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We give an elementary proof of the Liouville theorem, which allows us to obtaionstants of motion in addition te given constants of

motion in involution, for a mechanical system withdegrees of freedom, and we give some examples of its application. For a given set

of n constants of motion that are not in involution with respect to the standard symplectic structure, there exist symplectic structures with
respect to which these constants will be in involution and the Liouville theorem can then be applied. Using the fact that any second-order
ordinary differential equation (not necessarily related to a mechanical problem) can be expressed in the form of the Hamilton equations, the
knowledge of a first integral of the equation allows us to find its general solution.
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Se da una prueba elemental del teorema de Liouville, el cual permite obtermgrstantes de movimiento adicionales @onstantes de
movimiento en involudn dadas, para un sistema raeizo conn grados de libertad, y se dan algunos ejemplos de su aglitaPiara un
conjunto dado de constantes de movimiento que no&sen involuddn con respecto a la estructura siégilca esindar, existen estructuras
simplecticas con respecto a las cuales estas constante@nestainvoluddn y puede aplicarse entonces el teorema de Liouville. Usando el
hecho de que cualquier ecuawidiferencial ordinaria de segundo orden (no necesariamente relacionada con un problanieonpaede
expresarse en la forma de las ecuaciones de Hamilton, el conocer una primera integral deda peuadie hallar su solumn general.

Descriptores: Ecuacon de Hamilton—Jacobi; constantes de movimiento; estructurasésitigals.

PACS: 45.20.Jj; 02.30.Jr; 02.30.Hqg

1. Introduction Poisson brackets are all equal to zero, as Liouville found by
1855 [2]. In the case where there is only one degree of free-
The Hamilton-Jacobi (HJ) equation provides a powerfulgom, the Liouville theorem can be applied making use of an
method to solve various problems of classical mechanicgrpitrary constant of motion, since the Poisson bracket of a
(see,e.g, Refs. 1 and 2) as well as to relate different prob-function with itself is trivially equal to zero.
lems [3]. As is well known, given a Hamiltonian for a me-  The ajm of this paper is to give an elementary proof of Li-
chanical system with: degrees of freedom, the knowledge o ville’s theorem, with some illustrative examples of its ap-
of a complete solution (that is, a solution containin@on-  pjication finding complete solutions of the HJ equation, with-
additive arbitrary constants) of the corresponding HJ €quagt relying on an specific coordinate system (by contrast with
tion allows one to obtain the solution of the equations of Mothe method of separation of variables). When onerhasn-
tion. Then arbitrary parameters contained in a complete Soxants of motion that are not in involution, it is still possible
lution of the HJ equation are then constants of motion, thay find a different symplectic structure (that is, another defini-
are identified with half of a new set of canonical coordinatesijon, of the Poisson bracket) so that these constants of motion
Usually, the complete solutions of the HJ equation areye in involution. Since any second-order ordinary differential
obtained by means of separation of variables, which requiregquation (ODE), or any pair of first-order ODES, can be ex-
expressing this equation in a suitable coordinate system (Segressed in the form of the Hamilton equations (in an infinite
e.g, Refs. 1 and 2). Actually, in most textbooks on classicalnymber of different ways) [5], with the aid of Liouville's the-
mechanics the method of separation of variables is the onlyrem making use of a first integral one can find the complete
one employed to solve the HJ equation. (Similarly, in mostyqytion.
textbooks on quantum mechanics, the only method employed | sec. 2 we state the Liouville theorem stressing its anal-
in the solution of the Sclidinger equation is that of separa- ogy with the procedure followed in the use of a complete so-
tion of variables.) Nevertheless, there exist some other methytion of the HJ equation in the solution of the equations of
ods for solvingfirst-order partial differential equations (see, ,otion. Section 3 contains four examples of the application

e.g, Ref. 4) such as the HJ equation. In one of these lessst the | jouville theorem and in Sec. 4 an elementary proof of
known methods, when applied to the HJ equation, one hag,e Theorem is given.

to express the canonical momenta in terms of the coordinates

andn constants of motion; a complete solutio, of the

HJ equation can then be obtained frdifi = p;dg* — Hdt. 2. The Liouville theorem

However, it turns out that the expression on the right-hand

side is an exact differential if and only if the constants of mo-In this section we begin by recalling some basic facts related
tion employed in this process are in involution, that is, theirwith the application of the complete solutions of the HJ equa-
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tion and we show that, in a certain sense, the same steps ap- Examples
pear in the Liouville theorem but in the opposite order.

For a given Hamiltoniarf (¢, p;, t) of a system with  In this section we give some illustrative examples of the pro-
degrees of freedom, the corresponding HJ equation, in itsedure outlined above to find complete solutions of the HJ
standard form, is the first-order partial differential equation equation.

H(qﬁg‘i,t) +%‘j=0. (1)

e . 4 3.1. The Kepler problem in two dimensions

A complete solution of this equation is a functisify’, ¢, Q")

containingn non-additive arbitrary paramete€d',.... Q" aAs s well known, the HJ equation for the Kepler problem in

that satisfies Eq. (1). Under the appropriate regularity cong,q dimensions, which corresponds to the Hamiltonian
ditions, such a function generates a canonical transformation

relating the original canonical coordinatgs p; with a new 1 ) ) k
i i i P i H=_—(p y ) )
set pf carjonlcal coordlnateé'sl,l?z, WhICh are constants of om (P2” +py”) \/m
motion (since the new Hamiltonian is equal to zero), accord-
ing to . . . .
i N expressed in Cartesian coordinateg, wherem is the mass
_ dS = pidg’ — Hdt — RdQ', (2) of the particle and: is a positive constant, is separable in
that s, polar and parabolic coordinates (seqg, [1,6]) but itis not
oS oS i i i .
b= 22 p— 95 i=1.2...0 () sepa.rable |n_Ca.rteS|.an coordinates . _
0q* Q" Since H is time-independent and invariant under rota-
(seee.g, Refs. 1 and 2). tions about the origin,
Since theQ?, P; are canonical coordinates, the Poisson
brackets among th@’ are all equal to zero Q' =H, Q* = xp, — Yps
{@ @ =0, ij=L2..n (4)

) i ) . (the total energy and the angular momentum about the ori-
As pointed outin the Introduction, the complete solutionSginy are constants of motion, which are in involution (as can

of the HJ equation are usually obtained by separation of varipg geen from the fact that the angular momentum is a constant
ables, in which case the separation constants can be tak%"f‘motion) Inverting these expressions one finds

as theQ?, but the application of this method requires an ap-
propriate choice of the coordinates p;. As we shall show,

_ Q= z/2mQ 2 + 2mkr — (Q?)2

given a set of functionally independent constants of motion Da 5 ;

Q',...,Qn, satisfying Eq. (4) (that is, th@® are ininvo- r

lution) one can find a complete solution of the HJ equation Q%+ y/2mQ1r? + 2mkr — (Q?)?

(and, therefore, the solution of the equations of motion) with- Py = 72 )

out having to use some special coordinate system. Indeed, if

we haven constants of motion wherer? = 22 + y2, which gives the functiong’ defined by

i i g . Eq. (6). Thus, the right-hand side of Eq. (8) becomes

Q' =Q@p.1). i=12..m ¢ FO 9 @)

(which may depend explicitly on the time), assuming that o (—ydz + zdy)

these relations can be inverted to expresspthie terms of Q r2

7. ¢7, andt, btainn functionsF; h that
@, ¢’, andt, we obtainn unc'lons 4 such tha \/ZmQ1r2 S = (Q7)?
pi = Fi(d t,Q). (6) + 2 (ad + ydy)

Substituting these expressions into the Hamiltonian we ob- valentl
tain a function or, equivalently,

ﬁ(qivthi) EH(qlaFl(qjathj)vt) (7) de (arctang)
Then, treating th€)’ as constants, the linear differential form t
F;dq' — Hdt is exact, that isF,d¢' — Hdt is the differential N \/ ool 1 2k (@2
of some functiors (which depends parametrically on t&é) m@* + T2 9
dS = F,d¢’ — Hdt (8)

This last expression is indeed the differential of a function,
[cf. Eq. (2)] andS(q¢', t, Q') is therefore a complete solution which must be a complete solution of the HJ equation. It may
of the HJ equation. In the next section we give some exambe noticed that this function is the sum of separate functions
ples, deferring the proof of the exactnessFollg' — Hdtto  of the polar coordinates r (which is a consequence of using
Sec. 4. the angular momentum as one of the constants of m@}ion
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3.2. Atime-dependent Hamiltonian are constants of motion (as well as the Hamiltonian itself).
] ] o Making use of the standard definition of the Poisson bracket
Now we shall consider the time-dependent Hamiltonian ({z,pa} = 1 = {y,p,}) one finds tha{Q', Q?} is different

»? from zero and therefore these two constants of motion do not

H = _— — ktz, (9)  seem suitable to find a complete solution of the HJ equation.

2m
. ) . However, bydefiningthe Poisson bracket in such a way
wherek is a constant. The corresponding HJ equation is NOp At

separable, but one can readily verify that

{z,py} =1={y,p.}, (13)
— 2
= - 2 . . . . .
@=p—kt/ Q"' and@? are in involution. But, then, taking into account
is a constant of motion (note th@tdepends explicitly on the thatp, is the momentum conjugate tpandp, is the mo-
time). Hence mentum conjugate ta, in order to reproduce the equations
of motion

F(x,t,Q) = Q + kt?/2
x :pz/m7 Y= py/m7 Pe =0, py = —mg,

and
ﬁ(x £,.Q) = (1/2m)(Q + kt2/2)? — ktx in place of (11), we have to usg? as the Hamiltonian; in
T ' fact,
Then, it can readily be verified that the differential form
k2 = 00" Y= 06 Pz = —LQ? Dy = —7(9@2
Fdz — Hdt = <Q + ;) da opy’ op. " oy MY oz
9 (see Ref. 7 for details).
1 kt? Th
—|— Q@+ =) —ktz|dt us
2m 2

, . : . : _ ot _ m(Q* — mgx)
is exact and that it is the differential of the function P =Q, by = Q!

3 5

S =Qx+ %kt% - (QQt + Qk% + kQ;O) , (10)  and [performing the appropriate changes on the right-hand
side of Eq. (8)]

which is, therefore, a complete solution of the HJ equation.

It may be noticed that this function is not the sum of separate ds = m(Q* — mgx) dz + Q'dy — Qdt

functions ofz andt. Q!

From Egs. (3) and (10) one finds a second constant of . . .
motion must yield a complete solution of the HJ equation (corre-

sponding to the new Hamiltonia®?).

1
2m

08 Qt  kt?

—P=_ =X -

oQ m  6m
As usual, the values @p and P are determineds.g, by the _ _ _ _
initial conditions, and the formulas above give the solution ofFollowing the algorithm given in Ref. 5, any second-order
the equations of motion. ODE, or any system of two first-order ODEs, can be ex-
This examp|e is also interesting because the ﬁjhger pressed in the form of the Hamilton equations in an infinite
equation corresponding to the Hamiltonian (9) cannot b&umber of different ways. Then, any constant of motion is
solved by separation of variables, but it turns out thatuseful to apply Liouville’s Theorem, and one can make use
Y=exp(iS/h), with S given by Eq. (10), is a solution of this Of the complete solution of the HJ equation thus obtained to

3.4. Application to second-order ODEs

equation. find a second constant of motion and, therefore, the general
solution of the original ODE or ODEs.
3.3. Two constants of motion that are not in involution For instance, in Ref. 5 the Emden—Fowler equation

(which arises in the study of a self-gravitating gas)
The Hamiltonian
pa” + 1y
2m
corresponds to a particle of massin a uniform gravitational ~Wherek is a constant, has been considered, showing that it is
field in Cartesian coordinates and one can readily verify thagduivalent to the Hamilton equations with
the two functions

.21 k
H— .13—|—7-|-l‘ =0,

+ mgy (12)

p2 t2qk+1
T H = —
Q'=p, @F=Fimge  (12) 22 k1
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andg = z, p = 2, as can be readily verified. It was also and

shown that in the particular case whére- 5, 0= Q' . Q" OFy (17)
- ot Op, Ot
Q= % + 3pg + t3¢° Making use of Eq. (16) we find that
is a constant of motion. Inverting this last expression, one Q' Qi) = Q' 0 9Q’ 9Q'
finds ’ - Aq™ Opm, g™ Opy,
t 0Q' OF;, 07  0Q7 OF, 0Q"°
p=F(q,t,Q) = —(— 3z £ 1/9¢2 — 12t2¢5 + 12Q/t - _ k
6l ) Op ¢ Opm ~ Opr. Og™ Opm
and the right-hand side of Eq. (8) takes the form 0Q! OF, 0Q7  8Q7 OF,, 0Q"
U Q 1 ~ Opk 99" Opm Opm OgF Op
d{——-——=Inlt| )| £ —= —12u2 4+ 12 d . .
( 16 ™ ') 13 V0~ 12 +12Q/udu, 0Q QY (aFm 8Fk>
- ko m |’
with « = ¢?t. Clearly, this differential form is the differen- AN %
tial of a function, which must be a complete solution of thegq that{Q’, @7} = 0 if and only if Egs. (14) hold.
HJ equation (it may be noticed that this function is the sum Similarly, from the definition ofil we have
of separate functions @ft andt). '
A second constant of motion, which together with OH OH 0H OF;
yields the complete solution of the original equation, is given o = oq + op: O (18)
by /
b 9S 1 e £ 1 / du and the fact thaf)’ is a constant of motion amounts to
— = — = —— In —_ .
oQ 6 2) /9u? — 12ut + 12Qu . 80"  8Q' OH  9Q' 9H

o ot ' 9g™ Opm  Opm g™
4. Proof of the Liouville theorem o _ _ _
Substituting Eqgs. (16), (17), and (18) into this last equation

We shall prove that, ifQ!,..., Q" aren functionally inde-  we find that
pendent constants of motion, and the original momenta i i
can be expressed in the forp = Fi(¢7,t,Q%), the differ- 0= _8Q @ — oQ %Bi
ential form F;dq* — Hdt is exact if and only if the)? are in Ipr, 0t Ipy, Oq™ Ipm
involution. According to the standard criterion, this differen- oQ" (OH  0H 9F,
tial form is exact if and only if ) m Jp Jom
pm \ 09 Opi Oq
0F; _ OF; C . ~
Opr, \ Ot  OgF
and
- 0Q* OH (0F, OF,
aFi:—afH, i=1,2,....n (15) ~ 9pr. Ipm <8qm_ 0qk>’
ot aqt

(these last equationsok like half of the Hamilton equations, thus completing the proof.

but, as we shall see, they hold as a consequence of the con-
stancy of they)?"). o 5. Conclusions

Substitution of the relationg; = F;(¢,t, Q) into the
expressions for the constants of motighgive the equations  The Liouville theorem allows one to get the&complementary

; i i . constants of motion to a given set ofconstants of motion
Q' =Q'(d, F(q",1,Q%),1) of a system witlh degrees of freedom, without having to use

some particular coordinate system. Among other things, the
results presented here show the usefulness of having various
symplectic structures (and Hamiltonians) for a given mechan-

Q" 0Q! OF, ical system and of expressing an arbitrary second-order ODE
T 9qm | Opr Og™’ (18) " in the form of the Hamilton equations.

which have to hold identically; hence, making use of the
chain rule, we obtain

0
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