ giveS the tanty |‘/'32| can be expresed in terms |@;f12| and|‘/22|)_

relations, Any other plaquetteg.g, Aia13, can be expressed as
Air = —[Visl?[Vissal? — Ao, 6) %\1‘1/&22/\1/122\27\1/22\2 and, using the relations above, as
137 Vas|® — Aqa.
Likewise the orthogonality of the columns gives, As is well known, these relations have the consequence
that the imaginary parts of all the plaquettes are the same, up
Avi = —|Vai2|Vaig1]? — A (7) to asign. Furthermore, if even ong;, sayVi;, vanishes,

then all the plaquettes become real. It is also evident that,
These are four inhomogeneous equations for four quantiimposing mod symmetry ofr, i.e., requiring|V;;| = |V}i],
tiesA11, A1, Ags, andA12. One of them is derivable from while reducing the number of independent modulus type in-
the other three leaving us with three equations which allowariants from three to two, has no effect on the number of
us to solve forA1, Agy, andAgs in terms ofAqs: independent phase type invariants.
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2.2. Relations between plaquettes fon = 4

In this case row and column orthogonality 6frespectively

yield:
Vis?[Vit1s 2 (An + Af) = =A% (A + Afy)
(i=1,2,3), Q)
[Vail*[Vait1]* (A1 + A%) A% (Agi + AZ)
(i=1,2,3), (10)

Viz?|Vig12*(Ass + AS) Aly(As + AY)
(i=1,2,3), (11)

Vail*[Vair1 |7 (Asi + A3) Ab(Ag; + AL
(1=1,2,3). (12)

Choosing Egs. (9) and (12) we have:

[Vis|?|Vas|*(Ar1 + A%y) = —Afy(Arz + Aly),
[Vas|?|Vas|?(Agy + Ady) = —ASy (Ao + Al),
[Vas|?|Vas|?(Asy + Aky) = =A%y (Agza + AL),
Va1 |*|Vazl*(Asg1 + A3)) = A5, (Agr + AT),
[Vao|*[Vas|* (Asz + A%y) = —A5y(Agy + Afy),
[Vas|*|Vaul*(Ass + Alg) = —A5s(Ass + Afg)  (13)

A*
Azy = —|Va1[*[Vaa|* — A}, <1 + = ) (18)

(Va1 |2 Vaz|?
A3 + [Vao|*|Vao|?

Agy = : 19

22 <1+ AQB ) ( )
|Vas[?|Vas|?

3. Recursive parametrization of U(n)

(SU(n)) matrices

Let U(n) denote the group of unitary matrices acting on all
n dimensions. Fom = 1,2,...,n — 1, we will denote by
U(m) the unitary group acting on the first dimensions,
leaving the dimensions: + 1, ..., n, unaffected. Then we
have the canonical subgroup chain
Ul)cU(@2)cC---CcUn—-1)cCU(n). (20)

General matrices o/ (n),U(n — 1),... will be written as
An, An—1, ..., respectively. In amatrid,, € U(m) the last
rows and columns are trivial, with ones along the diagonals
and zeros elsewhere (when no confusion is likely to arise,
A,,, will also denote an unbordered x m unitary matrix).

It was shown in Ref. 15 that (except for a set of measure
zero) any matrix4,, € U(n) can be expressed uniquely as
ann-fold product

x Ap—2(8) - Aa(7)A3(B) A2 () AL (x),  (21)

where A4,,(¢) is a specialU (n) element determined by an
n-component complex unit vectd}, A,,_1(n) is a special

(for ease in writing, here too we have used 8 modulus typé/(n — 1) element determined by an— 1-component com-

parameters, but using unitarity bofl,;| and|Vz4| can be

expressed in terms of the other 6).

plex unit vectory, and so on down tels(«) that is a special
U(2) element determined by a two-component complex unit

These six equations for the nine plaquettes allow us tovectora, andA; (x) is a phase factor belongingg(1). The

solve all of them in terms of the primitives which we choosecomplex unit vector§¢, n, . ..

to beA;s, A3, andAys. The relevant equations are:

AT
Ay ==V} |Vae]? — AL (1 4+ —2— 14
11 [Viz|*[Vag| 12( + ViaP[Vasl? (14)
Asz = —|Vas|?|Vaa|® — A3, 1+i (15)
|Va3|?|Vaa |?
A > ( Asg >
T+ —21 YAy — (14 —28 A

( Var [2[Vaof2 ) =% |Vas[2[Vis[2 ) =
= [Vaa|*(|Vaz|® — [Va1/?) (16)

A¥ AZ.

14 ——=2 | Ay — 1+2‘3>A‘
( |v22|2|v23|2> 2 ( [Vas2[Vas2 ) —°°
A*

— V 2V 2 1 23
| 32| | 33| ( + |‘/23|2|Vv33|2

) (17)

VP Vil (14 212
‘ 22‘ ‘ 32‘ ( + “/22‘2“/23‘2

}, appear as the last columns
of the (unbordered) matricgsd,, (¢), A,_1(n), ...} and can
be identified with the labels of the cosdt (n)/U(n — 1),
Un—1)/U(n—2),...}. Remembering th&¢, n, ...} are
complex unit vectors of dimensiods,n — 1, ...}, itis eas-
ily seen that the number of real independent parameters add
up ton? as they should.

The same considerations as above appl§lidn) matri-
ces as well. Denoting byl,,(¢) the corresponding matrices
in SU (n), except for a set of measure zero, ahy € SU(n)
can be decomposed as

The above construction fixes only the last column of the
unitary matrix.A4,,(¢) as¢, and one has a great deal of free-
dom in arranging the remaining — 1 columns leading to
many explicit forms for these matrices. In this work we con-
sider two explicit forms which correspond to those discussed
in Refs. 15 and 16 respectively.
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The explicit expressions for the nonzero matrix elementd,pf¢) considered in Ref. 15 are
An(€) = (a;x(¢)) € U(n);  jk=1,2,...,n.
ajj—1(C) = pj-1/pj;  J=2,3,....m
pr = 1= Gl — [Gral = = [Gal2 = IR + -+ (G

ajx(C) = —CiChv1/prprv1; j<k<n-—1 (23)
Thus, for instance, fon = 2, 3,4 we have:
A= (B0 24)
—Bsp1/or02  —B361/02 B
As(B)= o1/02 —B30B2/02 P2 |,

0 02 B3

o1=|1], o2 =G> + 5| (25)

—V371/p1p2 —V3v1/p2p3 —Vivi/ps M
p1/p2 —V3y2/P2ps —Viv2/p3 Yo

A = *
1) 0 p2/ps  —Vivs/ps s
0 0 P3 Y4

pi=ml,  p2= VI +2, ps=VImnl? + e+ sl (26)

The determinant of the matrices, (¢) turns out to b&—1)"~1¢; /|¢1| and hence the correspondifg/ (n) matrices can
be obtained by multiplying, for instance, the first column(byl)"~1¢; /|¢1]. Thus forn = 2, 3,4 we have

A2(a):< oo ) (27)

—B5/o2 —P361/02 B

As(B)=| Bi/o2 —P3B2/o2 B2 |, (28)
0 lop) B3

V5/p2 —Vivi/p2ps —Vivi/ps M

—Y{/p2 —3v2/p2p3 —Viv2/ps V2
A = : . 29
) 0 p2/ps —Nivs/ps s (29)

0 0 P3 V4
This parametrization assumes tljatis nonzero. As a result, in the extreme case wen (1,0,...,0), the matrixA4, (¢)

does not reduce to the identity matrix. A parametrization where this does happen and which corresponds to that given in Ref.
16 is given below:

An(€) = (a;r(€)) € U(n);  Jik=1,2,...,n.

ain(C)=¢; i=1,2,...,n.

a;j;i(€) = pj/pj-1;

7=12,...,n—1;

po =1;

pi= 1=l =1l — =G = gl + 1l

ak(€) = ~GiGi/(perpn): Gk k=120~ 1.

(30)

Note that we are using the same symbols as in the parametrization earlier though with different meanings.2F8r4, we

explicitly have:

Rev. Mex. .57 (2) (2011) 146-153



150 S. CHATURVEDI, V. GUPTA G.

Az (a) = < . o ) Do =

—afas /s

g1 0
A3(B) = | —Bip2/01 o2/01
—BiB3/or  —B3B3/0102
P1 0
A — _71:72/P1 52//)1
1) —vivs/p1 =378/ pip2

—Viva/pr —Vav4/p1p2

p1= Vel + s + [l

The determinant of the matrice$,(¢) is ¢,./|Ca|. We

SNCHEZ-COLON AND N. MUKUNDA

|z (31)

B
B2 ) ;o1 =0+ |Bs]2, o2 =03 (32)
B3

0 et
0 Y2 |
p3/p2 3 |7

—Y374/P2p3 V4

p2 = /|2 + [al?,  p3z = |l (33)

can convert the above matrices $&/ (n) matrices by mul- - N
() y bij = > aii(Qak
k=1

tiplying, say the(n — 1)-th column by’ /|(,.|. Thus, for

n = 2, 3,4, we have:

tafe) = (), (34
o1 0 B
As(B) = | —piB2/or  B5/o1 B2 |, (35)
—BiB3/or —B5/01 B3
p1 0 0 001
Ay(y)= —Yi2/p1 p2/p1 0 Y2 . (36)

—Yiv3/pr —5v3/pip2 vilp2 3
—Viva/p1 —3va/p1p2 —V3/P2 Ya

n

B Piﬂlifl kzzi;lazn(aijak" — ainag;).  (41)
e Write B,_; as
Bn-1=An-1(n)Cpn-2 (42)
with
Nj = Ojn—1- (43)

e Repeat the same procedure as above @jjth.

Given a matrix4,, € U(n), we can determine the pa-
rameters, the complex unit vectofg;, n, . ..} in a recursive The same procedure applies to the decomposition of

fashion through the following steps.
o Write A,, = (a;i) € U(n) as
An = An(Q)Bn-1, (37)
where( is the last column of4,,
¢ = ajn. (38)
e With A4,,(¢) thus determined, we have
Bu1 = Al (¢)An. (39)

The matrix elementgb;;), n —1 > i,5 > 1, of B,_1
in the first form [15] are given by

1
PiPi+1

bij =Y api(Qar; = —
k=1

n

X Z A (ki Qit1n — AknGit1;) (40)
k—it1

and in the second form [16] by

an SU(n) matrix. Thus, for instance, using the second
form [16], a matrixV’ € SU(3) can be decomposed as

V = A3(8)Az(a), (44)
where

pr="Viz, Po=Vaz, [3=Vss, (45)
and
= (Vo5 (ViaVaz — VigVag) + V35 (ViaVas — VizVag)] 7
VIVasl? + [Vas 2
(Va3Vag — VaaVas)

Qg = .
V[ Vas|? 4 |Vas)?

4. Rephasing invariants in the recursive
parametrization

(46)

Having shown how to parametrize a givin) (SU (n)) ma-

trix in terms of a sequence of complex unit vectf{sn, . . .}

of dimensions{n,n — 1,...}, we now examine how these
parameters transform under rephasing with the purpose of
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constructing rephasing invariants out of them. For simplic-n = 3,4 and discuss the transformation properties of the pa-
ity and without any loss of generality we will assume that therameters in both the forms [15,16] given above.

given matrixV” belongs taSU (n) and will consider the cases

—B505 /02 + B3 5107 o2
Bias /oo + B3 a0t [o2

V = A3(B8)Az(a) =

—o20]

Under rephasing by independent diagof&l(3) matri-
cesD(6) andD(6") where

D(Q) — diag(ei(91+92)7 ei(—91+92)7 6_27;02)
andD(¢) is similarly defined, we have
V = V' =D@)VD() = A3(8)Az(a’)  (48)

From the locations ofvy, as, 81, 83, andgs in Eq. (47) one
can easily deduce the transformation propertie8 ahdca:

. ’ . ’
a’l — 05161(202701702)7 a/2 — a261(7202701+02)7 (49)
/ i (67 -+05—20- / i(—07+605—20
61 = ﬁlez( 1102 Z)a /62 = 6267( L 2)7
/ i(—2605—26
By = Bae’(2027202), (50)

From these transformation properties it is evident that

(13 B35 85 B3) and hencerg (o o 57 53 Bs) is invariant un-
der rephasing.
Forn = 4, parametrizingD(0) as

D(Q)zdiag(ei(91+92+93),
ei(—01+02100) o =2i02+ibs o=3ifay  (57)
and similarly forD(6"), one finds that
V=A4(7)A3(B)
V'=D(0")VD(h)
=A4(v")As5(8") A2(a)
:D(G’)A4(’y)diag(ew3, 'z ¢i0s ¢=3i0s)
x A3(8) As(a)diag(e!®1 +i02 e=i01+if2 =202 1) (52)

A2 (a) —

— o~

The expressions foy’ can easily be read off:

A4 =y € (01165+65=305) Y = (=01 H05+05—305)
; ’ / st
’V(lg :,ylel(7292+937393)’ 74/1 _ 716732(93+303). (53)
|
O'1Ck§

V = A3(B8)A2(a) =

—Bi Bz /o1 — Bi0i /o
—Bi B30z /o1 + B /o1

In the first form [15], anySTU (3) can be written as

—B301 — B3fraz202 Br
5fa1/02 - 5;52042/02 B2

o202 B3

(47)

IA little algebra shows that
D) Aa()diag(e™™, ¢, 1%, e=20)
_ A4(7’)diag(ei(2aé+20é_293),
ei(—29;+9g+93)7 ei(—30é+93)’ 1),

(54)

so that the rest reduces to 8 (3) problem in & x 3 matrix
form

A3(8")Az(a') = diag (ei(26;+26§7203)’
ei(—20;+9é+03)7 ei(—30§+93)’ 1)
x As()Az(a)diag (ewl +il2 mib1+i0z e_2i92). (55)

We see that for theSU(4) problem to accompany
Egs. (53) we have,

o = (ry (30 —01=02—03)

0/2 - a26i(—39§—91+02+93)7 (56)
51 _ 516i(2«9;+29§72027293)’

ﬁé — 5261(726;+037262+03),

By = Pae!(T3h20t0), (57)

With the transformation properties ef, 3, and a at
hand, we can now systematically construct rephasing in-
variant quantities out of them as shown in Ref. 15. The
three independent invariants turn out to (ag o3 5735 5s),
(B2857574), and (816577 7573). The arguments of these
quantities furnish the three independent phase type invari-
ants for theSU(3) problem. Notice that the first of these
is the rephasing invariant for th&/ (3) problem and this is
indeed a rather desirable feature of the recursive parametriza-
tion outlined here as one goes franto n + 1 one retains the
parameters at the'" level.

In the second form [16], fon = 3, the analogues of
Egs. (47), (49), and (50) are

0101 B
—BiBear /o1 + Bias /o1 P2
—BiBsa1 /o1 — Bsas /o1 P

(58)
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and in this situation the mod symmetric matrix mixing is

parametrized by four angles and two phases.

ot ’
0/1 — 04162(01+62761+02),

A simpler moduli symmetric parametrization can be ob-
ol = ge 0105 +01+02) (59) tained if some of the eigenvalués (i = 1,2,...,n), of the
n X n unitary matrixV" are equal. For the case when- 1
B = BetOit0:-202) - gl — g oi(—01+05-202) eigenvalues are equaliz, By = E3 = --- = E,, V can
, 2i(8,409) be expressed in terms af— 1 real parameters and only one
By = Bae”2102t02) (60)  phase [18].

and the rephasing invariant(i&; o’ 05 55 3s).
For n = 4 the corresponding equations to (53), (56),6 Comparison with the “standard” (PDG)
and (57) are ’ .
parametrization

o 71ei(9’1+05+9§7303), v = ,ylei(79’1+0;+9§7393),
VT o For the case of three generations, the standard or PDG [17]
vy =y e’ (T02H0730) g — e F0 %) (61)  parametrization of the mixing matrix is obtained by putting
r_ i(0) +05+05—01+02+03) ‘
) = Q1€ 1TV27TY3 5 a1 = C19, Q9 = S12, 61 — 8136—16137
— (04 +05+0}+01 +02+6;
oy = ape (P10 +05+01+02465) (62) By = s93¢13, B3 = Cazcia, (68)

ﬁi _ ﬁlei(9§+0’2+9§—292+93)7

‘ (Cij = COS QL] andsij = sin@ij) inV = Ag(ﬁ)Ag(a) with

Bl = Boel(—01102+03=202+05) As(B) and Az () given by Egs. (35) and (34), respectively.
The extension of the mixing matrix to four generations is

given byV = A4(v)As(8) A2 (), whereA,(v) is given by

Eqg. (36) with3 and« as before and

ﬂé — 53672i(0£+9é+03)' (63)

The three independent invariants turn out to be

(a3 87 B385), (B1B37172), and(B23573v374)- 14 —ibgs

Y1 = Sua€e Y2 = C14824€

5. Constraints due to mod symmetry V3 = $34C24C14, Y4 = €34C24C14, (69)

In this section we examine the constraints on the parametetshich conveniently reduces to the case of three generations

that arise from demanding that the givei/ (n) matrix be  when#f,4, 024, andds, are all set equal to zero.

mod symmetrici.e,, |V;;| = |[V};|. For convenience we shall We note here that the parametrization given above is

use the first form [15] for this discussion. closely related to the Harari-Leurer parametrization [5]
Forn = 3, mod symmetry requires thats| = |52|/02.  where the mixing matrix is expressed as an ordered product

The number of independent angle type invariants comegf essentially2 x 2 “rotation” matrices. Our parametriza-

down from three to two leaving the phase type invariant untjon results when one suitably combines the factors appear-

changed. _ ing in that form. For instance, in thé x 4 case, the
Forn = 4, with V. = A4(7)A3(8)Az(c), after some  Harari-Leurer form for the mixing matrix has the structure
algebra one finds, Q3422414023013 and reduces to our form by the iden-
tifications A4(‘y) = 934924914, Ag(,B) = 923913, and
Via| = V| = |aa| = [72]/p2; (64) As(a) = Q19, provided we choosey, 33, andas to be real.
|Vaa| = [Vas| = |Bs] = |3l/pss (65)
[Vas| = |Va2| = cos((d1 + 2 + d3)/2) x 7. Conclusions
|32

—= cos((d1 — 02 — 03)/2) + ‘Lfd =0. (66) In this work we have examined in detail the question of

P2 Ps parametrizing quark flavor mixing matrices for three and four
Here 61, J2, and 3 denote the three independent in- flavors within the framework of the recursive parametriza-
variant phasesarg (1ol 57 0503), arg (8203v45v4), and  tion. In particular we have shown, given the matrix, how
arg (81057 v5vs), respectively. The equalitid®zs|=|V42|,  to determine the corresponding parameters. We have also
|[Via| = |Va1|, and|Vis| = |Va1] give no new conditions. It studied in detail aspects of rephasing invariants in this
can be seen from the above equations that one can obtain mpdrametrization scheme and have derived conditions for the
symmetry by requiring mixing matrix to be moduli symmetric.

In the near future we plan to confront thex 3 and4 x 4
ol = [2l/pa, 1Bl = 1sl/ps, 01+ 02+ 03 =7, (67)  recursive parametrization with available data [17].
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