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The 1-dimensional confined harmonic oscillator revisited

N. Aquino and E. Cruz
Departamento de F́ısica, Universidad Aut́onoma Metropolitana–Iztapalapa,

Av. San Rafael Atlixco 186, Col. Vicentina, 09340, Ciudad de México, Ḿexico.
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We study the size effect on the energy levels of the1–dimensional harmonic oscillator confined within a box of with impenetrable walls and
largeL. We use the particle in a box basis set to diagonalize the Hamiltonian of the confined harmonic oscillator. In this way we obtain the
energy eigenvalues and eigenfunctions as a functions ofL. We compare our numerical results with those reported in literature finding good
agreement with the exact ones.
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1. Introduction

The idea of the spatial confinement of quantum systems has
gained growing interest in recent years due to its potential
ability to model a great number of applications in different
areas of Physics and Chemistry, as it is shown in several re-
views and books [1-8].

A spatially confined quantum system is defined as that in
which its state functions satisfy certain boundary conditions
for a finite value of the spatial coordinates [1]. The one–
dimensional (1–D) harmonic oscillator limited by impenetra-
ble walls is called 1–D confined harmonic oscillator (CHO).

The 1-D confined harmonic oscillator has been used as
a model to study some more complicated systems, as for ex-
ample: the proton–deuteron transformation to generate en-
ergy in dense stars [9-10]; in the theory of white dwarfs [11];
in the escape velocity of a star from a galaxy or a globu-
lar cumulus [12]; in the calculation of the specific heat of a
crystal subjected to high external pressures [14]; in magnetic
properties of metals [15]; in the study of color centers. More
recently, the dynamics of a CHO subjected to a static elec-
tric field and a strong laser field has been studied [39], it has
called attention because it could be used to understand some
aspects of the dynamics of ions caught in a Paul trap and in
the study of the time of the revival of a particle in a CHO.
Also few studies have been made on the transition probabil-
ities and Einstein coefficients of the 1-D confined harmonic
oscillator [20,34,35] as a function of the box size, showing
that new allowed transitions appear as a result of the confine-
ment, this fact may be of technological interest.

Perhaps the first ones who studied the problem of
the 1–D confined harmonic oscillator were Kothari and
Auluck [9-11]. In the decade of the 40’s. They found that
the eigen-functions of the system could be written in terms
of Kummer’s functions. To obtain the values of the energy
they needed to find the zeroes of the confluent hypergeomet-
ric function. They decided to carry out expansions and ap-
proaches to the hypergeometric function to obtain an analyt-
ical expression for the energy as a function of box size. They
found the correct qualitative behavior; the energy of the levels

of the CHO increases fast as the size of the box diminishes.
Few years ago Baijal and Singh [20] decided to get the ze-
roes of the hypergeometric function in a numerical way but
their results were not accurate. Vawter [26,27] improved the
numerical results found by Baijal and Singh [20]. At the be-
ginning of 1980, Aguilera-Navarroet al. [30] used the linear
variational method to find, in a numerical way, the eigen–
energies and eigen–functions of the CHO problem. They di-
agonalized the Hamiltonian matrix in the basis set of the free
particle in a box of impenetrable walls. They obtained nu-
merical values more accurate than those reported previously.
However, the accuracy of their results is lower than the num-
ber of decimals that they reported.

The purpose of this work is to show the way in which the
results of Aguilera–Navarroet al. [30] can be improved.

The content of this work is as follows: In Sec. 2 we
present the exact solution of the CHO problem. In Sec. 3 we
use the linear variational method to obtain the energy eigen-
values. Finally, in section 4 we discuss our results and we
give our conclusions.

2. The exact solution

The Schr̈odinger equation for thefree 1-D harmonic oscilla-
tor (in natural units,m = ω = ~ = 1) is given by

(
−1

2
d2

dx2
+

1
2
x2

)
ψ(x) = Eψ(x), (1)

where the unit of the distance is
√
~/mω and the energy is in

units of~ω.
In order to find the solutions of Eq. (1) we make the fol-

lowing substitution

ψ(x) = f(x)e−
1
2 x2

, (2)

wheref(x) satisfies the following equation

d2f(x)
dx2

− 2x
df(x)
dx

+ (µ− 1)f(x) = 0, (3)

whereµ = 2E.
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Now we make a change of variable, by defining

ρ = x2, (4)

then the Eq. (3) is transformed to

ρ
d2f(ρ)

dρ2
+

(
1
2
− ρ

)
df(ρ)
dρ

− 1
4
(1− µ)f(ρ) = 0. (5)

This equation is identified as the Kummer differential
equation. Its general solution, in terms ofx, is given by:

f(x) = a 1F1

[
1
4
(1− 2E);

1
2
; x2

]

+ bx 1F1

[
1
4
(3− 2E);

3
2
;x2

]
, (6)

wherea andb are constants and1F1 is the hypergeometric
function [37,38].

The potential energy of Eq. (1) is a symmetric function of
x, therefore the eigenstates of the Schrödinger equation have
definite parity; odd or even.

ψ+(x) = Ae−x2/2
1F1

[
1
4
(1− 2E);

1
2
; x2

]
,

ψ−(x) = Be−x2/2 x 1F1

[
1
4
(3− 2E);

3
2
; x2

]
, (7)

where+ and− indicate even and odd parity respectively.
In order that the wave functions do not diverge asx →

±∞, the hypergeometric function must terminate, this fact
requires that there exist some non negative integern such
that

E = n +
1
2
, n = 0, 1, 2, 3, ... . (8)

On the other hand, the exact solutions for the1–D con-
fined harmonic oscillatorare well known [9,10,20,21,25,30],
they are obtained as follows. When the harmonic oscillator
is symmetrically confined in a box, of lengthL = 2a, of
impenetrable walls, the energy quantization results from the
boundary conditions on the wave functions

ψ±(x = −a) = ψ±(x = a) = 0. (9)

TABLE I. Ground state energy for 1–D confined harmonic oscillator for few statesn and different box sizesa. In the first row are the
calculations of Aguilera–Navarroet al. [30]. In the second row are the calculations of the present work, all calculations were carried out with
N = 35 functions of the basis set. Finally, in the third row are the exact results obtained with the method described in the Sec. 2 and in the
references [16,17].

n = 1, a = 0.5 n = 1, a = 1.0 n = 1, a = 5.0

4.951129323264 1.298459831928 0.4999999999

4.951129323254131 1.298459832032074 0.500000000076717

4.951129323254130411 1.298459832032056693 0.500000000076717131

n = 2, a = 0.5 n = 2, a = 1.0 n = 2, a = 5.0

19.774534178560 5.075582014976 1.5000000035

19.774534179208319 5.075582015226848 1.500000003671584

19.774534179208319898 5.075582015226783066 1.500000003671583931

n = 3, a = 0.5 n = 3, a = 1.0 n = 3, a = 5.0

44.452073828864 11.258825780608 2.500000083

44.452073829740951 11.258825781483075 2.500000084018827

44.452073829740951520 11.258825781482910495 2.500000084018818194

n = 4, a = 0.5 n = 4, a = 1.0 n = 4, a = 5.0

78.996921150976 19.8996964993 3.50000122

78.996921150747461 19.899696501830355 3.500001221456171

78.996921150747460050 19.899696501830088806 3.500001221456053750

n = 10, a = 0.5 n = 10, a = 1.0 n = 10, a = 5.0

493.521634054144 123.53575010 9.53657297

493.521634068787858 123.535750114017713 9.536572972710428

493.521634068787881046 123.535750114015911050 9.536572970482361980

n = 20, a = 0.5 n = 20, a = 1.0 n = 20, a = 5.0

1973.962483650560 493.6466444 24.0826131

1973.962483731369757 493.646644463589652 24.082613154145415

1973.962483731369659659 493.646644463580497219 24.082613059260975237
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The eigen–energies are found as the successive roots of
the following equations:

1F1

[
1
4

(1− 2E) ;
1
2
; a2

]
= 0, for even states

1F1

[
1
4

(3− 2E) ;
3
2
; a2

]
= 0, for odd states (10)

To determine the energy eigenvalues from these equa-
tions, it is necessary to solve numerically for one of the
boundary conditions (9) according to the symmetry of the
problem. The allowed energies can be determined with high
accuracy by using some computer algebra system, Mont-
gomeryet al. [16-17] used Maple but we can use Mathemat-
ica or a Fortran compiler with subroutines of extended preci-
sion. The numerical results obtained by solving the Eq. (10)
with Mathematica 9 are reported in Table I.

3. Linear variational approach

The Schr̈odinger equation independent of time is given by

HΨ = EΨ. (11)

We use the linear variational method to solve the eigen-
value Schr̈odinger equation. The wavefunctionΨ is ex-
panded as

Ψ =
N∑

i=1

ciφi. (12)

where{ci} are constants to determine and{φi} is an or-
thonormal basis set.

The solution of eigen–value problem (Eq. 11) is equiva-
lent to find the solutions of

(H− EI)~c = 0, (13)

where~c = (c1, c2, c3, ..., cN ) is the vector of coefficients and
I is the identity matrix, and

Hij = 〈φi|H|φj〉 , (14)

are the elements of the Hamiltonian matrix.

It is convenient to write the CHO Hamiltonian in the fol-
lowing way:

H = H0 + H ′. (15)

WhereH
′

= (1/2)x2 andH0 is the Hamiltonian of a
free particle in a box:

H0 =
p2

2
+ Vc , (16)

in which the potential is given by

Vc =

{
0, |x| < a

∞, |x| > a .
(17)

The energy eigenvaluesE0
n and eigenfunctionsφn of H0

are well known:

E0
n =

n2π2

8a2
, (18)

and

φn(x) =

{ √
1/a cos(nπx/2a), n = 1, 3, 5, ...

√
1/a sin(nπx/2a), n = 2, 4, 6, ... .

(19)

The Hamiltonian matrix elements are:

Hij = H0
ij + H

′
ij , (20)

in which

H0
ij = E0

i δij , (21)

whereδij is the Kronecker delta.
The HamiltonianH (Eq. 15) is symmetric, therefore its

eigen–functions have definite parity,evenor odd. For even
(odd) states, the expansion in (Eq. 12) includes only even
(odd) states as given by Eq. (19).

The matrix elementsH
′
ij are analytical.

For even states they are:

H
′
ij =





L2
(−6 + (1− 2j)2π2

)

24(π − 2jπ)2
, if i = j

(−1)i+jL2
(

1
(i−j)2 − 1

(−1+i+j)2

)

4π2
, if i 6= j, i, j = 1, 2, 3, . . . .

(22)

Whereas for odd states we have

H
′
ij =





L2

48
(
2− 3

i2π2

)
if i = j

(−1)i+jL2 i j

(i2 − j2)2 π2
, if i 6= j, i, j = 1, 2, 3, . . . .

(23)

WhereL = 2a.
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4. Results and discussion

The diagonalization of the CHO Hamiltonian was al-
ready employed by Aguilera–Navarro, Ley-Koo and Zimer-
man [30] in 1980, and subsequently used again by Taseli and
Safer [36] at the end of the 90’s. In Table I we show the cal-
culations obtained in the present work with those obtained
by Aguilera–Navarroet al. [30] and with the exact ones [16].
Our calculations were made by using Mathematica 9 with
real variables with 25 decimal places. For comparison we
used the same number of basis set,N = 35, as Aguilera–
Navarroet al. [30].

We compare our results with the exact ones obtained by
Montgomeryet al. [16,17], and we find that the present cal-
culations have the precision shown in Table I.

In Table I we can see that the accuracy in the calcula-
tions of reference [30] is lower than the results of the present
study. The reason for this difference is due to the fact that
in the early 80’s the diagonalization subroutines were not as
efficient and accurate as they are today, and it could also be
due to the fact that the calculations with double precision real
variables could only handle 16 decimal places.

As we can see there is an improvement in the accuracy
of the energy eigenvalues for boxes witha <5. While for
a =5 the accuracy of results of the present report and those
of reference [30] is the same. To improve the accuracy of
the results of the present work it is necessary to increase the
number of functions of the basis set to reach the exact results.
In an Appendix we show the Mathematica procedure used to
obtain the results presented in this work.

appendix

(* Mathematica procedure to find the energy–eigenvalues *)

C l e a r [ ” G loba l∗ ” ]
d e l t a [ n , m ] : = Kronecke rDe l t a [ n , m] (∗ I d e n t i t y m a t r i x∗ )
( ∗ Even s t a t e s∗ )
v [ n , m ] : = 1 / \ [ P i ] ˆ 2 ( −1 ) ˆ (m + n ) a ˆ 2 ( 1 / (m− n ) ˆ 2 − 1 / ( −1 + m + n ) ˆ 2 ) / ; n ! =
m ; ( ∗ non−d i a g o n a l e l e men ts o f t h e harmonic o s c i l l a t o r p o t e n t i a l ( 1 / 2 ) x ˆ 2∗ )
v [ n , m ] : = ( a ˆ 2 (−6 + ( 1 − 2 n ) ˆ 2 \ [ P i ] ˆ 2 ) ) / ( 6 ( \ [ P i ] − 2 n \ [ P i ] ) ˆ 2 ) / ; n = = m; (∗
Diagona l e l e men ts o f t h e harmonic o s c i l l a t o r p o t e n t i a l ( 1 / 2 ) x ˆ 2∗ )
d [ n ] : = ( ( 2 n − 1 ) ˆ 2 \ [ P i ] ˆ 2 ) / ( 8 a ˆ 2 ) ; (∗ Energy e i g e n v a l u e s o f a p a r t i c l e i n a box∗ )

( ∗ Odd s t a t e s ; r e p l a c e t h e t h r e e f u n c t i o n s d e f i n e d b e f o r e by t h e f o l l o w i n l i n e s∗ )

v [ n , m ] : = ( 4 ( −1 ) ˆ (m + n ) a ˆ 2 m n ) / ( (m− n ) ˆ 2 (m + n ) ˆ 2 \ [ P i ] ˆ 2 ) / ; n ! = m ;
v [ n , m ] : = 1 / 1 2 a ˆ 2 ( 2 − 3 / ( n ˆ 2 \ [ P i ] ˆ 2 ) ) / ; n = = m;
d [ n ] : = ( ( 2 n ) ˆ 2 \ [ P i ] ˆ 2 ) / ( 8 a ˆ 2 )∗ )

Hnm[ n , m ] : = S e t P r e c i s i o n [N [ ( d [ n ] ) ( d e l t a [ n , m] ) + v [ n , m] , 2 5 ] , 2 5 ] ; (∗ Hami l t on ian
m a t r i x ∗ ) base = 3 5 ; (∗ Number o f f u n c t i o n s o f t h e b a s i s s e t∗ )
mat r izH = Tab le [Hnm[ n , m] ,{ n , 1 , base} , {m, 1 , base} ] ;
P r i n t [ TimeUsed [ ] ]
a = 0 . 2 ; (∗ Box l e n g h t∗ )
e n e r g i a s = S e t P r e c i s i o n [ E i g e n v a l u e s [ mat r izH ] , 2 5 ] ; (∗ Energy e i g e n v a l u e s∗ )
S o r t [ S e t P r e c i s i o n [ e n e r g i a s , 2 5 ] ]
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