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Electrostatic interaction of oppositely charged double layers
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We determined with anisotropic hypernetted chain theory the effective pressure and counterion excess of two oppositely charged surfaces
immersed in an electrolyte solution. These thermodynamic properties are enhanced in surfaces with evenly smeared surface charges with
respect to those containing confined mobile charges. For low surface charges and moderate reservoir salt concentration ions are expelled
from the slit between the planes. Depletion arises from ionic charge positional correlations. Its effect was determined through the number of
excess of counterions which displays a negative value in the range of low surface charge density. However, a Poisson-Boltzmann calculation
lead to positive definite counterion’s excess due to its lack of ionic correlations.
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Determinamos con la teorı́a cadena hipertejida anisotrópica la presíon efectiva y el exceso de contraiónes de dos superficies con cargas opues-
tas inmersas en un electrolito. Estas propiedades termodinámicas se incrementan en superficies con una distribución de carga uniforme que
con respecto a aquellas que contienen cargas confinadas discretas y mobiles. Para baja densidades superficiales de carga, y concentraciones
moderadas de sal en bulto, los iones son expelidos del espacio entre los planos. La reducción de iones se origina por la correlación posi-
cional entre las cargas. Y su efecto fue determinado con el número de contraiónes por exceso el cual adquiere valores negativos para bajas
densidades de carga superficial. Sin embargo la determinación del exceso de contraiónes con la ecuación de Poisson-Boltzmann conduce a
valores positivos debido a que ignora las correlaciones iónicas.

Descriptores: Electrolito; dobles capa; teorı́a de ĺıquido; modelo primitivo; coloides.

PACS: 61.20.Qg; 82.70.Dd; 68.37.-d; 68.15.+e

1. Introduction

In recent years has grown much interest on the effective elec-
trostatic interaction between oppositely planar charged sur-
faces in aqueous electrolyte solutions [1–5]. Since, it is con-
sidered to be an important mechanism that regulates self-
assembly of cationic lipid-DNA complexes [6], attachment
of biopolymer to cell membrane surface [7], and stability
of colloidal suspensions [8]. Most of the theoretical stud-
ies by other authors on this system has been conducted by
using the Poisson-Boltzmann (PB) theory [1, 2, 9]. Its in-
vestigation within mean field theory using 1:1 reservoir elec-
trolyte solutions, lead to the conclusion that equally strength
and oppositely charged surfaces are always attractive [10].
And asymmetrically charged planes can either attract or re-
pel as function of the magnitude of surface charge and dis-
tance of separation [10]. Yet, repulsion of asymmetrically
charged surfaces has been demonstrated experimentally with
the atomic force microscope in multivalent electrolytes [3]
and confirmed through Monte Carlo simulations [11].

The effective force between the surfaces is comprised of
the osmotic pressure due to the reservoir solution, steric and
direct electrostatic ion interactions, the short range van der
Waals attractive force and the counterion release force. Wag-
neret al [6] determined with osmotic stress techniques that a
major mechanism of DNA and lipids self-assembly is driven
by the large amount of released counterions from the macro-

molecular species. Thus, the system total free energy is low-
ered, and the counterions, which were previously confined
between the surfaces, are carried out into the bulk solution
when the macromolecules surfaces approach each other. The
contribution of the counterion release mechanism to the force
of two oppositely charged surfaces having a smooth distri-
bution of surface charges was determined numerically from
PB theory by Maier-Kollet al [1], and comprehensive scal-
ing relations for this property were provided by Safran [9].
Whereas the mean field study of the more general case of
asymmetrically charged membranes was performed by Ben
Yaakov et al [2]. However, real interacting surfaces such
as biological membranes have lateral inhomogeneous charge
distributions which induces positional density correlations.
In the present manuscript we investigated with the use of
the anisotropic hypernetted chain (AHNC) theory the total
pressure and counterion release due to ion-ion correlations
and discrete surface charge distribution. The model system
is made of two similarly charged planes of opposite sign in
high monovalent saline solutions and with low up to moder-
ate surface charge. We find important differences between
mean field and liquid theory which appear at high salt con-
tent and low surface charge. Hypernetted chain theory pre-
dicts depletion of ions from the slit between the surfaces for
low charged plates. Depletion originates from pair ionic cor-
relations that are not taken into account by mean field the-
ory. Correlated density fluctuations arise from hard core and
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electrostatic pair direct interactions. Thus, the resulting total
counterion and coion concentrations in the slit may become
much lower than their bulk saline values. On the other hand,
the net pressure between the plates as predicted from AHNC
is larger for a smooth density of surface charge than for sur-
faces having discrete mobile charges.

1.1. Model system and theory

Consider the system consisting of two surfaces with equal
magnitude of surface charge|σ| and of opposite sign sepa-
rated the mean distanceL by an 1:1 electrolyte in water of
dielectric constantε = 78.5. The surfaces have the same di-
electric constant as the continuous solvent. In the aqueous
phase all ions have the same hydrated diameterd = 4.25 Å,
therefore, the source field of an ion of speciesi at a distance
r3D is

ui(r3D) =

{
qi

εr3D
, r3D > d

∞, r3D < d,
(1)

where it has been included a hard core to avoid overlapping
between the spheres andr3D =

√
r2 + z2. qi = evi is the

charge on spherei, with vi = ±1 being its valence, ande be-
ing the electronic charge.r is the radial distance on one sur-
face from the ion to the origin of coordinates. For the case of
surfaces bearing discrete charges we consider that each plate
has a liquidlike equilibrium distribution of these same sized
spheres. We shall not consider neither image charge effects
nor the negligible weak van der Waals interactions. At ther-
mal equilibrium the microstructure of the system is obtained
from the Ornstein-Zernike equation [12]

hij(r, z1, z2) = cij(r, z1, z2)

+ Σγ

∫
drdz3ciγ(r, z1, z3)nγ(z3)hγj(r, z3, z2), (2)

wherehij = gij−1 andcij are the total and direct correlation
functions respectively, which are obtained self-consistently
by the closure relation

gij(r, z1, z2) = exp[hij(r, z1, z2)

− cij(r, z1, z2)− βui(r3D)qj ]. (3)

gij is the pair correlation function.β = 1/kBT , andkB is
the Bolztmann’s constant andT = 298 K is the room tem-
perature. The profile density of ions in the normal direction
to the surfaces is determined from [13,14]

ni(z1) =
exp[βµi]

Λ3
i

exp
[
− βqiψ(z1)− Σj

∫
drdz2n

j(z2)

×
(

1
2
h2

ij(r, z1, z2)− cij(r, z1, z2)− βui(r, z1, z2)qj

)]

+
1
2

[hij(0, z1, z1)− cij(0, z1, z1)] , (4)

whereµi is the ion’s chemical potential that in thermody-
namic equilibrium reaches a constant value, whileΛi ≡ Λ is
its thermal wave length, which is assumed to be the same for
all ionic species. In the above equation

qiψ(z1) = −4π
qi

ε
σ

[
z1 − L

2

]

− 2π
qi

ε
Σj

∫
dz2|z1 − z2|nj(z2)qj , (5)

whereψ(z1) is the average electric field in the electrolyte
phase at positionz1 [13]. We obtained converged solution
of Eq. (2) self-consistently with the use of Eqs. (3)-(5) and
using a cut off for the long range tail inhij andcij that orig-
inates from the Coulomb potential [12] (see Appendix). In
all our numerical results for AHNC theory, we imposed the
overall electroneutrality in the system

Zmax∫

Zmin

dz[+en+(z)− en−(z)] + σ − |σ| = 0, (6)

which allows for the exact match of the different ion’s chem-
ical potentials that result from the ionic equilibrium with the
reservoir electrolyte, thus,µ+=µbulk

± +χ andµ−=µbulk
± −χ

with Exp[µbulk
± ] = n0Λ3γ± andγ± is the mean activity coef-

ficient corresponding to the concentrationn0 of electrolyte in
the bulk solution. The constantχ is obtained self-consistently
from the above Eq. (6).

At mean field level, we have taken into account finite
ionic size effects by using the Poisson-Boltzmann’s equation,
Ref. 15

∇2ψ(z) = −4π

ε
[+en+(z)− en−(z)], (7)

where the ion’s local concentrations are given by

n∓(z) =
n0e

±βeψ(z)

1− 2n0d3 + 2n0d3cosh(βeψ(z))
. (8)

All ions are restricted to reach the distance of closest ap-
proachzmin = d/2 andzmax = L− d/2 from the plates.

From Eqs. (4) and (8) the contact (cont) values of the vol-
ume distribution of ionsn∓cont(zmin) are obtained. Therefore,
the total (tot) pressure between the walls can be written as

Ptot = Pslit − Pbulk, (9)

with Pslit = kBT [n+
cont + n−cont] − σ2

2εε0
from the contact

value theorem [16], and the osmotic pressure due to the elec-
trolyte solutionPbulk = kBTφ[n+

0 + n−0 ], whereφ is the
bulk osmotic coefficient associated with the ionic bulk den-
sity correlations included in the general AHNC framework,
meanwhile in mean field theoryφ = 1, andn∓0 = n0 are the
bulk densities of both species of ions. Withε0 the permittiv-
ity of vacuum. The excess of counterion release (number of
ions in the slit minus their bulk values) is given by

N = A

Zmax∫

Zmin

dz[n+(z) + n−(z)− 2n0]. (10)

with A the area element.
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FIGURE 1. (a) calculated excess of counterionsN/A as a function
of surface charge densityσ. Predictions using liquid theory; sym-
bol ◦ for discrete, and• smooth surface charge respectively, and
mean field resultN for case of smooth surface charge only. Sys-
tem; restricted primitive model of 1:1 electrolyte at 1 M concen-
tration between two infinite flat walls separated 9Å. Figure (b) are
the liquid theory predictions of slit pressurePslit/RT versus sur-
face charge densityσ for ◦ discrete, and• smooth surface charge,
respectively.

2. Results

We considered two model systems; a smeared out, and dis-
crete charges with liquid like structure, on surfaces. Figure 1
depicts the results obtained from AHNC for the two cases
with n0 = 1.0 M of 1:1 reservoir electrolyte solution. At
this concentrationγ± = 0.656. We kept fixed the plates sep-
aration toL = 9 Åand varied the surface charge density in
the range0 ≤ σ ≤ 0.3 C/m2. Therefore all thermodynamic
properties;n∓(z), Ptot, andN/A were calculated as func-
tions ofσ in order to capture their most general behavior for
each model studied on this same range ofσ. Figure 1a is
the plot of the excess of counterionsN/A in units of number
of particles per Angstr̈om square. We have included in this

picture also the PB prediction for this property, black filled
triangleN, as it is more clear to see its magnitude difference
with respect to liquid theory result. And Fig. 1b yields the slit
pressurePslit in Molar units versus surface charge. We can
observe that only at very low surface charges (σ < .05 C/m2)
both models coincide and the case of smooth surface charge
predicts a larger strength of surface’s attractive interaction
than the discrete surface charge case.

With an opposite behavior for the monotonously increas-
ing counterion’s excess function. Such functional relation-
ship of the pressure and counterion excess as a function of
surface charge prevails down to lower salt concentrations
too (0.1 M,γ± = 0.778 ). The PB result forN/A yields
the same trends as observed above for the more concen-
trated case, that is,N/A > 0 for all surface charge den-
sity (not depicted). However its comparison with liquid
theory values becomes less relevant as the concentration of
salt is diminished. For instance, at 1M of electrolyte the
largest relative difference between mean field and AHNC is
0.00128 Number/̊A2, whereas at 0.1 M it has dropped to just
7.26×10−5 Number/̊A2. Thus, both theories coincide in their
predictions on this structural property at low surface charge.
There are three distinct regions whereN/A < 0, = 0, > 0
versusσ, which depends in the difference in magnitudes of

A

Zmax∫

Zmin

(n− + n+)dz

andA[Zmin − Zmax]2n0 in Eq. 10. The resultN/A = 0 cor-
responds to the largest possible counterion release from the
surfaces and therefore their concentration between the plates
is the same as in the bulk. Similarly for the slit pressure, its
three distinct regions wherePslit < 0, = 0, > 0 are given by

FIGURE 2. Calculated profile concentrations of ions between
the two walls with smooth surface charge; mean field results are
the symbolsM, O, ¤, for σ = 0.256, 0.178, 0.0178 C/m2,
respectively. AHNC result corresponds to• symbol with
σ=0.16019 C/m2. Other system parameters as in Fig. 1.
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FIGURE 3. Liquid theory prediction of excess of counterions (a)
and slit pressure (b) as a function of surface charge for discrete◦,
and smooth• density of surface charge. Wall’s separation is 9Åand
salt concentration 0.1 M.

the relative differences in magnitudes of the terms
kBT (n+

cont + n−cont) and−σ2/2εε0. Thus, for increasing sur-
face chargeσ, we can observe that there is a correspondence
in the general trends between the slit pressure and excess of
counterions. Note that the point where the slit pressure turns
into negative is roughly the same as for the counterions ex-
cess function. Namely,N/A as a function ofσ is negative
from zero up to the value ofσ ≈ 0.1 C/m2 after which it
turns on positive values. The region whereN/A is negative
means that there is a depletion of both counterions and coions
between the two surfaces for low strength of surface charges.
Therefore, the total concentration of ions in the slit turns out
to be lower than in the case of bulk solution, namely

A

Zmax∫

Zmin

(n− + n+)dz < A[Zmin − Zmax]2n0.

This is an important effect that has also been observed in the
context of 1:1 electrolytes confined between dielectric hard

flat neutral surfaces in aqueous solvent due to image charges
on the walls [17]. Where it was found there appears depletion
of ions from the slit for various surface separations. How-
ever, in our case depletion of ions results from correlations
in core and charge density fluctuations taken into account in
AHNC theory. Which it is not present in PB theory due to
its lack of such an effect and therefore doesn’t predict deple-
tion of ions as can be seen in Fig. 1a (black triangle symbol)
for the smooth surface charge model system. Figure 2 is a
plot of four profile distributions of ions obtained from the
mean field equation 8, for the three surface chargesσ=0.256,
0.178, 0.0178 C/m2 (open triangleM, open triangle downO,
and open square¤, respectively). And the black filled cir-
cle • is the AHNC profile distribution of ions obtained at
σ = 0.16019 C/m2. A common feature of the three mean
field ion’s density profiles is that they predict a bulk concen-
tration of 1.0 M at the middle of the slitz = 4.5 Å. Whereas,
due to the depletion effect predicted by liquid theory, the ion’s
profile yields a lower bulk concentration on the order of 0.7 M
for σ = 0.16019 C/m2, see Fig. 2.

Due to this breakdown of mean field the predicted slit
pressure turns out to be also different from the AHNC results,
since the calculated mean field contact valuesn±cont yield also
of different magnitudes with respect to liquid theory. Figure 3
is the plot ofN/A andPslit versusσ calculated using liquid
theory for the lowest electrolyte concentration we considered
0.1 M, while the distance between the surfaces was kept fixed
to 9 Å. We find thatPslit has a similar trend as in the more
concentrated case above. It is larger whenσ is smooth than
in the discrete surface charge case. However, the property
N/A remains approximately equal as calculated from the two
model systems in a wider range of surface charges, from low
up to moderate values, that isσ ≤ 0.2 C/m2. Finally, Fig. 4

FIGURE 4. AHNC prediction of total pressure between the two
walls for discrete◦, and smooth• density of surface chargeσ.
Same system parameters as in Fig. 1, andφ = 1.094.
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depicts the total AHNC pressure between the surfaces given
by Eq. 9 for the two model systems. It is attractive in all
of the range of surface charge considered. Being of larger
strength for the case of evenly smearing of charges on the
surfaces than in the discrete surface charges case.

3. Conclusions

We determined with the hypernetted chain liquid theory the
counterion excess and pressure between two flat oppositely
charged surfaces bearing either, an evenly smooth, or dis-
crete density. We used as intervening electrolyte the re-
stricted primitive model. When the surface pose a smooth
charge density the counterion excess and pressure properties
enhance their magnitudes with respect to the case when the
confined charges are discrete and formed by mobile ions with
a thermodynamic structure of a liquid like model. Another
conclusion is that liquid theory predicts depletion of those
ions that reside in the slab between the oppositely charged
planes, and hence their concentration becomes smaller, at low
surface charge, than in the reservoir solution. An effect that is
confirmed by the appearance of negative values on the coun-
terion excess function. In addition, and for comparison, we
treated this model system, in the case of smooth surface den-
sity only, with mean field theory. The Poisson-Boltzmann’s
equation lack of ionic correlations, in contrast to the AHNC
result, leads to positive values on the excess counterion func-
tion for all charge density.
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Appendix

Using the Hankel transforms for the radial dependence

f(k) = 2π

∞∫

0

f(r)J0(kr)rdr,

with inverse

f(r) = (1/2π)

∞∫

0

f(k)J0(kr)kdk,

Eq. (2) becomes

hij(k, z1, z2) = cij(k, z1, z2)

+ Σγ

∫
dz3ciγ(k, z1, z3)nγhγj(k, z3, z2). (1)

For the numerical solution of this equation, thez coordinate
is discretized into 122 layers between the surfaces. Each
layer has a width∆zm giving a two-dimensional number
density per layer, and for speciesi, ρ

(m)
i ≈ ∆zmni(z(m)). It

is assigned a set of layers to each ionic species through the de-
pendencei = i(m). Also, we can define the independent ofi
quantityρ(m)/∆zm ≈ ni(m)(z(m)). Similarly for the corre-
lation functions we havef (mn)(k) = fi(m)j(n)(k, zm, zn).
Therefore, the Ornstein-Zernike equation (OZ) in matrix
form is H(k)=C(k)+H(k)NC(k) whereH andC are ma-
trices of orderm × n, and {N} = {n(m)δmn} a di-
agonal matrix. δmn is the Kronecker’s delta. The pre-
vious matrix form of the OZ equation has the solution
H(k) = (I − C(k)N)−1C(k), with I the unit square ma-
trix. Cut of the longe range tail ofC(k) is defined through
the short range functionscs

ij ,

cij(k, zi, zj)=cs
ij(k, zi, zj)− qiqj/2εε0k.

Now using the identity matrix

(M−xyT )−1=M−1+M−1xyT M−1/(1−yT M−1x),

wherex andy are column matrices, T means matrix trans-
pose.M a square matrix. And definingM = I−CsN, with
x = q = {qm} = {qi(m)}, y = −qT N/2εε0k, it yields the
solution of the OZ equation

H(k)=(I−CsN)−1Cs

− (I−CsN)−1qqT (I−NCs)−1

[(k+qT N(I−CsN)−1q/2εε0))2εε0]
.

We used 300 mesh points in the lateral coordinater.
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