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We study the simulation of a single qubit rotation and Controlled-Not gate in a solid state one-dimensional chain of nuclear spins system
interacting weakly through an Ising type of interaction with a modular component of the magnetic field in the z-direction, characterized
by B.(z,t) = Bo(z) cos dt. These qubits are subjected to electromagnetic pulses which determine the transition in the one or two qubits
system. We use the fidelity parameter to determine the performance of the Not (N) gate and Controlled-Not (CNOT) gate as a function of the
frequency parameter. We found that fols| < 10~ MHz, these gates still have good fidelity.
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Estudiamos la simulagh de una rotadin de un 6lo qubit y una compuerta Control-Not en un sistema uni-dimensional compuesto por
una cadena de ess nucleares interactuandebilmente a trags de una interadan tipo Ising con una componente modular del campo
magretico en la direcdin z, caracterizada paB.(z,t) = Bo(z) cos dt. Estos qubits eah sujetos a pulsos electromagjoos los cales
determinan la transion en los sistemas de uno y dos qubits. Usamos énpetro fidelidad para determinar la act@scde la compuerta
NOT (N) y Contol-not (CNOT) 6mo una fundn del parametro frecuencia Hallamos que paraé |< 107® MHz, estas compuertas
tienen buena fidelidad.

Descriptores: Campo magatico modular; compuertas &nticas; cadena de espines nucleares.

PACS: 03.65.-w; 03.67.-a; 03.67.Ac; 03.67.Hk

1. Introduction in a future not so far away. One solid state quantum com-
puter model that has been explored for physical realization
Almost any quantum system with at least two quantum lev-and which allows to make analytical and numerical studies
els may be used, in principle, for quantum computation. Thisf quantum gates and protocols [10] is the one made of one-
one uses qubits (quantum bits) instead of bits to process irdimensional chain of nuclear spins systems [11,12] inside
formation. A qubit is the superposition of any two levels of a strong magnetic field in the z-direction (with very strong
the system, calledd) and|1) states,¥ = Cy|0) + C4|1) gradient in that direction) and an RF-field in the transverse
with |Co|? + |C1|? = 1. The tensorial product of L-qubits direction. Such a model physically is unlikely to be con-
makes up a register of length, say|r) = |iz—1,...,%),  structed, however this represents a good approximation for
with ¢; = 0, 1, and a quantum computer with L-qubits works simulation of quantum algorithms and gates whose respec-
in a 2% dimensional Hilbert space, where an element of thistive results could be applied in more realistic quantum com-
space is of the forn¥ = >~ C,|z), with 3" |C,|*> = 1. Any  puters. Furthermore, the approach relies in the universal char-
operation with registers is done through a unitary transforacter of Quantum Mechanics. In this model, the Ising inter-
mation which defines a quantum gate, and one of the mosiction is considered among first and second neighbor spins
important result about quantum gates and quantum logicakhich allows to implement ideally this type of computer up
operation is that any quantum computation can be done it 1000-qubits or more [13,14]. Among other gates and algo-
terms of a single qubit unitary operation and a Controlledrithms [15], one qubit rotation and CNOT gates were study
Not (CNQOT) gate or a single qubit unitary operation and awith this quantum computer model [16]. One of the impor-
Controlled-Controlled-Not (CCNOT) gate since CNOT andtant statement of this model is that one keeps constant the
CCNQOT are universal gates [1,2]. magnetic field in the z-direction at the location of each qubit.
Although quantum computers of few qubits [3-9] have However, this statement may be not so realistic in practice
been done in operations for some time and they have bednor this model or other solid state quantum computer based
used successfully so far, to make serious computer calcwen spin system with very strong axial magnetic field. The
lations one may requires a quantum computer with at leashain reason is that the strong magnetic field must be done
of 100-qubits registers, and hopefully this will be achievedwith superconducting magnets which, in turns, are made of
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superconducting cables, and on the wires of these cables eddye proposes a solution of the form

currents are induced which can last for some time [21] and

can produce modulation on the magnetic field, and then we [¥) = co(t)|0) + e1(t)[1) 5)
wonder: if there is a magnetic field modulation where this ) 5 , ) )
field change slowly with time, how these basic elementsSUch thatco|” +|ci|” = 1 atany time. Doing this, one gets
one qubit rotation and CNOT gates, would be affected. othe following ordinary differential equations

course, in this case, the usual analytical approximation with- W, oS Ot QO
; o . 6y = ———— e, — — et 6a)
out field modulation is not valid anymore, and a full numer- tCo 5 G pacf (
ical calculation is required to see the possible effect of this
modulation on 1-qubit rotations and CNOT gates. In ouradnd w. cos 5t 0 4
. . . .. o —iwt
study we will assume that the system is completely insulated i¢ = +——F——c1— S ce . (6b)

2 2
from the environment, such that the important decoherence fwt)2 iwt)2 _
effects [24,22,25] which normally would appear in this quan- _Choosingeo(t) = e™'/7do(t) ande, (t) = e di(t) in
tum system is not considered. above equations, one has

In this paper, we want to study this modulation effect of . W — w, cos Ot 9
the magnetic field on the Not (particular case of 1-qubit rota- ido =+———F——do— 5y (7a)
tion, or unitary operation) and CNOT quantum gates. To do
this, we will assume an additional cosine time dependencé’ ) W — w, cos 6t 0
on the normal z-direction of the magnetic field and will de- idy = ——————d1 — S do (7b)
termine, using the fidelity [5,18,23] parameter, the minimum which, in turns, can be written as the following uncoupled
variation in the frequency of this modulation to keep these . 9 P

similar Mathieu equation [19],

guantum gates elements still well defined. The paper is struc-
tured as follows: In Seg. 2_ the_Quant_um -not gate in presence do + a(t)dy =0 (8a)
of the modular magnetic field is studied. The modularity ef-
fects on the CNOT gate are determined in Sec. 3. The pap&vhere the complex function(t) is given by
is concluded with a discussion of the obtained results.

1 2
a(t):Z [Q2+w2 (1—& cos 6t) ] (8b)

2. Quantum Not-gate v

andd; is obtained from (7a),
Consider a single paramagnetic particle with spin one-half in

W — W, cos ot 2.
a magnetic field given by dy = . do — Zﬁdo _ )
B = (B, cos(wt), B, sin(wt), By(z) cos dt) 1)
For § = 0 and on resonancev( = w,), one has that

where the first two components represent the RF-field, and = ©?/4, and the system oscillates between the sthtes
the third component represents the strong magnetic field iand|1) with and angular frequency corresponding to the Rabi
this direction. The interaction between this particle and thdrequency(2, as one expected [16]. For# 0 the solution
magnetic field is given by the Hamiltoniai = —/ - B, of this equation is far to be trivial, and instead of solving
wherefi is the magnetic moment of the part|cle which is re-the Eq. (8a), we will find directly the numerical solution of
lated with the nuclear spif = hf asji = vAl, with v the  the system (7) with the given initial conditions. By taking
gyromagnetic ratio of the particle. So, the Hamiltonianis w = w, (resonant case), one expects to obtain the transition

R om0 |0) — |1) and to get the quantum Not-gate with a phase.
H=—[i - B=—lw,cosdt I, — — (I e '] ™t (2) To study the performance of the quantum Not-gate as a

2 function of the modulation frequendy, we will calculate the
wherew, = 7By (z,) (2. is the location of the particle) is the fidelity parameter at the end ofapulse and make the com-
Larmor frequency§) = vB, is the Rabi frequency anb, parison of the ideal wave functiolexpectea With the wave
represents the ascent (descent) operﬁ;o& I, iz] If |0) function resulting from our simulation/sjm.
and|1) are the two states of the spin one-half, one has that
F= <\I/sim|\I/expectea ; (10)

—1)* A
%W , oy =11, 1) =10). () where |Ugim) is the state obtained from numerical simula-
tions, and Yeypecieq iS the ideal expected state. for the initial
acond|t|0n|\If ) = |0), of course, the fidelity coincide with the
coefficient|c;|2. At this point we want to stress that we de-
fine | F'|? in this way due that any quantum gate or algorithm
8|\I/> is represented by the final wave function of the quantum sys-
9 = H|D) (4)  tem. Ideally, if the quantum gate is fully realizable this wave

LJi) =

The ground state of the system is represente{Dhywhich
represents the spin of the particle in the direction of the thir
component of the magnetic field. To solve the Sclimger
equation,
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N T T ' T " T — is the part of Hamiltonian which is diagonal in the basis
08 ol a {li1i0)}i,~0,1 and is given by
06 /\/ -
o4 / °=C, ] ﬁo =-h (wlfél) + w2f§2)> cos 0t + thz(l)fz(Q) . (12)
02} -
4 , | i | : ] ; ]
. 2 4 . 6 8 10 wherew; are the Larmor’s frequencies which are defined as
S(10 ") Mz
e A e my e s s m BN B m | o ) -
08 [ Il‘l:zK'll: ®) 7 Wi = 730 (ZZ) 1= ]-7 2 (13)
oer ] with z; being the z-location of the ith-qubit. The eigenvalues
e i of Hy on the above basis foar= 0 are
02 K'(I: —_'
0 L 1 | " | | 1 ' | 1 1 1 1
0 0.2 04 0.6 08 1 1.2 1.4 _ _ = _ =
5(10°) Mil. Eoo = 2 {wl Tws QJ}
FIGURE 1. Quantum Not-gate: (a) Global behavior (b) Local be- 1 1
havior with respect td. Eo1 = —3 {w1 —wy + 2J}
function is represented BWexpecteg. However, the non res- B — 1 1 g
onant transitions and the error systems (modulation) make 0=75)7“ Tw2 9
that the resulting wave function of the complete simulation
is given by|\Ifsim>.. In this way, the fideIiFy is a measure of By = 1 {—w1 — Wy — 1J} (14)
the good operation of gates and algorithms. On the other 2 2

hand, there is another measurement for the calculation of

the the distance between two states and this is the so called The ground state of the system is denoteddsy which
Uhlmann-Josza fidelity [17]. However, in Ref. 18 it has beencorresponds to the case of having both spins parallel in the
shown that Eq. (10) is a lower bound for the Uhlmann-Joszalirection of the third component of the magnetic field. By
fidelity. Such a result favors the present results. on the othetoingw = (E11 — E10)/h = wy — J/2, One gets the resonant
hand, it is worth to point out that in Refs. 20 and 23, a dis-transition which defines the CNOT operatid)) «— |11)
cussion on the effects of the noise on the fidelity associatedith a phase involved:(™/2), where the left qubits is the con-

to the quantum gates is given. trol and the right one is the target. To solve the $dimger
Figure 1a and 1b show the behavior of the fidelity andequation,

the probabilities as a function of the parametet the end o) -

of ar-pulse,r = 7/Q. We have used the parameters (units Zﬁw = H|V), (15)

2r MHz) Q = 0.1 andw, = 200. The RF-frequency has
been chosen equal to the resonant frequeneyw,. Asone  we can assume that the wave function can be written as
can see, fob < 0.2 x 1073 MHz we can have a very well

defined quantum Not-gate. U=Clo(t)|00)+Co1(¢)|01)+C10(t)]10)+C11 (¥)|11) (16)

3. Two qubits model and quantum CNOT gate

Figure 2 shows two paramagnetic nuclear particles of spin Z B(2) Qubit 2
one-half (qubits) subjected to a magnetic field of Eq. (1), P
making and angleosf = +/3/2 to eliminate the dipole-
dipole interaction between them. The interaction of the mag-
netic field with the qubits is carried out through the coupling
with their dipole magnetic moment; = +S;(i = 1,2),
where~ is the gyromagnetic ratio ar§; is the spin of the
ith-nucleon 8 = £i). The interaction energy is given by

hQ

H=—j By — iy By + hJIMWI® = Hy — 5

~ <IA_(~_1)e—iwt + j(_l)eiwt + f_(f)e—iwt + f(_2)eiwt) , (11) Qubit 1

where// is the coupling constant of interaction between near-
est neighboring sping) = vB, is the Rabi frequencyH, FIGURE 2. Two qubits configuration.
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such thaty" |C;;|*> = 1. Thus, we arrive to the following
system of complex-couple ordinary differential equations

) 1 1
1Cop = —3 ((wl + wg) cos ot — 2J) Coo

Q ,
-3 (Cor + Chp) ™" (17a)
L 1 1
1Co1 = 3 ((wl — wy) cos 0t + 2.]) Cor
SR (C e+ Crpe™t) (17b)
5 (Loo 11
L 1 1
ZClO = 75 <(w2 — wl)cos& —+ 2J> ClO
_2 (Cooe™ ™" + Cr1e™") (17¢)
5 (oo 11
L 1 1
iCyy = —3 (—(wl + wa) cos §t — 2J> C11
Q —iwt
3 (Co1 + Cro) e ™", (17d)
Doing the transformation
COO _ 6iwt/2D00’ 001 _ eficut/Qljo17
Cio=e 2Dy, and Cyy =e 32Dy,

one gets rid of the fast oscillations and gets the following

equations for the coefficienfa’s:

. 1 1
1Doy = -5 ((w1 + way) cos ot — 5] — w) Dqo

Q
—5 (Do1 + D1o) (18a)

. 1 1
1Do1 = ~3 ((w1 — wy) cos 0t + 5,] +w> Do

Q
-3 (Doo + D11) (18b)
. 1 1
1Dy = ) <(w2 — w1) cos ot + 2J—|—w) D1g
Q
-3 (Doo + D11) (18c)

. 1 1
1Dy = —< <—(w1 + ws) cos 0t — iJ + 3w) Dy,

2
Q
— 5 (D1 + Do) (18d)
We solve numerically these equation, and for= 0 and

w =
stateg10) and|11). Note that one has’;;(0) = D;;(0) and
|Cy;(1)|? = |Dy;(t)|?. Ford # 0, we consider two initially

we — J/2, a full transition will occur between the
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FIGURE 3. CNOT behavior, digital case.
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FIGURE 4. CNOT behavior, superposition case.

that iSCOO(O) = O7 001(0) = 0, 010(0) = 1, 011(0) = 0.
Superposition case, where the initial condition is

,/ 5100)+ |01 ,/ 51100+

These two initial states can be gotten from our ground state
|00) by applying it Hadamard and/or CNOT gates which is
not the point in our study. So, we are assuming that these ini-
tial states are given, and we use a simple state and a superpo-
sition state to cover a general situation. For our simulation,
we use the following parameters (units MHz) Q = 0.1,

wyp = 100, we = 110, andJ = 10. The RF-frequency cho-
sen is the resonant frequeney= wy — J/2, and applying
am-pulse,r = 7/, we should get the respective CNOT
transition|10) «—— |11). Figure 3 shows the behavior of the
probabilities and the fidelity as a function of the paraméter
at the end of ther-pulse and for the digital case. Figure 4

|11 (19b)

conditions cases: D|g|ta| case, where the initial condition iSShOWS the same as before but for the Superposition case. This

given by

|W,) = [10) , (19a)

case is more stable (the fidelity decays more slowly than the
digital case) due to non zero contribution to the te€fggand
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Co1 which always contribute with the same constant probaup to the next to leading order term in Taylor expansion of the
bility 3/10. cosine function in Eq. (1). We have seen that the fidelity for
the superposition case is more stable than the digital case due
to the contribution to the fidelity parameter of the other no
zero states involved in the dynamics. Of course, this safety
For a quantum computer model of a chain of qubits in a magregion, defined by, for these quantum gates does not mean
netic field where its z-component varies with respect the timesafety for a full quantum algorithm, which is under studied.
we have studied the Not and Controlled-Not gate behavior as

a function of the frequency of variation of this component.

In general, one can say that fér< 10~3 MHz these quan- Acknowledgments

tum gates remain well defined with a fidelity very close to
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