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We give an elementary proof of the Liouville theorem, which allows us to obtainn constants of motion in addition ton given constants of
motion in involution, for a mechanical system withn degrees of freedom, and we give some examples of its application. For a given set
of n constants of motion that are not in involution with respect to the standard symplectic structure, there exist symplectic structures with
respect to which these constants will be in involution and the Liouville theorem can then be applied. Using the fact that any second-order
ordinary differential equation (not necessarily related to a mechanical problem) can be expressed in the form of the Hamilton equations, the
knowledge of a first integral of the equation allows us to find its general solution.
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Se da una prueba elemental del teorema de Liouville, el cual permite obtenern constantes de movimiento adicionales an constantes de
movimiento en involucíon dadas, para un sistema mecánico conn grados de libertad, y se dan algunos ejemplos de su aplicación. Para un
conjunto dado den constantes de movimiento que no están en involucíon con respecto a la estructura simpléctica est́andar, existen estructuras
simpĺecticas con respecto a las cuales estas constantes estarán en involucíon y puede aplicarse entonces el teorema de Liouville. Usando el
hecho de que cualquier ecuación diferencial ordinaria de segundo orden (no necesariamente relacionada con un problema mecánico) puede
expresarse en la forma de las ecuaciones de Hamilton, el conocer una primera integral de la ecuación permite hallar su solución general.

Descriptores: Ecuacíon de Hamilton–Jacobi; constantes de movimiento; estructuras simplécticas.

PACS: 45.20.Jj; 02.30.Jr; 02.30.Hq

1. Introduction

The Hamilton–Jacobi (HJ) equation provides a powerful
method to solve various problems of classical mechanics
(see,e.g., Refs. 1 and 2) as well as to relate different prob-
lems [3]. As is well known, given a Hamiltonian for a me-
chanical system withn degrees of freedom, the knowledge
of a complete solution (that is, a solution containingn non-
additive arbitrary constants) of the corresponding HJ equa-
tion allows one to obtain the solution of the equations of mo-
tion. Then arbitrary parameters contained in a complete so-
lution of the HJ equation are then constants of motion, that
are identified with half of a new set of canonical coordinates.

Usually, the complete solutions of the HJ equation are
obtained by means of separation of variables, which requires
expressing this equation in a suitable coordinate system (see,
e.g., Refs. 1 and 2). Actually, in most textbooks on classical
mechanics the method of separation of variables is the only
one employed to solve the HJ equation. (Similarly, in most
textbooks on quantum mechanics, the only method employed
in the solution of the Schrödinger equation is that of separa-
tion of variables.) Nevertheless, there exist some other meth-
ods for solvingfirst-order partial differential equations (see,
e.g., Ref. 4) such as the HJ equation. In one of these less-
known methods, when applied to the HJ equation, one has
to express the canonical momenta in terms of the coordinates
and n constants of motion; a complete solution,S, of the
HJ equation can then be obtained fromdS = pidqi − Hdt.
However, it turns out that the expression on the right-hand
side is an exact differential if and only if the constants of mo-
tion employed in this process are in involution, that is, their

Poisson brackets are all equal to zero, as Liouville found by
1855 [2]. In the case where there is only one degree of free-
dom, the Liouville theorem can be applied making use of an
arbitrary constant of motion, since the Poisson bracket of a
function with itself is trivially equal to zero.

The aim of this paper is to give an elementary proof of Li-
ouville’s theorem, with some illustrative examples of its ap-
plication finding complete solutions of the HJ equation, with-
out relying on an specific coordinate system (by contrast with
the method of separation of variables). When one hasn con-
stants of motion that are not in involution, it is still possible
to find a different symplectic structure (that is, another defini-
tion of the Poisson bracket) so that these constants of motion
be in involution. Since any second-order ordinary differential
equation (ODE), or any pair of first-order ODEs, can be ex-
pressed in the form of the Hamilton equations (in an infinite
number of different ways) [5], with the aid of Liouville’s the-
orem, making use of a first integral one can find the complete
solution.

In Sec. 2 we state the Liouville theorem stressing its anal-
ogy with the procedure followed in the use of a complete so-
lution of the HJ equation in the solution of the equations of
motion. Section 3 contains four examples of the application
of the Liouville theorem and in Sec. 4 an elementary proof of
the Theorem is given.

2. The Liouville theorem

In this section we begin by recalling some basic facts related
with the application of the complete solutions of the HJ equa-
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tion and we show that, in a certain sense, the same steps ap-
pear in the Liouville theorem but in the opposite order.

For a given HamiltonianH(qi, pi, t) of a system withn
degrees of freedom, the corresponding HJ equation, in its
standard form, is the first-order partial differential equation

H

(
qi,

∂S

∂qi
, t

)
+

∂S

∂t
= 0. (1)

A complete solution of this equation is a functionS(qi, t, Qi)
containingn non-additive arbitrary parametersQ1, . . . , Qn

that satisfies Eq. (1). Under the appropriate regularity con-
ditions, such a function generates a canonical transformation
relating the original canonical coordinatesqi, pi with a new
set of canonical coordinatesQi, Pi, which are constants of
motion (since the new Hamiltonian is equal to zero), accord-
ing to

dS = pidqi −Hdt− PidQi, (2)

that is,

pi =
∂S

∂qi
, Pi = − ∂S

∂Qi
, i = 1, 2, . . . , n (3)

(see,e.g., Refs. 1 and 2).
Since theQi, Pi are canonical coordinates, the Poisson

brackets among theQi are all equal to zero

{Qi, Qj} = 0, i, j = 1, 2, . . . , n. (4)

As pointed out in the Introduction, the complete solutions
of the HJ equation are usually obtained by separation of vari-
ables, in which case the separation constants can be taken
as theQi, but the application of this method requires an ap-
propriate choice of the coordinatesqi, pi. As we shall show,
given a set ofn functionally independent constants of motion
Q1, . . . , Qn, satisfying Eq. (4) (that is, theQi are in invo-
lution) one can find a complete solution of the HJ equation
(and, therefore, the solution of the equations of motion) with-
out having to use some special coordinate system. Indeed, if
we haven constants of motion

Qi = Qi(qj , pj , t), i = 1, 2, . . . , n (5)

(which may depend explicitly on the time), assuming that
these relations can be inverted to express thepi in terms of
Qj , qj , andt, we obtainn functionsFi such that

pi = Fi(qj , t, Qj). (6)

Substituting these expressions into the Hamiltonian we ob-
tain a function

H̃(qi, t, Qi) ≡ H(qi, Fi(qj , t, Qj), t). (7)

Then, treating theQi as constants, the linear differential form
Fidqi− H̃dt is exact, that is,Fidqi − H̃dt is the differential
of some functionS (which depends parametrically on theQi)

dS = Fidqi − H̃dt (8)

[cf. Eq. (2)] andS(qi, t, Qi) is therefore a complete solution
of the HJ equation. In the next section we give some exam-
ples, deferring the proof of the exactness ofFidqi − H̃dt to
Sec. 4.

3. Examples

In this section we give some illustrative examples of the pro-
cedure outlined above to find complete solutions of the HJ
equation.

3.1. The Kepler problem in two dimensions

As is well known, the HJ equation for the Kepler problem in
two dimensions, which corresponds to the Hamiltonian

H =
1

2m
(px

2 + py
2)− k√

x2 + y2
,

expressed in Cartesian coordinatesx, y, wherem is the mass
of the particle andk is a positive constant, is separable in
polar and parabolic coordinates (see,e.g., [1,6]) but it is not
separable in Cartesian coordinates.

SinceH is time-independent and invariant under rota-
tions about the origin,

Q1 ≡ H, Q2 ≡ xpy − ypx

(the total energy and the angular momentum about the ori-
gin) are constants of motion, which are in involution (as can
be seen from the fact that the angular momentum is a constant
of motion). Inverting these expressions one finds

px =
−Q2y ± x

√
2mQ1r2 + 2mkr − (Q2)2

r2
,

py =
Q2x± y

√
2mQ1r2 + 2mkr − (Q2)2

r2
,

wherer2 ≡ x2 + y2, which gives the functionsF defined by
Eq. (6). Thus, the right-hand side of Eq. (8) becomes

Q2 (−ydx + xdy)
r2

±
√

2mQ1r2 + 2mkr − (Q2)2

r2
(xdx + ydy)

or, equivalently,

Q2d
(
arctan

y

x

)

±
√

2mQ1 +
2mk

r
− (Q2)2

r2
dr.

This last expression is indeed the differential of a function,
which must be a complete solution of the HJ equation. It may
be noticed that this function is the sum of separate functions
of the polar coordinatesθ, r (which is a consequence of using
the angular momentum as one of the constants of motionQi).
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3.2. A time-dependent Hamiltonian

Now we shall consider the time-dependent Hamiltonian

H =
p2

2m
− ktx, (9)

wherek is a constant. The corresponding HJ equation is not
separable, but one can readily verify that

Q ≡ p− kt2/2

is a constant of motion (note thatQ depends explicitly on the
time). Hence

F (x, t,Q) = Q + kt2/2

and

H̃(x, t, Q) = (1/2m)(Q + kt2/2)2 − ktx.

Then, it can readily be verified that the differential form

Fdx− H̃dt =
(

Q +
kt2

2

)
dx

−
[

1
2m

(
Q +

kt2

2

)2

− ktx

]
dt

is exact and that it is the differential of the function

S = Qx +
1
2
kt2x− 1

2m

(
Q2t + Qk

t3

3
+ k2 t5

20

)
, (10)

which is, therefore, a complete solution of the HJ equation.
It may be noticed that this function is not the sum of separate
functions ofx andt.

From Eqs. (3) and (10) one finds a second constant of
motion

−P =
∂S

∂Q
= x− Qt

m
− kt3

6m
.

As usual, the values ofQ andP are determined,e.g., by the
initial conditions, and the formulas above give the solution of
the equations of motion.

This example is also interesting because the Schrödinger
equation corresponding to the Hamiltonian (9) cannot be
solved by separation of variables, but it turns out that
ψ=exp(iS/~), with S given by Eq. (10), is a solution of this
equation.

3.3. Two constants of motion that are not in involution

The Hamiltonian

H =
px

2 + py
2

2m
+ mgy (11)

corresponds to a particle of massm in a uniform gravitational
field in Cartesian coordinates and one can readily verify that
the two functions

Q1 ≡ px, Q2 ≡ pxpy

m
+ mgx (12)

are constants of motion (as well as the Hamiltonian itself).
Making use of the standard definition of the Poisson bracket
({x, px} = 1 = {y, py}) one finds that{Q1, Q2} is different
from zero and therefore these two constants of motion do not
seem suitable to find a complete solution of the HJ equation.

However, bydefiningthe Poisson bracket in such a way
that

{x, py} = 1 = {y, px}, (13)

Q1 andQ2 are in involution. But, then, taking into account
that px is the momentum conjugate toy andpy is the mo-
mentum conjugate tox, in order to reproduce the equations
of motion

ẋ = px/m, ẏ = py/m, ṗx = 0, ṗy = −mg,

in place of (11), we have to useQ2 as the Hamiltonian; in
fact,

ẋ =
∂Q2

∂py
, ẏ =

∂Q2

∂px
, ṗx = −∂Q2

∂y
, ṗy = −∂Q2

∂x

(see Ref. 7 for details).
Thus

px = Q1, py =
m(Q2 −mgx)

Q1

and [performing the appropriate changes on the right-hand
side of Eq. (8)]

dS =
m(Q2 −mgx)

Q1
dx + Q1dy −Q2dt

must yield a complete solution of the HJ equation (corre-
sponding to the new HamiltonianQ2).

3.4. Application to second-order ODEs

Following the algorithm given in Ref. 5, any second-order
ODE, or any system of two first-order ODEs, can be ex-
pressed in the form of the Hamilton equations in an infinite
number of different ways. Then, any constant of motion is
useful to apply Liouville’s Theorem, and one can make use
of the complete solution of the HJ equation thus obtained to
find a second constant of motion and, therefore, the general
solution of the original ODE or ODEs.

For instance, in Ref. 5 the Emden–Fowler equation
(which arises in the study of a self-gravitating gas)

ẍ +
2ẋ

t
+ xk = 0,

wherek is a constant, has been considered, showing that it is
equivalent to the Hamilton equations with

H =
p2

2t2
+

t2qk+1

k + 1
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andq = x, p = t2ẋ, as can be readily verified. It was also
shown that in the particular case wherek = 5,

Q ≡ 3p2

t
+ 3pq + t3q6

is a constant of motion. Inverting this last expression, one
finds

p = F (q, t,Q) =
t

6
(− 3x±

√
9q2 − 12t2q6 + 12Q/t

)

and the right-hand side of Eq. (8) takes the form

d
(
−u

4
− Q

6
ln |t|

)
± 1

12

√
9− 12u2 + 12Q/u du,

with u ≡ q2t. Clearly, this differential form is the differen-
tial of a function, which must be a complete solution of the
HJ equation (it may be noticed that this function is the sum
of separate functions ofq2t andt).

A second constant of motion, which together withQ,
yields the complete solution of the original equation, is given
by

−P =
∂S

∂Q
= −1

6
ln |t| ± 1

2

∫
du√

9u2 − 12u4 + 12Qu
.

4. Proof of the Liouville theorem

We shall prove that, ifQ1, . . . , Qn aren functionally inde-
pendent constants of motion, and the original momentapi

can be expressed in the formpi = Fi(qj , t, Qj), the differ-
ential formFidqi − H̃dt is exact if and only if theQi are in
involution. According to the standard criterion, this differen-
tial form is exact if and only if

∂Fi

∂qj
=

∂Fj

∂qi
, i, j = 1, 2, . . . , n (14)

and

∂Fi

∂t
= −∂H̃

∂qi
, i = 1, 2, . . . , n (15)

(these last equationslook likehalf of the Hamilton equations,
but, as we shall see, they hold as a consequence of the con-
stancy of theQi).

Substitution of the relationspi = Fi(qj , t, Qj) into the
expressions for the constants of motionQi give the equations

Qi = Qi(qj , Fj(qk, t, Qk), t)

which have to hold identically; hence, making use of the
chain rule, we obtain

0 =
∂Qi

∂qm
+

∂Qi

∂pk

∂Fk

∂qm
, (16)

and

0 =
∂Qi

∂t
+

∂Qi

∂pk

∂Fk

∂t
. (17)

Making use of Eq. (16) we find that

{Qi, Qj} =
∂Qi

∂qm

∂Qj

∂pm
− ∂Qj

∂qm

∂Qi

∂pm

= −∂Qi

∂pk

∂Fk

∂qm

∂Qj

∂pm
+

∂Qj

∂pk

∂Fk

∂qm

∂Qi

∂pm

= −∂Qi

∂pk

∂Fk

∂qm

∂Qj

∂pm
+

∂Qj

∂pm

∂Fm

∂qk

∂Qi

∂pk

=
∂Qi

∂pk

∂Qj

∂pm

(
∂Fm

∂qk
− ∂Fk

∂qm

)
,

so that{Qi, Qj} = 0 if and only if Eqs. (14) hold.
Similarly, from the definition ofH̃ we have

∂H̃

∂qi
=

∂H

∂qi
+

∂H

∂pj

∂Fj

∂qi
, (18)

and the fact thatQi is a constant of motion amounts to

0 =
∂Qi

∂t
+

∂Qi

∂qm

∂H

∂pm
− ∂Qi

∂pm

∂H

∂qm
.

Substituting Eqs. (16), (17), and (18) into this last equation
we find that

0 = −∂Qi

∂pk

∂Fk

∂t
− ∂Qi

∂pk

∂Fk

∂qm

∂H

∂pm

− ∂Qi

∂pm

(
∂H̃

∂qm
− ∂H

∂pk

∂Fk

∂qm

)

= −∂Qi

∂pk

(
∂Fk

∂t
+

∂H̃

∂qk

)

− ∂Qi

∂pk

∂H

∂pm

(
∂Fk

∂qm
− ∂Fm

∂qk

)
,

thus completing the proof.

5. Conclusions

The Liouville theorem allows one to get then complementary
constants of motion to a given set ofn constants of motion
of a system withn degrees of freedom, without having to use
some particular coordinate system. Among other things, the
results presented here show the usefulness of having various
symplectic structures (and Hamiltonians) for a given mechan-
ical system and of expressing an arbitrary second-order ODE
in the form of the Hamilton equations.
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