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We investigate the thermodynamic properties of a bosonic Josephson junction in the full quantum approach and, in particular, we concentrate
in studying the thermal averages of one- and two-body properties below and above the transition from delocalized to self-trapped regimes.
This temperature dependence is determined by using the fact that at equilibrium the microcanonical and canonical ensembles should be
equivalent. To establish the robustness of the equilibrium state, we first study a one body property and show numerically that any arbitrary
state localized in energy, when evolved, reaches a stationary or equilibrium state. Comparison among averages of one- and two-body
properties in the microcanonical and canonical ensembles reveals discrepances, thus leading to non-equivalence among these ensembles.
Such averages differences can be attributed to the fact that the Hilbert space of the system scales as its sizeN , and consequently, the entropy
does not scale asN . We further find as a natural consequence of studying the finite bosonic Josephson junction in the two-mode Bose
Hubbard context, that positive and negative temperatures are obtained. This result can be generalized for any finite optical lattice.

Keywords: Josephson effect; bosonic Josephson junction; quantum ensemble theory.

Se investigan la propiedades termodinámicas de una junta de Josephson bosónica en la aproximación cúantica de dos modos, en particular, se
estudian los promedios térmicos de propiedades de uno y dos cuerpos abajo y arriba de la transición de deslocalización a estado autoatrapado.
Esta dependencia en la temperatura se determina usando el hecho que en equilibrio los ensembles canónico y microcańonico debeŕıan ser
equivalentes. Primero se establece la robustez del estado de equilibrio estudiando una propiedad de un cuerpo y mostrando numéricamente
que cualquier estado arbitrario localizado en energı́a alcanza un estado estacionario o de equilibrio. La comparación entre promedios de
propiedades de uno y dos cuerpos en los esquemas canónico y microcańonico revela descrepancias, exhibiendo ası́ la no equivalencia entre
ensembles. Dichas diferencias en los promedios pueden atribuirse al hecho que el espacio de Hilbert del sistema se escala como su tamaño
N y consecuentemente la entropı́a no se escala conN . Adicionalmente, se encuentra como consecuencia natural de estudiar a la junta de
Josephson bosónica en la aproximación de dos modos, la existencia de temperaturas negativas. Dicho resultado puede ser generalizado para
redesópticas finitas.

Descriptores:Efecto Josephson; junta de Josephson bosónica; teoŕıa de ensemble cuántico.

PACS: 03.75.Lm; 03.75.Hh; 05.30.Ch

1. Introduction

Today, bosonic Josephson junctions (BJJ) are realizable
arrays in ultracold alcaline gases confined in external
potentials. The first observation was implemented by
Oberthaler′s group [1] for 87Rb atoms in 2005. Such an
array consisted of a sample ofN ∼ 103 weakly interact-
ing atoms atT ∼ 10−9 K, confined in a one dimensional

two-well potential. Since then, a variety of Josephson junc-
tions for ultracold atoms, including mixtures of different
species of bosons, fermi-boson mixtures, and two- and three-
dimensional geometries have been created [2, 3]. The obser-
vation of the phase transition from delocalized to self-trapped
regimes in these systems is the result of setting a threshold
initial population in each well for a constant interparticle in-
teraction, or manipulating both, the geometry of the two-well
potential (varying the potential depth), and the interparticle
interaccions (by changing thes−wave scattering length ex-
ternally).

In parallel to the experimental understanding of BJJ, the
theoretical approaches addressing those systems, have pro-
vided a reasonable description of both the dynamical behav-
ior and the phase transition from the delocalized (or coher-
ent transport) to the self-trapped regime, as a function of
the parameter that characterizes the interparticle interaction
and of the initial many-body state. Those two-mode descrip-
tions [4–15,17, 18] are the mean field approach based on the
Gross-Pitaevskii equation and the full quantum description
circumscribed in the second quantized frame. Although these
theories predict the occurrence of the transition from delocal-
ized to self-trapped transition as a function of the two-particle
interaction and the initial condition, it is important to remark
that the exact quantum descriptionvsthe mean field approach
supplies a more general description of the system since in
principleN−body properties can be investigated from such
an scheme. As a matter of fact, the property of dynamical
stationarity detected from few body quantities [15,19,20] can
only be established from full quantum calculations from the
entire landscape of energy and interparticle interaction en-
ergy.
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Since a BJJ array is a closed system with a fixed number
of particlesN where a given inital state fixes the total en-
ergy ε for a constant interaction strength, a microcanonical
ensemble is the natural one to describe the average or expec-
tation value of few body properties. Thus, the eigenstates of
the Hamiltonian modelling a BJJ array would be the proper
states to describe the average or expectation value of any ar-
bitrary few body property. There exists however, as indicated
by previous studies [19, 20], states that give rise to dynami-
cal stationary, or equilibrium, values in few-body properties,
whose average coincides with the expectation value of those
few-body properties in the eigenstates. Those are the well
known family of coherent states [21, 22] that have the prop-
erty of possessing small energy mean-square deviation, that
is, they are states localized in energy. Thus, for a given num-
ber of particles and by considering such coherent states, a mi-
crocanonical ensemble defined by the variablesN andε can
be set. The equilibrium values in this ensemble will be used
to determine its associated thermal averages in the canonical
ensemble.

Although it is not necessary to over emphasize the impor-
tance on the temperature dependence of the thermodynamic
properties in a macroscopic system, it is important to point
out that a very important issue in the ultracold systems is
the thermometry. Typically, temperatures are obtained from
theoretical adjustable models to in situ density profiles, or
by other indirect methods [23]. For the particular case of
BJJ, the temperature can be presumably extracted from the
used model describing this system, namely the two-mode
Bose-Hubbard model. However, as we shall see, the non-
equivalence between canonical and microcanonical schemes
in this systems, leaves still open the question of the temper-
ature determination. Perhaps the model describing BJJ must
be reconsidered and make the necessary adjustments to cir-
cumvent the failure pointed here. As we shall argue in section
III, one of the rutes to extend the two-mode Bose-Hubbard
model is to include not just the lowest two modes, but the
next two energy levels and its corresponding localized wave
functions.

The purpose of this work is to investigate the thermal av-
erages of one- and two-body properties in a BJJ array, be-
low and above the transition from delocalized to self-trapping
regimes in the canonical ensemble. Such functionality will
be established by using the fact that at equilibrium the mi-
crocanonical and canonical ensembles should be equivalent,
and therefore, it should be possible to describe the average
value of few-body properties in both the microcanonical en-
semble defined by the variables(ε,N) and in the canonical
ensemble defined by the variables(T,N). In particular, we
shall concentrate in studying the temperature dependence of
the particle population in each well〈N̂i〉 and of the tunneling
correlation〈Ĉ〉 = 〈(b†1b2 + b†2b1)2〉. We shall find that the
predictions of the different ensembles do not agree with each
other.

This article is organized as folllows. In section II we
introduce the model Hamiltonian and show that a BJJ ex-

hibits the property of dynamical stationarity for any arbitrary
value of the parameter characterizing the interaction among
the particles and for any initial many-body state, through the
study of a one-body property when arbitrary coherent states
are evolved in time. In section III we study the particle popu-
lation and the tunneling correlation (one- and two-body prop-
erties respectively) in the canonical ensemble, and show that
even in the thermodynamic limit, the BJJ system exhibits the
non-equivalence between microcanonical and canonical en-
sembles since the few-body averages differ. As we shall dis-
cuss, such discrepancies may be attributed to the fact that the
size of the Hilbert space of the system scales asN instead of
eN . This same feature of reduced Hilbert space, allow us also
to show that negative and positive temperatures consistent
with the thermodynamic second law are obtained. Finally
in section IV a summary with the main results is presented.

2. The Hamiltonian in the microcanonical en-
semble

To model BJJ we work in the full quantum frame consider-
ing the two-mode approximation, that is, the two-mode Bose-
Hubbard model. Derivation of this Hamiltonian can be found
elsewhere [6,7,10,15]

Ĥ = −∆
2

(
b†1b2 + b†2b1

)
+ U

(
b†1b

†
1b1b1 + b†2b

†
2b2b2

)
. (1)

The parameter∆ is the energy spacing of the two low-
est energy modes in a symmetrical two well potential and
U = 4π~2a/m represents the effective particle-particle in-
teraction strength written in terms of the (positive)s-wave
scattering lengtha. As previously pointed in the literature
[15,16], Hamiltonian (1) assumes that the overlap among lo-
calized single-wave functions is neglected and therefore the
effective interaction among particles occurs only whenever
the particles move within the same well. We use units with
~ = ∆ = m = 1.

The microcanonical ensemble is defined by specifying
the number of particlesN and the expectation value of the
energyε. As mentioned in section I, alternatively to the
eigenstates of Hamiltonian (1), the coherent states [21, 22]
are suitable states to set the variables defining the microcani-
cal ensemble since they possess small energy mean square
deviation. Those states written in the atom number basis or
Fock states|N1, N2〉, whereN1 andN2 (N1 + N2 = N ) is
the number of particles in wells 1 and 2, are defined as fol-
lows:

|θ, φ〉 =
N∑

N1=0

(
N
N1

)1/2

sinN−N1(θ/2)

× cosN1(θ/2) e−i(N−N1)φ|N1, N −N1〉. (2)

The anglesθ andφ define a particular initial state, that is, a
particular energyε. These angles can be determined by fixing
the expectation value of the energy or the initial population
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in, say, well 1. In fact, in a previous work [20] it has been
shown that such states behave as the eigenvectors of Hamil-
tonian (1) whenθ andφ are properly chosen, in the sense that
the expectation value of a few-body property in the eigen-
states, coincides with the averaged equilibrium or stationary
state of the same property in the coherent states.

By considering any of the coherent states (2) as the ini-
tial one for the system, one can evolve it numerically [24],
|θ, φ; t〉 = exp(−iĤt/~)|θ, φ〉, and calculate the expectation
values of the observableŝN1, the particle population in well

one, andĈ =
(
b†1b2 + b†2b1

)2

, the tunneling correlation,

〈N̂1(t)〉τ = 〈θ, φ; t| N̂1 |θ, φ; t〉 (3)

and
〈Ĉ(t)〉τ = 〈θ, φ; t| Ĉ |θ, φ; t〉, (4)

where the time intervalτ in which the average is taken cor-
responds to the interval of time where the stationarity is ob-
served [20]. Even in a closed system, the property of sta-
tionarity is very difficult of being captured from the infor-
mation enclosed in aN−body system, however, it can be
observed directly from the expectation value of few body
properties [15, 19]. To show that any state belonging to the
family of coherent states reaches an equilibrium state when
few-body properties are studied, we followed the evolution in
time of the expectation value of the particle populationN̂1 in
the coherent states (2) taking0 < θ < 2π and0 < φ < 2π.
In Fig. 1 we show the stationary values of the particle popu-
lation in well 1,N1 , in the family of coherent states|θ, φ; t〉,
as a function of their expectation value of the energyε(θ, φ),
for N = 1000 [24].

For purposes of calculations of the stationary states, we
selected a specific value of the parameterΛ = UN/∆
(U = 1.1, ∆ = 1 andN = 1000 ) and follow the evolu-
tion of the chosen states for times longer than the time spent
in the stationary state,t À τ . As has been pointed out in

FIGURE 1. Statistically stationary values of the number of particles
in well 1,Ns

1 , in the family of coherent states|θ, φ; t〉, as a function
of their expectation value of the energyε(θ, φ), for N = 1000.

FIGURE 2. Energy mean square deviation forN = 1000, Λ = 1.1,
for the values ofθ andφ in Fig. 1.

the literature [7–9,11–15,18], for any value of the interaction
parameterΛ, and for any initial condition, the particle popu-
lation shows the phenomenon of collapses and revivals in the
many-body dynamics. However, it is important to remark that
if we observe the system for a long but arbitrary time, it will
mostly be found in the stationary state. Thus, the rubustness
of the stationarity is verified. To complement the information
encoded in Fig. 1, we plot in Fig. 2 the energy mean-square
deviation∆H =

√
〈H2〉 − 〈H〉2 for N = 1000, Λ = 1.1,

for the values ofθ andφ in Fig. 1. As expected, the set of
coherent states appear to be localized in energy.

3. Thermodynamical properties in the canon-
ical ensemble

To discuss the role of the temperature in BJJ, and particu-
larly, to determine the dependence of the average values of
few body properties on the temperature, we should first re-
call that such an isolated system is, as stated in section I,
described by a microcanonical ensemble. Namely, its macro-
scopic state is characterized by the number of particlesN and
the energyε. Depending on the values of these variables, and
if the system is in equilibrium, it should have a well defined
temperatureT = T (N, ε). If in the thermodynamic limit the
ensembles are equivalent, one should obtain the same results
for the equilibrium states using the canonical ensemble with
N andT given. Due to the simplicity of the system under
study, one can very easily calculate the average value of any
observable operator̂A in the canonical ensemble,

〈Â〉 =
1
Z

N∑
n=0

〈φn|Â|φn〉 e−εn/kT , (5)

wherek is Boltzmann constant and the partition function is

Z =
N∑

n=0

e−εn/kT . (6)

With this procedure, and assuming that the temperature is a
single valued function ofN andε, we can assign a tempera-
ture to a stationary state with a given energyε by solving the
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following equation forT ,

ε =
1
Z

N∑
n=0

εn e−εn/kT . (7)

To determine the thermal averages ofN̂1 andĈ by means of
Eq.(5) as a function ofT andN , we proceed as follows. We
solve the eigenvalue system (1) for values ofΛ below and
above the transitionΛ = 0.1, 1.0 and 10.0, that is, we find
the eigenenergiesεn

Ĥ(Λ)|φn(Λ)〉 = εn(Λ)|φn(Λ)〉.
From the analysis done in section I, we selected the values of
θ andφ such that for a given value ofΛ the condition

ε(θ, φ) = εn,

is satisfied, that is, we determine the values ofθ andφ defin-
ing the coherent state for the entire energy spectrumεn for
Λ = 0.1, 1.0 and 10.0. Then, by solving eq. (7) we deter-
mine the temperatureT in the canonical ensemble associated
to the microcanonical ensemble defined byε andN . All the
calculations presented in this work were done forN = 1000.
It is worth to mention that we verified that calculations for
N = 104 give esentially the same results. Thus, the assumed
equivalence among microcanoical and canonical ensembles
is well justified.

By means of equation (5) we determine the thermal aver-
ages ofN̂1 andĈ. The gray dotted and black dashed curves
in Fig. 3 correspond to the averages ofN̂1 in the eigenstates
and in the coherent states respectively, while the black solid
line is the average ofN1 in the canonical ensemble. Anal-
ogously, the gray dotted and black dashed curves in Fig. 4
correspond to the averages ofĈ in the eigenstates and in the
coherent states respectively, while the black solid line is the
average of̂C canonical ensemble.

Regarding the results obtained for〈N̂1〉 we observe that
there is no agreement between the microcanonical and the
canonical descriptions above the transition from delocalized
to self-trapped regimes, that is, we find that the thermal av-
erage ofN̂1 is essentially equal toN/2, whether above or
below the transition, while taking the average in the micro-
canonical ensemble allows us to detect the transition. Such a
discrepancy can be interpreted as the impossibility of show-
ing spontaneous symmetry breaking. This phenomenon is
analogous to the fact that in the Ising model in 2D the aver-
age magnetization is always zero: one needs a small external
magnetic field to break the symmetry and then make it to
vanish [25].

The behavior of the average values of the two-body
tunneling correlationĈ reveals also discrepancies between
canonical and microcanonical ensembles. As in the parti-
cle population case, the transition from delocalized to self-
trapped states (the peaks in gray dotted lines in Fig. 4) is not
observed in the thermal averages (black solid lines). We do
not have an explanation for such a discrepancy. It may either

be that our calculation based on the coherent states do not cor-
respond to a microcanonical ensemble, or that for this system
there is simply no equivalence between ensembles. This pos-
sibility can be explained as follows. The system under study
is peculiar in the sense that it represents a collection of atoms
interacting with the same strenght with all the other atoms,
provided they are in the same internal state. In other words,
the fact of considering the two-mode approximation only, has
given rise to an effective Hamiltonian in which the interac-
tions among the particles appear as if they were long range,
whenever the particles have the same internal state, while the
full Hamiltonian represents particles with short range inter-
actions. Moreover, it can also be shown, by studying Eq.(7),
that the energy as a function of temperature and number of
particles is not fully extensive, namely, it is not of the form
ε(T, N) = N e(T ) with e(T ) a function of the energy only,
but rather,ε(T,N) = Ne(T/N). The two-mode approxi-
mation reduces dramatically the Hilbert space of theN -body
system and consequently the extensive character of the ther-
modynamic variables with such intrinsic nature is lost.

As it is well known, the entropy of a macroscopic sys-
tem in equilibrium scales aseN , and thus its extensivity is
reflected along several thermodynamic properties. Neverthe-
less, a system having a small equilibrium landscape, gives
rise to non-extensive thermodynamics. As stated above, the
two-mode Bose-Hubbard Hamiltonian causes such behavior.
It is important to emphasize however that then-mode mod-
els used to describe 1D finite optical lattices could not have
reduced Hilbert spaces, giving rise therefore to recover the
extensive character of the natural extensive properties.

In the study of BJJ an alternative to circumvent the found
discrepancies among canonical and microcanonical schemes,
is the inclusion the next energy band. That is, instead of
considering the first energy band with the two lowest en-
ergy levels, perform the analysis taking into account the
second energy band, and thus dealing with a Hamiltonian
in the four-mode approach. The eigenstates analysis of a
Hamiltonian with an such an extension has already been ad-
dressed in [28] , where, as stated, the Hilbert space scales as
(N + 1)(N + 2)/2. Thus, by extending the available Hilbert
space one could find that such differences are diminished.

In addition to the analysis presented above we should
stress an important point regarding the dependence of the
temperatureT on the energyε in a BJJ. Since those systems
are modelled by means of a two-mode approach and consist
of a finite number of particles, they exhibit negative temper-
atures [26]. This fact is compatible with the thermodynamic
second law in the sense that heat flows from a negative tem-
peratureT1 to a positive temperatureT2, whenever the ener-
gies associated toT1 andT2 fulfill the conditionε1 < ε2 . To
illustrate this behavior, in Fig. 5 we plot the inverse of the
temperature as a function ofε for N = 1000 andΛ = 0.1.
It is important to note that this figure is consistent with the
third law of thermodynamics since1/T is never reached. In
general one can state that every finite system with a bounded
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FIGURE 3. Averages ofN̂1 as a function ofΛ, Λ =0.1(left), 1.0(center) 10.0(right). The gray dotted and black dashed lines correspond to
the averages of̂N1 in the eigenstates and in the coherent states respectively, while the black solid line is the average ofN̂1 in the canonical
ensemble Calculations were performed usingN = 103.

FIGURE 4. Averages ofĈ as a function ofΛ, Λ =0.1(left), 1.0(center) 10.0(right). The gray dotted and black dashed lines correspond to
the averages of̂C in the eigenstates and in the coherent states respectively, while the black solid line is the average ofĈ in the canonical
ensemble. Calculations were performed usingN = 103.

energy spectrum exhibits negative temperatures. Thus, in
the light of the experiments performed in optical lattices, the
knowledge of this fact, provides a tool to use such a systems
as a reservoir with externally controlable temperature.

4. Conclusions.

We have addressed the thermodynamic properties of an inter-
actingN−body boson fluid confined in a double well po-

FIGURE 5. Inverse of temperature as a function ofε. Calculations
were performed usingΛ = 0.1 andN = 103.

tential in one dimension. In particular, we concentrate in
studying the thermal averages of one- and two-body prop-
erties. This study was motivated by the experimental real-
ization of a single bosonic Josephson junction (BJJ) in two
weakly linked Bose-Einstein condensates. Such an array can
be considered as a closed system with a well defined energy
fixed by means of adjustable external parameters. Thus, the
natural ensemble to describe a BBJ array is a microcanonical
ensemble-like. To model the BJJ array in the microcanical
ensemble, we use the two-mode Bose-Hubbard Hamiltonian,
and show that for every definite value of the energy, the equi-
librium state in the system can be established by following
the dynamical evolution in few-body properties until station-
arity is reached. The family of coherent states, which are
states localized in energy, allowed us to show numerically
that any arbitrary initial state, that is, any fixed energy value
defining a microcanonical ensemble-like, reaches a statisti-
cally stationary state. Our calculations were done for103

particles whose interaction was characterized by a parame-
ter Λ = NU/∆ responsible, together with the initial state,
for the transition from delocalized to self-trapping regime.
By assuming that at equilibrium the microcanonical ensem-
ble, defined by the variables(N, ε), and canonical ensembles
are equivalent, we determine the temperatureT associated to
each equilibrium state. We further determine the thermal av-
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erages of the particle population in each well〈N̂i〉(T ) and the
tunneling correlation〈Ĉ〉(T ) = 〈(b†1b2 + b†2b1)2〉(T ). From
the analysis for the particle population study we found that
there is no agreement between the microcanonical and the
canonical descriptions above the transition from delocalized
to self-trapped regimes, in other words, we observed that the
thermal average of̂N1 is essentially equal toN/2, whether
above or below the transition, while taking the average in the
microcanonical ensemble allows us to detect the transition
that below the transition. Regarding the thermal averages of
the tunneling correlation〈Ĉ(T )〉, we observed that either, be-

low and above the transition, the microcanonical and canoni-
cal descriptions are non equivalent. One can attribute this re-
sult to the fact that in a BJJ array the entropy does not scales
aseN but asN , as a consequence of being a finite two-level
system.
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