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Single-electron Faraday generator
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Periférico Sur Manuel Ǵomez Moŕın 8585 Tlaquepaque, Jal., 45604, México,
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In this paper I study the posibility of inducing a single-electron current by rotating a non-magnetic conducting rod with a small tunnel
junction immerse in a uniform magnetic field perpendicular to the plane of motion. I show first, by using a thermodynamic approach, the
conditions needed to pump electrons around the mechanical device in the Coulomb blockade regime. I then use a density matrix approach to
describe the dynamics of the single-charge transport including many-body effects. The theory shows that it is possible to have single-electron
tunneling (SET) oscillations at low temperatures by satisfying conditions similar to the Coulomb blockade systems.
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Se demuestra la posibilidad de inducir una corriente de tunelaje electrónico al rotar una varilla conductora con una junta túnel inmersa en
un campo magńetico homoǵeneo perpendicular al plano de rotación. Utilizando la enerǵıa libre de Helmholtz se obtienen las condiciones
necesarias para generar una fuerza electromotriz (fem) que induce la corriente de tunelaje electrónico en el ŕegimen de bloqueo Coulombiano.
Utilizando la matriz de densidad se demuestra que es posible tener oscilaciones en el transporte electrónico de carga.

Descriptores: Bloqueo Coulombiano; oscilaciones SET; fuerza electromotriz; Hamiltoniano de tunelaje.

PACS: 73.23.Hk

1. Introduction

The field of single-electronics started when new effects due
to the quantization of charge in ultrasmall tunnel junctions,
both in the superconducting and the normal state, where pre-
dicted by Averin and Likharev [1]. The theory of Averin and
Likharev considers a tunnel junction which is biased by an
externally fixed currenti and whose voltageV is measured
by a very high impedance voltmeter with metallic shunt con-
ductanceGS . A tunnel junction consists of two conducting
electrodes separated by a thin layer of insulating material and
is characterized by its capacitanceC and tunnel resistance
RT . When a voltage is applied to the small capacitance tun-
nel junction, the charge will flow continuously through the
conductor and it will accumulate on the surface of the elec-
trode against the insulating layer of the junction (the adjacent
electrode will have equal but opposite surface charge). On
the other hand, the insulating layer is thin enough for elec-
trons to tunnel through. The state of the junction is described
by the surface chargeQ (which is a continuous variable) and
the electronsn that have tunnel through the insulating layer
(which is a discrete variable). Averin and Likharev predicted
that if the chargeQ at the junction is greater than|e|/2, an
electron can tunnel through the junction in a particular di-
rection, subtracting|e| from Q. Likewise, if Q is less than
−|e|/2, an electron can tunnel through the junction in oppo-
site direction, adding|e| to Q. But if Q is less than|e|/2
and greater than−|e|/2, tunneling in any direction would
increase the energy of the system, hence tunneling will not
occur. This suppression of tunneling is known today as the
Coulomb blockade [2]. The physical origin of the Coulomb
blockade of single-electron tunneling (SET) is quite simple.
In a current-biased junction, each tunneling event leads to

a change of the electrostatic energy of the system given by
∆E = e(Q ± e/2)/C. If the initial chargeQ is within the
range−|e|/2 < Q < |e|/2, the energy change∆E is positive
and at low temperatures tunneling events are impossible. On
the other hand, if|Q| > |e|/2, tunneling is possible because
this process reduces the electrostatic energy. An interesting
prediction of Averin and Likharev was the SET oscillations
in the voltage across the junction [1,2]. Due to the Coulomb
blockade of tunneling the chargeQ on the junction accumu-
lates until its threshold valuee/2 is reached and then the junc-
tion is recharged by the externally fixed current. This whole
process repeats itself with a frequencyν = i/e [3].

The purpose of this article is to show that there are SET
oscillations without an external applied current in a small tun-
nel junction. In this case, the SET oscillations are driven by
the Lorentz force due to the rotation of a conductor with a
small tunnel junction and an applied external magnetic field.
In addition, this mechanically driven device is proposed as
a transducer of motion into electricity. The paper is orga-
nized as follows. First I will start by giving a thermodynamic
formulation of the problem and the basic relations of the the-
ory. Then I will analyze the system using a density matrix
approach to include many-body effects and show the SET os-
cillations in the system. The conclusions are summarized in
the last section.

2. Thermodynamic Formulation

Consider the Faraday generator shown in Fig. (1), where a
conducting rod of length̀ rotates with constant angular ve-
locity ω in a constant magnetic field that is perpendicular to
the plane of motion. The rod completes the circuit, with one
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FIGURE 1. Rotational motion of the conducting rod in theXY
plane when the switch is (a) off or (b) on. The crosses indicate that
a uniform magnetic field is pointing into the page.

contact point on one end of the rod and the other on the circu-
lar rim. The circuit containing the galvanometer is completed
by an open wire structure with a switch.

For the case when the switch is open there will be no elec-
tromotive force, however we know from elementary electro-
dynamic courses that charge will pile up at the two ends of
the rod and will produce an electric field that balances the
Lorentz force felt by the moving charges inside the conduc-
tor (See Fig. 1a).

The free energy of the system is given byF = E−~µ · ~B,
whereE is the total energy of the rotating rod,~µ is the mag-
netic dipole moment of the circulating charge at the end of
the rod and~B is the constant magnetic field perpendicular to
the plane of motion. Taking the magnetic field as~B = −Bẑ,
the free energy is given by

F = Ein +
Iω2

2
− QBω`2

2
, (1)

whereEin is the internal energy of the rod,I denotes the mo-
ment of inertia for the rod with respect to the axis of rotation
and we have taken the current asi = Qω/2π. It should be
remembered that rotation in general changes the distribution
of mass in the body, and so the moment of inertia and internal
energy of the body are in general functions ofω [4].

When the switch is turned on there is an electromotive
force E in the circuit and hence charge will be circulating
around the circuit. The free energy of the system in this case
is given by

F = Ein +
Iω2

2
− (Q−∆Q)Bω`2

2
+ E∆Q, (2)

where∆Q is the amount of charge circulating around the cir-
cuit andE∆Q is the work done by the system. The change in
free energy is obtained by subtracting Eq. (2) from Eq. (1),
which gives us

∆F =
(

Bω`2

2
+ E

)
∆Q, (3)

if the system is in thermodynamic equilibrium then∆F = 0
and we obtainE = −Bω`2/2, as we know from elementary
electrodynamic courses [5]. Note thatE < 0.

Now I will consider the case when there is a tunnel junc-
tion at positionr with thicknessδr in the conducting rod as
shown in Fig. 2.

FIGURE 2. Schematic diagram for the rotation of the conducting
rod with a tunnel junction of thicknessδr and a uniform magnetic
field pointing into the page. Note how the charge accumulates on
the surface of the electrode against the insulating layer. For this
case current will only flow when a tunnel event occurs.

For this case, even if the switch is turned on there will
be no current flowing through the circuit because the charge
Q will accumulate on the surface of the electrode against
the insulating layer as depicted in Fig. 2. Nevertheless,
quantum mechanically speaking there is a probability for
the charge to tunnel through the junction. The free en-
ergy of the system before quantum tunneling is given by
F = E − ~µ · ~B − ~µ1 · ~B − ~µ2 · ~B, where~µ and ~µ1(2)

corresponds to the magnetic dipole moment of the charge ac-
cumulated at the end of the rod and against both sides of the
insulating layer, andE = Iω2/2 + Q2/2C, whereC is the
capacitance of the tunnel junction. Therefore, the free energy
of the system before quantum tunneling is given by

F =
Iω2

2
+

Q2

2C
−QBω`2

2
−QBωr2

2
+

QBω

2
(r+δr)2. (4)

Equation (4) can be written in the following form

F =
I ′

2
ω2 +

Q′2

2C
, (5)

where

I ′ = I − C

[
B`2

2
− Bδr(2r + δr)

2

]2

Q′ = Q− Cω

[
B`2

2
− Bδr(2r + δr)

2

]
. (6)

When there is quantum tunneling there is a change in charge
by ±|e| and an electromotive forceE in the circuit which
causes a change in the free energy given by

F =
I ′

2
ω2 +

(Q′ ± |e|)2
2C

+ E|e|. (7)

The change in free energy is obtained by subtracting Eq. (7)
from Eq. (6), which gives us

∆F =
|e|2
2C

(
1± 2Q′

|e|
)

+ |e|E . (8)
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AssumingE < 0 from our previous result, we see from
Eq. (8) that a tunnel event becomes energetically favorable
and a currenti flows throughout the circuit whenQ′>(|e|/2).
When a tunnel event takes place the chargeQ′ will change
by −|e| and after a time|e|/i the rotational motion of the
conducting rod immerse in the constant magnetic field will
recharged the junction and another tunnel event will take
place. As a result the tunneling events will occur periodically
with frequencyν = i/|e|.

For the particular case in which the tunnel junction of
thicknessδ lies exactly in the middle of the conducting rod,
i.e. r = `/2 − δ/2 andr + δr = `/2 + δ/2, then a tunnel
event becomes energetically favorable when

Q >
|e|
2

+
CωB`(`− δ)

2
. (9)

Equation (9) can be expressed in terms of the electrostatic
voltage in the following way

V >
|e|
2C

+
Bω`(`− δ)

2
. (10)

Since the maximum voltage allowed for the system is given
by Bω`2/2, then Eq. (10) reads

Bω`2

2
> V >

|e|
2C

+
Bω`(`− δ)

2
. (11)

Equation (11) gives us the following restriction
Bω`δ>|e|/C. Using typical values of the tunnel junc-
tion capacitanceC ≈ 3 × 10−15 F and tunnel thickness
δ = 10 Å [2], we needBω` > 105 V/m, to satisfy the re-
striction condition. If we have a magnetic field ofB = 1 T
and` = 1 cm, then we will need a rotational frequency of
aroundνr ≥ 10 MHz. The current delivered by the single-
electron Faraday generator for this rotational frequency is
aroundi ≈ 1 pA.

3. Many-body effects

To study in more detail the dynamics of the charge trans-
port we need the total Hamiltonian of the system depicted
in Fig. (2), which is given by:

H = F(Q̂′) + HT + H1 + H2 + HS − iΦ. (12)

The first term in Eq. (12) represents the free energy of the
system which is given by Eq. (5). The charge operatorQ̂′

can be expressed via Fermion operators

Q̂′ = −e

2

(∑

k1

c†k1
ck1 −

∑

k2

c†k2
ck2

)
−Q0, (13)

wherec†k and ck are the electron creation and annihilation
operators and

Q0 = Cω

[
B`2

2
− Bδr(2r + δr)

2

]

is a constant term. The second term in Eq. (12) represents
the tunneling Hamiltonian which is given by

HT =
∑

k1,k2

Tk1k2c
†
k2

ck1 +
∑

k1,k2

Tk2k1c
†
k1

ck2 , (14)

where the summation is carried out over all statesk within
the electrodes 1 and 2 andTk1k2 is the tunneling rate across
the junction. The HamiltoniansH1, H2 andHS describe the
energy of the internal degrees of freedomk1, k2 andkS of
the two electrodes of the junction and of the shuntGS , re-
spectively. The last term in Eq. (12) is the operator of the
magnetic flux defined as

Φ = −
∫
Edt, (15)

whereE is the electromotive force (emf) around the circuit.
Note that Eq. (12) corresponds exactly to the basic Hamilto-
nian given by Averin and Likharev. The only new feature is
the shift of the charge operator̂Q′ = Q̂ − Q0 arising from
the magnetic dipole interaction between the spinning charge
and the external magnetic field. One should remember that
Q′ is essentially the surface charge of the junction forming
the capacitor and is a quasi-continuous variable as expressed
by Eq. (13), where the tunneling, (as a discrete process), can
changeQ′ only by integer numbers and the induced current
flowing through the Faraday generator, (as a continuous pro-
cess), changesQ′ by any amount on the scale ofe depending
on the rotational frequency. Therefore, the carrier motion in
the usual conductor is virtually not quantized, at least on the
scale ofe, and what is quantized is the charge on the junction.

Restricting ourselves to the case when the current through
the junction and shunt are not too large we can consider them
as perturbations and one can write an explicit time evolution
equation for the density matrix to describe the equation of
motion governing the charge on the junction. Following the
pioneering work of Averin and Likharev [1], and assuming
thatGS , GT ¿ 4e2/h, the resulting master equation is given
by

∂f

∂t
= FT + FS (16)

wheref(Q′, t) is the classical probability distribution andFT

andFS are contributions due to the tunneling and shunt cur-
rent, respectively, and are given by

FT (Q′)=Γ+(Q′−e)f(Q′−e, t)+Γ−(Q′+e)

×f(Q′+e, t)−[Γ+(Q′)+Γ−(Q′)]f(Q′, t) (17)

FS=
GS

C

∂

∂Q′

(
CkBT

∂f

∂Q′+fQ′
)

, (18)

where Γ± are the tunneling rates for forward (plus sign)
and backward (minus sign) single electron tunneling over the
junction and can be expressed as

Γ±(Q′) =
1
e
i(∆F±/e)

[
1− exp

(
−∆F±

kBT

)]−1

, (19)
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wherei is the d.c. induced current and

∆F± = ± e

C
(e/2±Q′) . (20)

Note that the master equation given in Eq. (16) corresponds
exactly to the master equation given in Averin and Likharev
paper [1], the only difference is that there is no external cur-
rent or bias.

If one looks at the regime−e/2 < Q′ < e/2, the tunnel-
ing contributions may be neglected,i.e. FT = 0, and Eq. (16)
can be expressed as

∂f

∂t
= GSkBT

∂2

∂Q′2

[
f +

V (t)
kBT

]
, (21)

whereV (t) is the time dependent voltage across the tunnel
junction and is given by [6]

V (t) =
1
C

∫
Q′f(Q′, t)dQ′. (22)

Making the substitutionF (Q′, t) = f(Q′, t) + V (t)/kBT ,
we end up with a reaction-diffusion equation given by

∂F

∂t
= GSkBT

∂2F

∂Q′2 +
1

kBT

dV

dt
. (23)

For the system with constant electrostatic potentialV0, i.e. no
tunneling, the solution to Eq. (23) is [7]

F =
1√
t
exp

[ −Q′2

4kBTGSt

]
+

V0

kBT
, (24)

where the first term in Eq. (24) is the solution to the mas-
ter equation forf(Q′, t), which properly normalized can be
expressed as

f(Q′, t) =
1√

4πkBTGSt
exp

[ −Q′2

4kBTGSt

]
. (25)

Equation (25) represents a Gaussian probability packet de-
scribing the distribution of chargeQ that will move due to the

Lorentz force untilQ′ > e/2, at this point the rateΓ−(Q′)
becomes nonvanishing and this leads to a rapid decay of the
packet,i.e. f(Q′, t = tT ) = 0, wheretT = C/GT is the time
when a tunneling event occurs. In this regime the tunneling
event leads to a noticeable change in the voltage across the
junction, i.e. ∆V = ±e/C, which is described in Eq. (23)
by the last term,i.e.

∂F

∂t
= GSkBT

∂2F

∂Q′2 ±
e

CkBT
δ(t− tT ), (26)

The general solution to Eq. (26) is just a shift of the solution
given in Eq. (25) to the starting timet = tT , i.e.

f(Q′, t) =
Θ(t− tT )√

4πkBTGS(t− tT )

× exp
[ −Q′2

4kBTGS(t− tT )

]
, (27)

whereΘ(t − tT ) is the Heaviside funtion. It is evident from
Eq. (27) that the whole process of the Gaussian packet forma-
tion repeats periodically with every tunneling event showing
the periodic SET oscillations in the voltage across the junc-
tion.

4. Conclusions

The main contribution of this article is to show that there can
be SET oscillations across a tunnel junction without an exter-
nally applied current source. This result is in contrast to the
system analyzed by Averin and Likharev where an external
fixed current is always present. The thermodynamic and mi-
croscopic derivation shows how a single-electron current can
be induced by rotating a conducting rod with a small tunnel
junction in the presence of a uniform magnetic field perpen-
dicular to the plane of motion. An estimate of the current
delivered by the single-electron Faraday generator for rota-
tional frequencies ofνr ≈ 10 MHz is i ≈ 1 pA. Thus, this
device could serve as a fundamental standard of d.c. current.
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