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Distribution of charge particles confined between three interfacial surfaces
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We present a model of a charged membrane where the charge density is distributed in a region of thicknessdm. The model consists of
three flat regions having the same dielectric constant were charged particles can be distributed with cylindrical symmetry. The concentration
profile of particles and their pair correlation functions were calculated for various parameters of the model (distance and charge density).
The particles profiles, at the limit of large distances and small charge densities, are equal to those found in the solution of the Poisson-
Boltzmann equation. For high charge density, the contact profiles show a significant structure, and they are different to those found by the
Poisson-Boltzmann solution and for a model of stiff membranes. These results indicate that a model of membrane with thicknessdm (internal
structure) may be necessary to study the effects of pressure between the surfaces.
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1. Introduction

Charged systems on an aqueous medium are necessary to un-
derstand a range of physical, chemical and biological pro-
cesses. For example, in biological systems: the DNA con-
densation and packaging inside viral shells [1,2], the self-
assembly of DNA into cationic liposomes [3], the concen-
tration of charged ions near a membrane channel and the in-
teraction of proteins with membranes [4,5]. In soft matter
systems, charges systems are critical to the stabilization of
colloidal dispersions, emulsions and help us to describe phe-
nomena as wetting [6].

One of the basic models for studying the properties of
charged systems has been the system of two (or one) flat
charged surface in an aqueous medium of dielectric constant
ε. This type of system contains the main statistical informa-
tion for an understanding of the charged surfaces and their
interaction with a solution of charged particles, and allows to
generalize its study to other systems (new geometries, new
interactions). For this model different frameworks have been
proposed with various levels of complexity to study its physi-
cal and chemical properties. For example, mean field models,
such as Poisson-Boltzmann (PB) equation, that does not take
into account the correlations between the different elements
of the system have been widely used with good results only
for systems with a low level of charges [6,7].

Theories that incorporate correlation effects between dif-
ferent elements of the system have been proposed at the
level of integral equations, such as Ornstein-Zernike (OZ)
models [8-11]. For example, O. de la Cruz using the so-
called anisotropic hypernetted-chain (AHNC ) approximation
for the Ornstein-Zernike found distinct ion-induced force in

aqueous solution and introduce the concept of soft-structure
to visualize the deformation of the local environment around
the ions [12]. For high charge systems a strong coupling
theory has been proposed, see for example the work of R.
Nezt [13,14] and R. Podgornik [15]. Where using different
limits on the integral representation of the partition function,
the model of weak coupling (WC) and strong coupling (SC)
can be derived for a Coulombic fluid and its interaction with
charged surfaces. In addition, there has been a variety of dif-
ferent simulations to study the system of charged surfaces.
For instance, the method of molecular dynamics was used by
A. Travesset to determine three regimes for distribution of
ions and counterions (plasma, binding and uniform regimes)
in a system of discrete charged surfaces [16]. Also, some
new convergence techniques have been implemented to in-
crease efficiencies in the evaluation of the electrostatic poten-
tial in Monte Carlo methods [17,18]. In all of these studies, a
constant concern has been to determine the ion concentration
profiles generated between the charged surfaces and then to
determine the system pressure.

Recently others effects have been incorporated into these
theories and models. For example, charge image has been
included in the calculation of particles profiles [19,20].
Also, the effects of discrete charges on surfaces have
studied [16,17,21], and a charged lipid membrane with head-
groups [22] and models that take into account the effect of
the dielectric constant of the medium [23-26]. Finally, new
membrane geometries (cylindrical, spherical) have been stud-
ied too [27,28].

In this paper, we consider a system of two surfaces intro-
ducing a new degree of freedom: the thickness of the surface
charge distributiondm. Where ions can be freely distributed,
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FIGURE 1. Diagram showing three uniform surfaces where parti-
cles can be distributed. In the figure, we can see the distances (dm,
dL) and the positions (Z0, Zm, Zh, ZL) used to calculate system
properties. The charge of the particles in the region1 and3 are
negative and positive in region2. The distanceD set an exclusion
zone between regions and the particles cannot move from one re-
gion to another. All regions have the same dielectric constantε.

see, Fig. 1. The two surfaces are separated a distancedL.
The total length is2dm + dL. The model has three regions
where charged particles can be distributed, all parts have the
same dielectric constantε, but a new system with different
values for each region is in progress. Using the method de-
veloped by Kjellander and Marčelja [9,10] we calculate the
correlation between each particle and the particles profiles
for each region. The concentration profile allows us to find
the contact density and then using the value of the bulk con-
centration, the pressure between the surfaces can be obtained
with the contact theorem [6]. In this work, we only calculate
the contact density instead of the pressure. For systems with
low surface charge the PB models and the integral theories
seem to agree [9], the problem arises when effects of high
charge densities or multicomponent systems are studied [29].
In previous studies, it has been shown that the pressure be-
tween the charged surfaces can become attractive. However,
our new results suggest that this effect could decrease since
the contact concentration profiles are of the same order as
those found in the PB solution (see Fig. 3, for example). Our
model does not permit direct comparison with other systems
that work with different dielectric constant and salt, but we
are working on a new system that allows to include more in-
teractions between the elements which form the model.

2. Model system

Figure 1 shows the system, consisting of three regions1, 2,
and 3, where particles are free to move and get separated
from a core region of lengthD. In this paper, we consid-
ered that the three regions have the same dielectric constant
ε and assume that there are no interactions of charge images.
The surfaces are infinite in the radial directionr and the con-
centration profilesρ can vary along thez coordinate. In the
figure, we show some characteristics distances,Zm andZL

for contact profiles,Z0 andZh for profiles at the midpoint
distances. The system has positive particles in region2 and
negative for regions1 and3. Thus the total net charge is
then zero. We study the equilibrium properties of concentra-
tion profileρ as a function of the separation distancedm, dL

and the charge densityσ in the region1 (or 3). In a previ-
ous paper [11], we study a system with a fixed charge density
in the surfacedm = 0, in this new model the particles have
a profile distribution in the region1 or 3 and they interact
electrostatically with particles from other regions. It is worth
mentioning that the theory allows determining the correlation
function between particles of different regions.

3. Theoretical Framework

We study the equilibrium distribution of particles with the
use of the anisotropic HNC theory. The theory was orig-
inally proposed by Kjellander and Marčelja [9,10] and has
been widely used to study the thermodynamic properties of
interfaces and surfaces on charged system in a planar con-
finement [30,11,8]. Here we only review the principal ideas
of the theory. For more details see, for examples, Refs. 31,
32 and 11. In this theoretical scheme, the particle distribution
ρ(r) is calculated from

ρ(r) = ρ0 exp(−βeψ(r)−µ(r)) (1)

whereβ ψ(r) is the average external electrostatic potential,
µ(r) is the excess chemical potential of the particles. The
total correlation functionh(r1, r2) = g(r1, r2)− 1 is deter-
mined from the Ornstein-Zernike (OZ) equation

h(r1, r2) = c(r1, r2) +
∫

c(r1, r3)ρ(r3)h(r3, r2) (2)

wherec(r1, r2) is the direct correlation function. This inte-
gral equation is solved with the Hyper-Netted-Chain (HNC)
closure approximation

g(r1, r2) = exp [h(r1, r2)− c(r1, r2)− β e v(r1)] (3)

where β = 1/kBT , with kB the Boltzmann’s constant
and T = 298 K the absolute temperature. The set of
Eqs. (1-3) is solved iteratively. The correlation function
h(r1, r2) andc(r1, r2) are determined with Eqs. (3) and (2)
and used as inputs for correcting the new profile given by
Eq. 1, the process is repeated until self-consistency is
achieved for two successive correlation function, with a small
numerical error of about±0.001 from each other solution.
However, the convergence of the system of equations was
poor for large distancesdL where the bulk density is defined.
The charged particles interact via a pairwise Coulomb poten-
tial

V (r3D) =

{ e

ε r3D
r > a

∞ r < a
(4)

wheree is the elementary electric charge andr3D is the cen-
ter to center distance of separation of two particles, and it is
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given in cylindrical coordinates anda is the diameter of par-
ticles. In the model, the interaction with all images has been
removed. A cut of for the long range tails of all correlation
function due to the Coulomb interactions were performed as
described in the Ref. 32. The total charge of the system must
be zero. Therefore the concentration profiles in each region
(see Fig. 1) satisfy the condition

2
∫

ρm(z) dz +
∫

ρL(z) dz = 0 (5)

wherez is the normal direction to the surfaces. The density
of surface chargeσ is a parameter that matches with the inte-
gralσ =

∫
ρm(z) dz in the region1. We compare the results

of our model with those found from the Poisson-Boltzmann
equation [7,6]

∇2ψ(r) = −4πen0

ε
exp

(−eψ(r)
T

)
(6)

when the charged particles of region1 and3 are continuous
and located only in one surface. Also, we considered a model
without structure (dm = 0) in region1 and3 as we previously
studied [11].

4. Results

The concentration profileρ(z) in each region (1, 2 and3)
is shown in Fig. 2(A) for three different charge densities
(symbol−¤− for σ1 = 0.0938 C/m2, symbol− © − for
σ2 = 0.267 C/m2, and symbol−4− for σ3 = 0.348 C/m2).
The distance of separation between the two surface is equal
to dL = 14.25 Å anddm = 6.25 Å . The concentration pro-
file in region2 increases as the charge density increases at
σ3 the particle profile shows a local maximum atZh and two
local minima, while for smaller charge densitiesσ1 andσ2,
there is only a local minimum. This structure is produced by
pair correlations between different particles of the region1, 2
and3. The blue dashed line shows the concentration profile
for a model with zero distance in the region1, dm = 0 Å ,
and in this case, there is no structure in the profile. For com-
parison, the continuous line shows the concentration profile
found with the solution of PB Eq. (6), where distances were
adjusted to consider point particles. Overall, for the concen-
tration profileρ(z), there is good agreement between the so-
lution of PB and the results of our model with a thickness
of the surface charge ofdm = 6.25 Å , while for the system
with a thicknessdm = 0 Å there is a markedly different,
see Fig. 2(A) and (B). However, at the contact profileρ(zL),
a significant difference is present between the three models
studied. These differences are more pronounced for systems
with small charge density, as we can see in Fig. 2(B) that
show the concentration profiles for aσ1 = 0.0938 C/m2. For
this system, the PB solution and our model for a thickness of
dm = 6.25 Å are almost equal, and different from the profile
with a thickness ofdm = 0 Å . The concentration profiles
are symmetric in each region, but their contact values are not

FIGURE 2. (A). Concentration profileρL(z) for region 2 and
ρm(z) for the regions 1 and 3, with a distancedL = 10.0 Å
and dm = 6.25 Å , using three charge densitiesσ1 = 0.0938
C/m2 (symbol−¤−), σ2 = 0.267 C/m2 (symbol− © −) and
σ3 = 0.348 C/m2 (symbol−4−). The green line is the PB solu-
tion equation 6 and the dotted line is the answer for a system with
dm = 0 Å , see the Ref. 11 (B) shows the concentration profile
ρL(z) only in the region2 for a surface charge densityσ1, with the
same parameters.

equal, this produces a concentration gradient which can in-
duce instability in the membrane. This effect can be compen-
sated by considering regions with different dielectric constant
value.

The concentration profile in the contact positionρL(z =
ZL) is shown in Fig. 3 as a function of the distancedL in
region2 and three different values of charge densityσ in re-
gion 1 ( or 3). The figure shows that when we have a large
distancedL > 20 Å of surface separation and small charge
densities, there is not a difference in contact profile between
PB solution, the model with a thickness of the surface charge
of dm = 6.25 Å anddm = 0 Å . For distancesdL < 10 Å
the profilesρL(z = ZL) are the same for the PB solution and
our model withdm = 6.25 Å , however for the model with
a thickness ofdm = 0.0 Å the solution overestimates the
concentration at contact. When we increase the charge den-
sity σ2 = 0.267 C/m2 andσ3 = 0.348 C/m2 (for the model
with a thickness ofdm = 0 Å and σ3 it was not possible
to find a convergent solution of the system of equations) a
significant difference appears in the contact profile between
the three model systems. The concentration profile has local
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FIGURE 3. The contact concentration profileρL(ZL) as a function
of the distancedL using three charge densitiesσ1 = 0.0938, C/m2,
σ2 = 0.267 C/m2 and σ3 = 0.348 C/m2. The black line is
our model withdm = 6.25 Å ; the red line is a model with
dm = 0.0 Å , and the blue line is the PB solution, Eq. 6. The in-
sert showsρL(ZL) now as a function the distancedm for a charge
densityσ2. The line with symbol−¥− is for dL = 9.25 Å ,
the symbol− • − is for dL = 14.25 Å and symbol−N− for
dL = 19.25 Å . The solid lines are the solution of PB equation.

maxima and minima near the surface for a model with a thick-
ness ofdm = 0Å and a charge density ofσ2 = 0.267 C/m2,
while the concentration profile of PB and the model with a
thickness ofdm = 6.25 Å shows a continuous decay con-
centration profile. The figure also shows the contact profile,
for σ3 = 0.348 C/m2, but now with a significant difference
between our model with a thickness ofdm = 6.25 Å and
the PB solution. These results, show that the internal struc-
ture of the membrane in the region1 is critical in determin-
ing the interaction between the particle at the contact layers.
By the contact theorem, this effect is essential for calculat-
ing the pressure between the two surfaces. In the Ref. 11
was shown that the pressure could be negative to high sur-
face charge densities. However, this effect might change if
we consider the internal structure of the membrane. In con-
trast, the box in Fig. 3 shows the concentration profile at the
contact position. In this case as a function of distancesdm in
region1 and for three different values of separationdL. The
PB solution that is always constant(solid line) was compared
with a model of a thicknessdm = 6.25 Å (symbol line). We
can notice a minimum difference in the contact profile as a
function ofdm and a significant difference with the PB solu-
tion. The difference increased as we decrease the distancedL,
this means that the size of the region1 is not a major factor
in calculating the contact concentration profile in region 2.

Finally, in Fig. 4 we have the concentration profile at
the contact pointsρm(z = Zm) and ρL(z = ZL) as a
function of the charge densityσ in region1 and a distance
dL = 14.25 Å . For the system withdm = 13.25 Å the con-
tact concentration profilesρm(z = Zm) (symbol−4−) is

FIGURE 4. The contact concentration profileρL(zL) (blue line)
andρm(zm) (black line) as a function of the charge densityσ. The
lines with symbols−N− and−¥− are for a distancedm = 6.25Å
and the lines with symbols−4− and−¤− are fordm = 13.25Å .
The solid red line is the solution of PB equation 6. The insert shows
the concentration profile for distancesz = Z0 in the region1 and
z = Zh in the region2, (see Fig. 1), using the same parameters.

less thanρL(z = ZL) (symbol−¤−), ρL(ZL) > ρm(Zm).
The PB solution (red line) match withρL(z = ZL) only for
small charge density (σ < 0.125 C/m2), and therefore cor-
relation effects are not important at these charge densities.
However, when the charge density increases the PB solu-
tion shows differences with the modeldm = 13.25 Å and
hence the effects on the system structure are important. A
similar situation is present in a thin membrane, a distance
dm = 6.25 Å , with the important difference that now the
profiles satisfy the relationρL(ZL) < ρm(Zm). This is ex-
pected because the particles have a small amount of space
to spread, and also the correlation effects are present even
at low densities. A remarkable fact is that the concentra-
tion profilesρL(z = ZL) are the same for the two distances
(dm = 13.25 Å anddm = 6.25 Å ). The box in Fig. 4 shows
the concentration profile now at the middle positionsz = Z0

andz = Zh of the regions1 and2 for the same set of pa-
rameters. Once again for the distancedm = 13.25 Å we
haveρL(Zh) > ρm(Z0) and for the distancedm = 6.25 Å,
ρL(Zh) < ρm(Z0), but in this case the contact concentra-
tion profilesρm(z) andρL(z) exhibit more structure (local
minima and maxima appear). The concentration profiles in
these positionsZL andZh are important, because they are
necessary for the calculation of the pressure between the sur-
face [6,7], in a new work we are calculating the pressures for
this system and other complex systems.

5. Conclusions

We have calculated the concentration profile and the correla-
tion functions via the formalism of AHNC for a membrane
system with internal structure (model with a thicknessdm).
We showed that the concentration profiles calculated by our
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model are in the same order of magnitude to the solution of
the PB equation for small charge densities, and are differ-
ent from a membrane system without structure [11] (model
with a thicknessdm = 0 Å ). For the case with high charge
densities, important differences appear in the concentration
profile between the three models (PB solution, a model with
dm = 0 Å and dm = 6.25Å ). We found that the correla-
tion effects between the particles of regions1, 2 and3 are
important for small distancesdL and high charge densities

(σ > 0.2 C/m2). These effects could be significant for the
evaluation of the net pressure between membranes and may
generate positive pressures, on systems that have been shown
present attractions.
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