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Hall effect: the role of nonequilibrium charge carriers
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e-mail: smolina@fis.cinvestav.mx

Recibido el 11 de abril de 2011; aceptado el 13 de junio de 2011

A new model of the Hall effect in the case of a bipolar semiconductor is present. Taking into account the nonequilibrium carriers, thermal
generation and recombination processes assisted by traps (Shockley-Read model), the expressions for the electrochemical potential of elec-
trons and holes, Hall field and Hall constantRH are obtained. The dependence of these expressions of the distribution of the carriers along
the direction of the Hall field in the case of intrinsic and extrinsic semiconductors is studied.
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Presentamos un nuevo modelo del efecto Hall en el caso de semiconductores bipolares. Se toma en cuenta portadores fuera de equilibrio,
procesos de generación y recombinacíon asistidos por trampas (modelo de Shockley-Read). Se obtienen expresiónes para los potenciales
electroqúımicos de electrones y huecos, campo de Hall y constante de HallRH . Estudiamos la dependencia de estás expresíones de la
distribucíon de portadores a lo largo de la dirección del campo Hall, en el caso de semiconductores intrı́nsecos y extrı́nsecos.
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1. Introduction

The Hall effect has been used for a long time in the research
of mechanisms of conduction. With the help of the Hall co-
efficientRH, the type of carrier present in the semiconductor
sample can be determined. The Hall voltage of a plate may
be regarded as a signal carrying information. If the material
properties and the device geometry are known, the Hall volt-
age can give information about the magnetic fieldH [1]. In
this case the Hall device is applied as a magnetic sensor [2].

For the Hall effect, a conductor material is subjected to
an electricE = Ex and magneticH = Hy fields. An elec-
tron that travel with velocity~v experiment a force given by
e(~v × ~H)/c, the Lorentz force. This force produce a de-
flection of the electron in the direction perpendicular to the
velocity ~v and the magnetic field~H. If the semiconductor
sample has the shape of a parallelepiped, some electrons can
be deflected by the field~H to accumulate on the bottom or
on the top face of the material. This space deviation of the
charges generates the appearance of an electric fieldE. The
process continues until the electric field balances the Lorentz
force [3]. This process originates a voltage that can be mea-
sured through the surfaces of the sample. With the help of
the voltage, the coefficient of Hall in the case of electrons
(RH = −1/ne) can be obtained [4].

The magnetic field acts differently on each of the carri-
ers in the bipolar material, because each carrier has different
energies. This implies that each of the electrons and holes
will have different mobilities. Hence, carriers with energies
higher than the average (hot electrons) will accumulate in the
region of one of the crystal surfaces, and carriers with ener-
gies less than the average (cold electrons) will accumulate in
the opposite surface. As a result, this redistribution generates

a transverse temperature gradient∇T . This phenomenon is
known as the Ettingshausen effect [5]. In this case we will
have a thermoelectric field. The total electric field in this di-
rection will include the electrical and temperature effects [6].
Very similar phenomena is discussed in review [7].

The simplicity of the Hall effect has led us to make some
approximation of the problem. It generates some subtle pit-
falls, which are present in every technique, but are not always
studied or take into account. A simplification often made is
to consider that effects due to finite breadth of the specimen
can be neglected. These imply that the concentration of free
charge carriers does not vary throughout the direction of the
Hall field, n − n0 = p − p0 = 0 [5], the sample contains no
free space charges [8]. As we will see this consideration is
entirely correct, only when we have a very large recombina-
tion. On the other hand, the deviation of the equilibrium of
the charge carriers (electrons and holes), give race to a con-
centration gradient along thez axis. This gradient generates
a diffusion electric field. At this point other simplification is
taken:n− n0 = p− p0, i.e., the deviation ofn andp is con-
sidered of the same order thereby ensures the space charge
neutrality [9,10]. But, in general case it is wrong (see [11]).

These problems are present in others studies, for exam-
ple when a flows of a constant electric current through an
anisotropic semiconductor, the carrier concentration deviates
from the equilibrium value, producing regions of enrichment
and depletion. In this case [12] considers only intrinsic semi-
conductor,i.e., n = p.

When the system is in equilibrium we have the chemi-
cal potentialsµn andµp for electrons and holes respectively,
which are related by the equationµn + µp = −εg. When the
system is far from equilibrium, the above relationship is no
longer satisfied,i.e., µn +µp 6= −εg. Two quasi Fermi levels
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are generated, depending on the distribution of carriers along
thez axis in the sample. In some references [2,4,7–9,11,13],
it was neglected this dependence. When the system is in
a nonequilibrium state, the authors [2, 4, 7–9, 11, 13] con-
sider that the chemical potentials for electrons and holes are
equal [10,12], and thatn− n0 = p− p0.

In semiconductors, in general one can see thatn 6= p
which obliges us to work with two quasi-Fermi levelsµn and
µp, which are different. In this form we can give to a new
quasineutrality condition, that it takes into account the dis-
tribution of carriers in the semiconductor samples, and the
processes of volumetric and superficial recombination in the
case of finite samples. With help of the nonequilibrium dis-
tribution of carriers, we determined the Hall coefficient, Hall
field and we analyse the effects of the electrical potential as
well as the origin of this. We are not consider the connec-
tion of the contacts to measure the Hall potential, but it is
very important for making the measurements. This arises be-
cause usually the boundary conditions are formulated in the
case of open circuits and free charge surfaces. Really it is
necessary to work with appropriate boundary conditions that
describe the current flow in the circuit, i.e, when the circuit is
closed [14,15].

2. Model description

Consider a bipolar semiconductor of parallelepiped form,
length 2a along thex axis and2b is the transverse length
along thez axis. Additionally, we assume that the semicon-
ductor is not degenerate and the carrier energy is given by
ε = p2/2m∗

n,p, wherep is the quasimomentum of particles,
m∗

β = m∗
n,m∗

p are the electron and hole effective masses,ε is
the carrier energy. The relations which govern the behaviour
of electrons and holes in the presence of a longitudinal elec-
tric and transverse magnetic fields can be formulated as fol-
lows. The semiconductor is subjected to an external electric
field Ex and a magnetic fieldHy in the x andy directions
respectively which do not vary over time. Then the hole and
electron currents are given by [6]:

jβx = e2
βIβ

10Ex − e2
βIβ

20Ez + eβIβ
20∂zµβ(z), (1)

jβz = e2
βIβ

20Ex + e2
βIβ

10Ez − eβIβ
10∂zµβ(z), (2)

whereβ = n, p

Iβ
ik =

4βωi−1
Hβ

3
√

πm∗
βθ5/2

∞∫

0

εk+3/2e−ε/θβ

νi
β(ε)

(
1 +

(
ωHβ

νβ(ε)

)2
)dε. (3)

Here, eβ = e,−e are the charge for electrons and holes,
ωHβ = eH/m∗

βc are the cyclotron frequency,θβ = Tn, Tp

are the electron and hole temperature,

~E=(Ex, 0, Ez)=(E0
x, 0,−∇ϕ),

whereϕ is the electric potential,E0
x is the fixed external elec-

tric field andEz is the electric field (the Hall field) variable

in the z direction,c is the velocity of light in vacuum. We
work in the range of low electric field, in which the heating
of electrons and holes is very small(Tn ≈ Tp ≈ T ) [16].
This is achieved by assuming that the material is exposed
at room temperature, and quickly dissipate the energy of the
electrons and holes on the surface of the sample, so that the
electrons and holes thermalize to the lattice temperature. In
the presence of the unique relaxation mechanism of the elec-
tronic (hole) momentum, the frequency can be written as
νβ(ε) = νβ0(T )(ε/T )−qβ [17, 18], whereqβ are the char-
acteristic of relaxation mechanism.

We will consider that the magnetic field is weak
ωH/νβ ¿ 1, hence Eq. (3) can be written as:

Iβ
ik ≈

4βωi−1
Hβ

3
√

πm∗
β

T k

νi
β0(T )

Γ(iqβ + k + 5/2), (4)

whereΓ(iqβ + k + 5/2) is the gamma function.
Let us write the distributions of chemical potentials, elec-

tron and hole concentrations in the following form,

µβ(z) = µβ0(T ) + δµβ(z),

β(z) = β0(T ) + δβ(z),

whereδµβ(z) denotes the nonequilibrium chemical poten-
tials for electrons and holes,δβ(z) are electron and hole
nonequilibrium concentration,µβ0 are the equilibrium elec-
tron and hole chemical potentials,β0 are the equilibrium
electron and hole concentrations. The equilibrium chemical
potentials are related by the known expression [19],

µn0 = −µp0 − εg.

Electron and hole concentration in bipolar semiconductor
are represented by the following expression [20],

β(z) = Nβ(T )eµβ(T )/T . (5)

Here
Nβ(T ) =

1
4

(
mβT/2π3~2

)3/2

are the electron and hole density of states. Expanding the
equation we get

β(z) = Nβ(T )eµβ0(T )/T eδµβ(z)/T

≈ β0

[
1 +

δµβ(z)
T

]
.

It follows that

δβ(z) =
β0

T
δµβ(z). (6)

Then, the hole and electron currents would be expressed as,
(see Eqs. (1)-(2)):

jβx = σβ
xxEx ∓ σβ

xzHEz + Dβ
xzH∂zδβ(z), (7)

jβz = ±σβ
zxHEx + σβ

zzEz ∓Dβ
zz∂zδβ(z), (8)
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with

σβ
xx =

4e2β

3
√

πm∗
βνβ0

Γ(5/2 + qβ),

σβ
xz =

4e3β

3
√

πcm∗2
β ν2

β0

Γ(5/2 + 2qβ),

Dβ
xz =

4e2T

3
√

πcm∗2
β ν2

β0

Γ(5/2 + 2qβ),

Dβ
zz =

4eT

3
√

πm∗
βνβ0

Γ(5/2 + qβ),

σβ
zx = σβ

xz, σβ
zz = σβ

xx.

3. Equations

The macroscopic description of the transport of non-
equilibrium charge carriers is performed using the continu-
ity equations for the electron and hole current densities and
the Poisson Equation [21]. We consider the static case and
the absence of the external generation of carriers (by light or
other mechanism):

∇ ·~jβ = ±eRβ , (9)

∇ · ~E = 4π
ε ρ. (10)

whereρ is the bulk charge density,ε is the material permit-
tivity, Rβ are the electron and hole recombination rates. Sub-
tracting Eqs. (9), we obtain that

∇ · (~jn +~jp)− e(Rn −Rp) = 0. (11)

The continuity equation for the total current~j = ~jn+~jp from
the Maxwell’s equations is

∇ ·~j = 0. (12)

Comparing Eqs. (11) and (12), we obtain

Rn −Rp = 0. (13)

As it follows, the deviation of the concentration of the
electrons trapped in the impurity levelδnt from the equi-
librium value n0

t depends on the deviations of the elec-
tron and hole concentrations from their equilibrium values
(δn=n−n0, δp = p − p0) throughRn andRp. The recom-
binations ratesRn andRp are actually defined as the differ-
ence between the rates of capture of electrons and holes and
the thermal generation [22]. It follows from Eq. (13) that
Rn = Rp = R, the continuity equations for electrons and
holes and Poisson equation take the form,

∇ ·~jβ = ±eRβ = ±eR, (14)

∇ · δ ~E =
4π

ε
δρ =

4πe

ε
(δp− δn− δnt). (15)

where ~E = ~E0 + δ ~E, ρ = ρ0 + δρ. In the case of a
semiconductor that contains a concentrationNt of impurity,
generation and recombination processes are assisted by traps
(Shockley−Read model). The recombination ratesRn and
Rp can be calculated by (we are assuming that electron, hole
and phonon have the same temperature) [23],

Rn = αn(T )n(Nt − nt)− αn(T )n1Nt, (16)

Rp = αp(T )pnt − αp(T )p1(Nt − nt). (17)

Here, αn(T ) and αp(T ) are the electron and hole capture
coefficients,n1 (p1) the electron (hole) concentration when
the Fermi level matches the activation energy of the impurity.
FromRn = Rp, we obtain the following expression fornt,

nt =
Nt(αnn + αpp1)

αn(n + n1) + αp(p + p1)
, (18)

By substitution of Eq. (18) in Eq. (16) we obtain

Rn = Rp = R =
αnαpNt(np− n1p1)

αn(n + n1) + αp(p + p1)
. (19)

Consider that the applied field is weak. In this case, the ex-
cess of the electron concentration(δnt = nt − n0

t ) on the
level of impurities is reduced to,

δnt =
αn(Nt − n0

t )δn + αpn0
t δp

αn(n + n0
1) + αp(p + p0

1)
, (20)

wheren0
t , n

0
1, andp0

1 are the equilibrium values of the respec-
tive concentrations. From Eq. (16) or (17) we can obtain the
recombination rate through the traps as follow [24]:

R =
1
τ

[(
Nt − n0

t

n + n0
1

)
δn +

(
n0

t

p + p0
1

)
δp

]
, (21)

with
1
τ

=
αnαp(n0 + n0

1)(p0 + p0
1)

αn(n + n0
1) + αp(p + p0

1)
. (22)

4. Quasineutrality approximation

The concept of quasineutrality is basic in semiconductor de-
vice analysis and widely used in the literature on transport
phenomena [22]. Traditionally it defined asr2

D ¿ l2D, d2;
whererD is the Debye radius,lD the diffusion length,d the
thickness of the sample. It can be readily seen from Poisson’s
equation,

−∇2ϕ = 4πρ/ε, (23)

that δρ/ρ0 = (rD/lD)2. If (rD/lD)2 ¿ 1, thenδρ → 0.
Under this condition the Poisson equation becomes an alge-
braic equation(δρ ≈ 0), that does not need boundary condi-
tions. This algebraic equation established a relationship be-
tween the excess of carriers (electrons and holes) and make
the Poisson equation redundant. From the conditionδρ ≈ 0,
the non-equilibrium charge carrier concentrationδn andδp,
are related by,

δρ = e(δp− δn− δnt) = 0. (24)
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It follows from the Eqs. (20) and (24) that,

δp = ζδn, (25)

where

ζ =
αn(n0 + n0

1 + Nt − n0
t ) + αp(p0 + p0

1)
αn(n0 + n0

1) + αp(p0 + p0
1 + n0

t )
. (26)

In this case,

Rn = Rp = R =
δn

τ1
, (27)

where
τ1 =

τ

Λ
, (28)

and

Λ =
(

Nt − n0
t

n + n0
1

)
+

(
n0

t

p + p0
1

)
ζ. (29)

5. Boundary conditions

The continuity equations for electrons and holes have to
be supplemented by appropriate boundary conditions [14].
Along thez direction, it follow that,

(jnz + jpz)|z=±b = 0. (30)

Similarly to the case of volume recombination, the expres-
sion for surface recombination, can be rewritten as follow:

Rs
n = Rs

p = Rs = Snδn + Spδp. (31)

From the quasineutrality approximation (25),

Rs = S δn, (32)

with
S = Sn + Spζ. (33)

In this case,S takes the meaning of surface recombination
velocity. The surfaces of the semiconductor sample, change
their properties at distances of the order of Debye radius and
becomes inhomogeneous, which explains the dependence of
the rate of recombinationR as a function of the coordinatez,
thus

jnz|z=±b = ± eS1,2δn, (34)

whereS1 andS2 are the surface recombination velocity in
z = b andz = −b.

6. Solution of the equations

The continuity equations∇ · ~j = ∇ · (~jn + ~jp) = 0 show,
that jnz + jpz = jz = cte . From the geometry of the Hall
experiment and from the Eq. (30), we can see that no current
flow in thez direction, then the constant is zero at all points
of the sample,jnz + jpz = jz = 0. With this condition, we
obtain the Hall electric fieldEH = Ez, and considering the
quasineutrality condition (δp = ζδn), we get

Ez=−
(

σn
xz−σp

xz

σn
xx+σp

xx

)
HEx+

(
Dn

zz−ζDp
zz

σn
xx+σp

xx

)
∂δn

∂z
. (35)

Substituting this expression into Eq. (8), we obtain:

jnz =
(

σp
xxσ

n
xz + σn

xxσ
p
xz

σn
xx + σp

xx

)
HEx

−
(

σn
xxD

p
zzζ + σp

xxD
n
zz

σn
xx + σp

xx

)
∂δn

∂z
, (36)

jpz = −jnz. (37)

We can see that under the quasineutrality condition and the
Eq. (37), we work only with one of the continuity equations
for electrons or holes. By substitution of the Eq. (36) in
Eq. (9), it can be rewritten as follows

∂2δn

∂z2
− δn

l2D
= 0. (38)

Thus
1
l2D

=
1
τ1

1
D

, (39)

and
1
D

=
e(σn

xx + σp
xx)

σn
xxD

p
zzζ + σp

xxDn
zz

. (40)

The solution of the Eq. (38) is:

δn(z) = γ1ez/lD + γ2e−z/lD . (41)

The constantsγ1 andγ2 should be determined from boundary
conditions (34). Assuming that surface recombination veloc-
ity on the surfaces of the semiconductor sample is the same,
S1 = S2 = S, we obtain:

γ1 = HExγ̃,

γ2 = −γ1 = −HExγ̃,

γ̃ =
σn

xxσ
p
xz + σp

xxσ
n
xz

2 (σn
xx + σp

xx)
(
eS sinh( b

lD
) + ( eD

lD
) cosh( b

lD
)
) .

Thus, the variation of electron concentration along the sam-
ple (z direction) is:

δn(z) = 2HExγ̃ sinh(z/lD). (42)

Now we can find the Hall fieldEz

Ez = −
(

σn
xz − σp

xz

σn
xx + σp

xx

)
HEx

+
(

Dn
zz − ζDp

zz

σn
xx + σp

xx

)
HEx(2γ̃/lD) cosh(z/lD). (43)

From this result we obtain the value of the potentialδϕ(z),
which can be calculated from the equationEz = −∂zϕ(z),
integrating from(−b, z) and assuming thatϕ(−b) = 0,

δϕ(z) =
(

σn
xz − σp

xz

σn
xx + σp

xx

)
(z + b)HEx

−
(

Dn
zz − ζDp

zz

σn
xx + σp

xx

)
2HExγ̃(sinh(b/lD) + sinh(z/lD)).
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The Hall coefficientRH = Ez/Hjx is given by:

RH = − σn
xz − σp

xz

(σn
xx + σp

xx)2

+
(

Dn
zz − ζDp

zz

(σn
xx + σp

xx)2

)
(2γ̃/lD) cosh(z/lD), (44)

Notice thatRH = RH(z), thus it is not possible to defineRH

as a constant. Another aspect to consider is the dependence
of RH on the amountζ = ζ(n0, p0, Nt, n

0
t , n

0
1, p

0
1), which

connect with the equilibrium electrons and holes concentra-
tions, as well as the impurity centres (traps) presents in the
sample.

7. Results and Discussion

With the results presented above we can see in detail some
special cases, when we have a finite and infinite lifetime of
recombination, and study the intrinsic and extrinsic semicon-
ductors:

i) Strong Recombination:This case is obtained when the
volumetric recombination processes are strong. This happens
when the lifetime is smallτ → 0 (d = 2b À lD À rD → 0)
or the surface recombination velocity is large,S → ∞. In
this case the concentration of electronsδn(z) → 0. The elec-
trochemical potential is given by,

δϕ̃β(z) = ξ(z + b)HEx, (45)

where

ξ =
e

cm∗
pνp0

[
b2n0Γ( 5

2 + 2qn)− p0Γ( 5
2 + 2qp)

bn0Γ( 5
2 + qn) + p0Γ( 5

2 + qp)

]
,

here b = m∗
pνp0/m∗

nνn0. Notice that the electrochem-
ical potential is equal to the potential difference,i.e.,
δϕ̃n(z)=δϕ̃p(z)=δϕ(z). The electrochemical potential is
not affected by the presence of recombination processes be-
cause that processes are very fast. The electric potential de-
pends solely on the accumulation of charge on the surface of
the sample, which causes the polarization of the sample. On
the other hand the Hall coefficientRH, takes the form:

RH =
σp

xz − σn
xz

(σn
xx + σp

xx)2

=
3
√

π

4ec

[
p0Γ( 5

2 + 2qp)− b2n0Γ( 5
2 + 2qn)

]
[
p0Γ( 5

2 + qp) + bn0Γ( 5
2 + qn)

]2 . (46)

We see thatδn = δp = 0, and recover the classic case for the
Hall coefficient.

If the dominant scattering mechanism is by acoustic vi-
brations for electrons and holes(qn = qp = −1/2), we get

RH = (3π/8ec)((p0 − b2n0)/(p0 + bn0)2). (47)

From this result we can apply two cases: extrinsic and intrin-
sic semiconductors.

i.a) Intrinsic Semiconductors(n0 ≈ p0). In this case
there are no impurities concentration(Nt ≈ 0) and the only
viable recombination mechanism is band-band, the quasineu-
trality condition (25), change byδn ≈ δp. In this caseζ ≈ 1
and(n0 = p0 = ni), we obtained:

RH =
3
√

π

4ecni

[
Γ( 5

2 + 2qp)− b2Γ( 5
2 + 2qn)

]
[
Γ( 5

2 + qp) + bΓ( 5
2 + qn)

]2 . (48)

If the dominant scattering mechanism is by acoustic vibra-
tions for electrons and holes(qn = qp = −1/2), we get the
classic result,

RH =
3π

8ecni

[
1− b

1 + b

]
. (49)

i.b) Extrinsic Semiconductors(n0 À p0). The potential
difference (Hall potential) is given by:

δϕβ(z) =
e

cm∗
nνn0

[
Γ( 5

2 + 2qn)
Γ( 5

2 + qn)

]
(z + b)HEx.

In this case the Hall coefficient is:

RH = − 3
√

π

4ecn0

Γ(5/2 + 2qn)
Γ2(5/2 + qn)

. (50)

Depending on the dominant dispersion process we obtain the
classical results. If the scattering mechanism does not depend
on energy(qn = 0), thenRH = −1/n0ec. If the dominant
scattering mechanism is by acoustic vibrations(qn = −1/2)
we obtainedRH = −3π/8ecn0.

ii) Weak Recombination:This case is obtained when the
volumetric recombination processes are weak (this happens
when the lifetime is greatτ →∞, lD À d = 2b À rD), and
the surface recombination is weak,S → 0. The concentra-
tion of non-equilibrium electrons is:

δn(z) =
[

σn
xxσ

p
xz + σp

xxσ
n
xz

σp
xxDn

zz + ζσn
xxD

p
zz

]
HExz, (51)

In the pointz = 0, the electronic concentration is zero and
increase reaching its maximum value at the surface of the
semiconductor samplez = ±b. Similar situation we have
with the concentration of holes. This behaviour will be re-
flected in the form of the potential difference,

δϕ(z) =
[

σn
xz − σp

xz

σn
xx + σp

xx

]
(z + b)HEx

−
[

(Dn
zz − ζDp

zz)(σn
xxσ

p
xz + σp

xxσ
n
xz)

(σn
xx + σp

xx)(σp
xxDn

zz + ζσn
xxD

p
zz)

]
(z + b)HEx,

Notice that in this case the potential difference is affected by
the variation of the electron concentrationδn(z), and being
different from the classical results. This expression includes
explicitly the termζ, which takes into account the physical
material characteristics,i.e., concentration of traps present in
the material, the activation energy, as well as the recombina-
tion coefficientsαn andαp. This is a big difference with all
results presented in the literature, which excludes this depen-
dence [9,11,13]. As we have a variation in concentration two
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quasi-Fermi levels exist, which reflected in the electrochem-
ical potentials for electrons and holes(δϕ̃n(z) 6= δϕ̃p(z)).
The Hall coefficient dependence on the termζ, as we see be-
low

RH = − σn
xz − σp

xz

(σn
xx + σp

xx)2

+
[

(Dn
zz − ζDp

zz) (σn
xxσ

p
xz + σn

xzσ
p
xx)

(σn
xx + σp

xx)2 (σp
xxDn

zz + ζσn
xxD

p
zz)

]
(52)

It is important to note that when the recombination processes
are weak and only whenζ = 1 it can be reproduce of the
result presents in [9, 13] for the Hall effect. If the dominant
scattering mechanism is by acoustic vibrations for electrons
and holes(qn = qp = −1/2), we obtain:

RH =
3π

8ec

[
p0 − bn0

(bn0 + p0)(n0 + p0)

]
. (53)

ii.a) Intrinsic Semiconductors(n0 ≈ p0). In this case
there are no impurities concentration(Nt ≈ 0) and the
only viable recombination mechanism is band-band. The
quasineutrality condition (25), change toδn ≈ δp, with
ζ ≈ 1, and

δn(z) =
[
Γ( 5

2 + 2qn)
Γ( 5

2 + qn)
+

1
b

Γ( 5
2 + 2qp)

Γ( 5
2 + qp)

]
e2n0HExz

2cTmnνn0
,

The Hall constant in the case when the dominant scat-
tering mechanism is by acoustic vibrations for electrons and
holes(qn = qp = −1/2), is:

RH =
3π

16ecni

[
1− b

1 + b

]
. (54)

ii.b) Extrinsic Semiconductors(n0 À p0).
The concentration of non-equilibrium electrons is:

δn(z) =
[
bΓ( 5

2 + 2qn)
Γ( 5

2 + qn)
+

Γ( 5
2 + 2qp)

Γ( 5
2 + qp)

]
e2p0HExz

2cTmpνp0ζ
,

In this case we haveζ = ζ(n0, p0, Nt, n
0
t , n

0
1, p

0
1) thus we

consider two cases, i) low temperature, whereNt ∼ n0
t À

n0 ∼ n0
1 À p0 ∼ p0, consequentlyζ → 1, ii) high temper-

ature, wheren0
1 À Nt ∼ n0 À p0 ∼ n0

t À p0
1, thusζ → 1

too. The similarity of the limits is due to the following: con-
sidering that the recombination coefficients for electrons and
holes are of the same order, in the first case the concentration
of trapping centres dominate over other material concentra-
tions and the low temperature reduce the transition of elec-
trons from the valence band to the conduction band. In the

second case the concentration of electrons in the conduction
band dominates in the semiconductors materials, additionally
the hight temperature stimulate the generation of electrons.

The electric potential is given by

δϕ(z) =
e(z + b)
cm∗

nνn0

[
Γ( 5

2 + 2qn)
Γ( 5

2 + qn)

]
HEx, (55)

and the Hall coefficient is

RH = − 3
√

π

4ecn0

Γ(5/2 + 2qn)
Γ2(5/2 + qn)

. (56)

From the above results we see that the potential difference
and the Hall coefficient are identical to the case of strong
recombination for extrinsic semiconductors. This can be ex-
plained by saying due to the high concentration of electrons
in the sample, the effects of a redistribution of carriers in the
potential are negligible, only it is important the redistribution
of charge on the surface of the sample.

8. Conclusion

When the recombination is strong the Hall potential, Hall
field and Hall coefficient do not depend on the distribution
of the nonequilibrium carriers, and the trapping centres. We
can say that independent of the amount of impurities presents
in the sample they do not affect the measurement of the Hall
potential. The source of the Hall potential is due to accumu-
lation of carriers on the surface of the sample.

If the recombination is weak, the Hall coefficient, the Hall
field, as well as the potential is modified by the presence of
the distribution of the nonequilibrium carriersδn(z), that in-
cludes explicitly the dependence of the concentration of im-
purities.

In the case of extrinsic semiconductors, the Hall constant
does not depend on the distribution of the nonequilibrium
carriers in cases of strong and weak recombination. The
measured potential does not depend on the presence of the
redistribution of the nonequilibrium carriers along thez axis,
it only depend on the concentration of carriers in the surface
of the semiconductor sample.
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port to make this work.

1. It is practice in the literature to writeH in a Lorentz force
(~F = e~v × ~H/c), whenever~H ≡ ~B. For those cases where
~H 6= ~B, it would be necessary to replace~H with ~B in the
Lorentz force and in the ensuing theory.

2. Edward Ramsden, Hall-Effect Sensors (Newnes-Elsevier,
USA, 2006).

3. If we take an electron, the Lorentz force will not be balanced
across the Hall field,evH/c 6= eEz, because the velocity of

Rev. Mex. F́ıs. 57 (4) (2011) 368–374



374 S. MOLINA VALDOVINOS AND YU. G. GUREVICH

electrons depends on the energy of the carrierv(ε). In this
case it is necessary to work with the average velocity of the
electrons< v(ε) >, which give equality in the Lorenz force
e < v(ε) > H/c = eEz.

4. R.S. Popovic,Hall Efect Devices(Institute of Physics Publish-
ing, Bristol and Philadelphia, 2004).

5. L.S. Stilbans,Physics of Semiconductors(Nauka, Moscow,
1967).

6. F.G. Bass, V.S. Bochkov and Yu. G. Gurevich,Soviet Physics-
Semiconductors7 (1973) 3-32.

7. Z.S. Gribnikov, K. Hess, and G.A. Kosinovsky,J. of Appl. Phys.
77 (1995) 1337.

8. D.C. Look,Electrical Characterization of GaAs Materials and
Devices(John Wiley and Sons, New York, 1989).

9. R. Landauer and J. Swanson,Physical Review91 (1953) 555.

10. A. Konin and R. Raguotis,J. Phys.: Condens. Matter12 (2000)
9163.

11. P.C. Banbury, H.K. Henisch and A. Many,Proc. Phys. Soc.66A
(1953) 753.

12. E.I. Rashba,Soviet Physics-Solid State6 (1965) 2597.

13. G.E. Pikus,Technical Physics26 (1956) 22.

14. O. Yu. Titov, J. Giraldo and Yu. G. Gurevich,Appl. Phys. Let-
ters80 (2002) 3108.
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