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We investigate the thermodynamic properties of a bosonic Josephson junction in the full quantum approach and, in particular, we concentrate
in studying the thermal averages of one- and two-body properties below and above the transition from delocalized to self-trapped regimes.
This temperature dependence is determined by using the fact that at equilibrium the microcanonical and canonical ensembles should be
equivalent. To establish the robustness of the equilibrium state, we first study a one body property and show numerically that any arbitrary
state localized in energy, when evolved, reaches a stationary or equilibrium state. Comparison among averages of one- and two-body
properties in the microcanonical and canonical ensembles reveals discrepances, thus leading to non-equivalence among these ensembles.
Such averages differences can be attributed to the fact that the Hilbert space of the system scales &5 aadieensequently, the entropy

does not scale a&. We further find as a natural consequence of studying the finite bosonic Josephson junction in the two-mode Bose
Hubbard context, that positive and negative temperatures are obtained. This result can be generalized for any finite optical lattice.

Keywords: Josephson effect; bosonic Josephson junction; quantum ensemble theory.

Se investigan la propiedades termdtiricas de una junta de Josephsordin@sa en la aproxima6én clantica de dos modos, en particular, se
estudian los promediogtmicos de propiedades de unoy dos cuerpos abajo y arriba de la rtamigaeslocalizath a estado autoatrapado.

Esta dependencia en la temperatura se determina usando el hecho que en equilibrio los ensémldes/gaitrocadnico debeian ser
equivalentes. Primero se establece la robustez del estado de equilibrio estudiando una propiedad de un cuerpo y moétieache mem

que cualquier estado arbitrario localizado en ereajcanza un estado estacionario o de equilibrio. La compgera&eitre promedios de
propiedades de uno y dos cuerpos en los esquemasicary microcadnico revela descrepancias, exhibiendolaso equivalencia entre
ensembles. Dichas diferencias en los promedios pueden atribuirse al hecho que el espacio de Hilbert del sistema se escala é@mo su tama
N y consecuentemente la enttamo se escala caN. Adicionalmente, se encuentra como consecuencia natural de estudiar a la junta de
Josephson bésica en la aproximaén de dos modos, la existencia de temperaturas negativas. Dicho resultado puede ser generalizado para
redesopticas finitas.

Descriptores:Efecto Josephson; junta de Josephsorbics; teota de ensemble éuntico.

PACS: 03.75.Lm; 03.75.Hh; 05.30.Ch

) In parallel to the experimental understanding of BJJ, the
1. Introduction theoretical approaches addressing those systems, have pro-
vided a reasonable description of both the dynamical behav-

Today, bosonic Josephson junctions (BJJ) are realizabli®" and the phase transition from the delocalized (or coher-
arrays in ultracold alcaline gases confined in externafnt transport) to the self-trapped regime, as a function of
potentials.  The first observation was implemented bythe parameter that characterizes the interparticle interaction
Oberthaler's group [1] for87Rb atoms in 2005. Such an e}nd of the initial many-body state..Those two-mode descrip-
array consisted of a sample &f ~ 10% weakly interact- tions [4_.15’ 17’}8] are .the mean field approach based on the
ing atoms at’ ~ 10~° K, confined in a one dimensional G'ross—Plt:.:\evsIfu equation and thg full quantum description

. . . . __circumscribed in the second quantized frame. Although these
tyvo-well potential. Since thgn, a yanety of Josephspn 1UNCheories predict the occurrence of the transition from delocal-
thhS. for ultracold atoms, mcludl'ng mixtures of different ized to self-trapped transition as a function of the two-particle
species of bosons, fermi-boson mixtures, and two- and thréaeraction and the initial condition, it is important to remark
dimensional geometries have been created [2, 3]. The obsefiat the exact guantum descriptiesthe mean field approach
vation of the phase transition from delocalized to self-trappeqk’upp“eS a more general description of the system since in
regimes in these systems is the result of setting a threShOHinciple N—body properties can be investigated from such
initial population in each well for a constant interparticle in- gn scheme. As a matter of fact, the property of dynamical
teraction, or manipulating both, the geometry of the two-wellstationarity detected from few body quantities [15,19,20] can
potential (varying the potential depth), and the interparticleonly be established from full quantum calculations from the
interaccions (by changing the-wave scattering length ex- entire landscape of energy and interparticle interaction en-
ternally). ergy.
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Since a BJJ array is a closed system with a fixed numbehibits the property of dynamical stationarity for any arbitrary
of particles N where a given inital state fixes the total en- value of the parameter characterizing the interaction among
ergy e for a constant interaction strength, a microcanonicakhe particles and for any initial many-body state, through the
ensemble is the natural one to describe the average or expestudy of a one-body property when arbitrary coherent states
tation value of few body properties. Thus, the eigenstates adire evolved in time. In section Il we study the particle popu-
the Hamiltonian modelling a BJJ array would be the propeiation and the tunneling correlation (one- and two-body prop-
states to describe the average or expectation value of any arties respectively) in the canonical ensemble, and show that
bitrary few body property. There exists however, as indicateaven in the thermodynamic limit, the BJJ system exhibits the
by previous studies [19, 20], states that give rise to dynaminon-equivalence between microcanonical and canonical en-
cal stationary, or equilibrium, values in few-body properties,sembles since the few-body averages differ. As we shall dis-
whose average coincides with the expectation value of thoseuss, such discrepancies may be attributed to the fact that the
few-body properties in the eigenstates. Those are the weélize of the Hilbert space of the system scaled/dastead of
known family of coherent states [21, 22] that have the prop<”. This same feature of reduced Hilbert space, allow us also
erty of possessing small energy mean-square deviation, thed show that negative and positive temperatures consistent
is, they are states localized in energy. Thus, for a given numwith the thermodynamic second law are obtained. Finally
ber of particles and by considering such coherent states, a i section IV a summary with the main results is presented.
crocanonical ensemble defined by the variateande can
be set. The equilibrium values in this ensemble will be use
to determine its associated thermal averages in the canonical
ensemble.

Although itis not necessary to over emphasize the imloorTo model BJJ we work in the full quantum frame consider-
tance on the temperature dependence of the thermodynanmg the two-mode approximation, that is, the two-mode Bose-

properties in a macroscopic system, it is important to poingy hhard model. Derivation of this Hamiltonian can be found
out that a very important issue in the ultracold systems igsewhere [6,7,10,15]

the thermometry. Typically, temperatures are obtained from
theoretical adjustable models to in situ density profiles, or , A

e ) —= (blby + blb bIbibiby + bibibabs ) . (1
by other indirect methods [23]. For the particular case of 2 ( 102+ 0 1) +U( 1019161 + 635202 2) (1)

BJJ, the temperature can be presumably extracted from th]ezne parameter is the energy spacing of the two low-
used model describing this system, namely the tWO'mOd%st energy modes in a symmetrical two well potential and

Bo;e-Hubbard model. However, as we shall See, the noryy 4mh?a/m represents the effective particle-particle in-
equivalence between canonical and microcanonical SChem?éraction strength written in terms of the (positivejvave
in this systems, leaves still open the question of the temper,

q - Perh h del d bing BJ scattering lengthi. As previously pointed in the literature
ature determination. perhaps the model describing mu 5, 16], Hamiltonian (1) assumes that the overlap among lo-

be reconS|der§d and make the necessary adjustm_ents 10 dBlized single-wave functions is neglected and therefore the
cumvent the failure pointed here. As we shall argue in sectio

ffective interaction among particles occurs only whenever
Ill, one of the rutes to extend the two-mode Bose-Hubbar gp y

. : X he particles move within the same well. We use units with
model is to include not just the lowest two modes, but theh —A—m=—1

next MO energy levels and its corresponding localized wave The microcanonical ensemble is defined by specifying
functions. i . ) _ the number of particle®v and the expectation value of the
The purpose of this work is to investigate the thermal av-

>HIe energye. As mentioned in section |, alternatively to the
erages of one- and two-body properties in a BJJ array, b&sigenstates of Hamiltonian (1), the coherent states [21, 22]

Iow_and gbove the transition from delocalized to sglf-trgppmgare suitable states to set the variables defining the microcani-
regimes in the canonllcal ensemble. Such fgpcgonahty W|!Ica| ensemble since they possess small energy mean square
be established by using the fact that at equilibrium the miye,iation. Those states written in the atom number basis or
crocanonical and canonical ensembles should be equivalent, states Ny, N»), whereN; and Ny (N; + Ny = N) is

and therefore, it should be possible to describe the averagfe number of particles in wells 1 and 2, are defined as fol-
value of few-body properties in both the microcanonical enq,,,s-

semble defined by the variablés N') and in the canonical

The Hamiltonian in the microcanonical en-
semble

ensemble defined by the variablgg, N). In particular, we N 1/2

shall concentrate in}gtudying the(tem[zeran?re dependence ot @) = Z (i}i) sin™~Y1(6/2)

the particle population in each wélN;) and of the tunneling Ni=0

correlation(C) = ((biby + bib1)2). We shall find that the % cosVi (6/2) e N NDY NN — ). (2)
predictions of the different ensembles do not agree with each

other. The angle® and¢ define a particular initial state, that is, a

This article is organized as folllows. In section Il we particular energy. These angles can be determined by fixing
introduce the model Hamiltonian and show that a BJJ exthe expectation value of the energy or the initial population
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in, say, well 1. In fact, in a previous work [20] it has been
shown that such states behave as the eigenvectors of Hamil
tonian (1) whert and¢ are properly chosen, in the sense that
the expectation value of a few-body property in the eigen-  °®
states, coincides with the averaged equilibrium or stationary
state of the same property in the coherent states. AHfe

By considering any of the coherent states (2) as the ini- , —~
tial one for the system, one can evolve it numerically [24], N

0.01 N

10, ¢;t) = exp(—iHt/h)|0, ¢), and calculate the expectation
values of the observables, , the particle population in well \

0.04

one, and’ = (bIbQ + b;bl) , the tunneling correlation, s ‘ m ‘ i ‘ G
€/N
<N1(t)>T = (0, ¢; ] ]\71 6, ¢; 1) ©)) FIGURE 2. Energy mean square deviation fyr= 1000, A = 1.1,
for the values of) and¢ in Fig. 1.
and

(C(t)r = (0,05t C |6, 51), (4)  theliterature [7-9,11-15,18], for any value of the interaction
L . . _ parameter\, and for any initial condition, the particle popu-
where the time intervat in which the average is taken Cor- |ation shows the phenomenon of collapses and revivals in the
responds to the mte_rval of time where the stationarity is Ob'many-body dynamics. However, it is important to remark that
served [20]. Even in a closed system, the property of sta \ye observe the system for a long but arbitrary time, it will
tionarity is very difficult of being captured from the infor- 11y be found in the stationary state. Thus, the rubustness
mation enclosed in & —body system, however, it can be f the stationarity is verified. To complement the information
observed directly from the expectation value of few bodygncoded in Fig. 1, we plotin Fig. 2 the energy mean-square

properties [15, 19]. To show that any state belonging to thgjayiation AT — (H2) — (H)2 for N = 1000, A = 1.1
family of coherent states reaches an equilibrium state whegy, the values of andé in Fig. 1. As expecte1d the se'é of
few-body properties are studied, we followed the evolution inconerent states appear to be localized in energy.

time of the expectation value of the particle populatiénin

the coherent states (2) takifg< 6 < 27 and0 < ¢ < 2. ) ..
In Fig. 1 we show the stationary values of the particle popu=3- T hermodynamical properties in the canon-

lation in well 1, N, , in the family of coherent staté8, ¢; t), ical ensemble
as a function of their expectation value of the ener@y ¢), . . )
for N = 1000 [24]. To discuss the role of the temperature in BJJ, and particu-

For purposes of calculations of the stationary states, wéd'ly t0 determine the dependence of the average values of
selected a specific value of the parameter= UN/A few body properties on the temperature, we should first re-
(U =1.1,A = 1andN = 1000 ) and follow the evolu- call that such an isolated system is, as stated in section |,

tion of the chosen states for times longer than the time sperd€Scribed by a microcanonical ensemble. Namely, its macro-
in the stationary staté,> 7. As has been pointed out in SCOPIC state is characterized by the number of partivlesid
, the energy. Depending on the values of these variables, and

. if the system is in equilibrium, it should have a well defined
‘ T temperaturd’ = T'(N, ¢). If in the thermodynamic limit the
o ensembles are equivalent, one should obtain the same results
for the equilibrium states using the canonical ensemble with
N andT given. Due to the simplicity of the system under
study, one can very easily calculate the average value of any
observable operatot in the canonical ensemble,

1 N

(A) = 2 3 (0alAlgn) e/, 5)

n=0

wherek is Boltzmann constant and the partition function is

N
Z=> e/ (6)
n=0

200

0.0

FIGURE 1. Statistically stationary values of the number of particles With this procedure, and assuming that the temperature is a
inwell 1, N , in the family of coherent staté®, ¢; t), asafunction ~ Single valued function ofV ande, we can assign a tempera-
of their expectation value of the energly, ¢), for N = 1000. ture to a stationary state with a given eneedyy solving the
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following equation forT', be that our calculation based on the coherent states do not cor-
N respond to a microcanonical ensemble, or that for this system
¢ — 1 Z o e—en/kT ) there is simply no equivalence between ensembles. This pos-

Z " ' sibility can be explained as follows. The system under study

n=0

is peculiar in the sense that it represents a collection of atoms
To determine the thermal averagesof andC by means of  interacting with the same strenght with all the other atoms,
Eq.(5) as a function df’ and V, we proceed as follows. We provided they are in the same internal state. In other words,
solve the eigenvalue system (1) for valuesfobelow and  the fact of considering the two-mode approximation only, has
above the transitiolh = 0.1, 1.0 and 10.0, that is, we find given rise to an effective Hamiltonian in which the interac-

the eigenenergies, tions among the particles appear as if they were long range,
. whenever the particles have the same internal state, while the
H(A)[¢n(A)) = en(A)[¢n(A)). full Hamiltonian represents particles with short range inter-

From the analysis done in section I, we selected the values ?ag]ctmns. Moreover, it can qlso be shown, by studying Eq.(7),
. o at the energy as a function of temperature and number of
6 and¢ such that for a given value df the condition

particles is not fully extensive, namely, it is not of the form
(0, ¢) = e, e(T,N) = N e(T) with e(T") a function of the energy only,
but rather,e(T, N) = Ne(T/N). The two-mode approxi-
is satisfied, that is, we determine the value$ ahd¢ defin-  mation reduces dramatically the Hilbert space of shdody
ing the coherent state for the entire energy spectryrfor system and consequently the extensive character of the ther-
A =0.1, 1.0 and 10.0. Then, by solving eq. (7) we deter-modynamic variables with such intrinsic nature is lost.
mine the temperaturg in the canonical ensemble associated

, : ¢ As it is well known, the entropy of a macroscopic sys-
to the microcanonical ensemble definedend N. All the

X Tl tem in equilibrium scales ag¥, and thus its extensivity is

calculations presented in this work were donefor= 1000.  refiected along several thermodynamic properties. Neverthe-

It is worth to mention that we verified that calculations for |oo5 5 system having a small equilibrium landscape, gives
_ 4 - . 1 H

N =107 give esentially the same results. Thus, the assumeflse 5 non-extensive thermodynamics. As stated above, the

equivalence among microcanoical and canonical ensemblgg,_yode Bose-Hubbard Hamiltonian causes such behavior.

is well justified. It is important to emphasize however that thenode mod-

By means of equation (5) we determine the thermal avergq seq to describe 1D finite optical lattices could not have
ages oflV; andC. The gray dotted and black dashed curves,gqceq Hilbert spaces, giving rise therefore to recover the

in Fig. 3 correspond to the averages/¥f in the eigenstates o 4ansive character of the natural extensive properties.

and in the coherent states respectively, while the black solid ) ,
line is the average al; in the canonical ensemble. Anal- In the study of BJJ an alternative to circumvent the found

ogously, the gray dotted and black dashed curves in Fig. giscrepancies among canonical and microcanonical schemes,
correspond to the averages®fn the eigenstates and in the 'S the inclusion the next energy band. That is, instead of

coherent states respectively, while the black solid line is th&0onsidering the first energy band with the two lowest en-
average of canonical ensemble. ergy levels, perform the analysis taking into account the

Regarding the results obtained le) we observe that _second energy band, and thus dealing with a Hamiltonian

there is no agreement between the microcanonical and tH8 the four-mode approach. The eigenstates analysis of a

canonical descriptions above the transition from delocalizedf@miltonian with an such an extension has already been ad-
to self-trapped regimes, that is, we find that the thermal avdressed in [28], where, as stated, the Hilbert space scales as

erage ofN; is essentially equal t&V/2, whether above or (N +1)(N +2)/2. Thus, by extending the available Hilbert
below the transition, while taking the average in the micro-SPace one could find that such differences are diminished.

canonical ensemble allows us to detect the transition. Such a In addition to the analysis presented above we should
discrepancy can be interpreted as the impossibility of showstress an important point regarding the dependence of the
ing spontaneous symmetry breaking. This phenomenon iemperaturd’ on the energy in a BJJ. Since those systems
analogous to the fact that in the Ising model in 2D the averare modelled by means of a two-mode approach and consist
age magnetization is always zero: one needs a small external a finite number of particles, they exhibit negative temper-
magnetic field to break the symmetry and then make it taatures [26]. This fact is compatible with the thermodynamic
vanish [25]. second law in the sense that heat flows from a negative tem-
The behavior of the average values of the two-bodyperaturel; to a positive temperaturg,, whenever the ener-
tunneling correlatiorC reveals also discrepancies betweengies associated t6; and75 fulfill the conditione; < e, . To
canonical and microcanonical ensembles. As in the partillustrate this behavior, in Fig. 5 we plot the inverse of the
cle population case, the transition from delocalized to selftemperature as a function effor N = 1000 andA = 0.1.
trapped states (the peaks in gray dotted lines in Fig. 4) is ndt is important to note that this figure is consistent with the
observed in the thermal averages (black solid lines). We dthird law of thermodynamics since/T is never reached. In
not have an explanation for such a discrepancy. It may eithegeneral one can state that every finite system with a bounded
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FIGURE 3. Averages ofV; as a function oft, A =0.1(left), 1.0(center) 10.0(right). The gray dotted and black dashed lines correspond to
the averages alV; in the eigenstates and in the coherent states respectively, while the black solid line is the avéfagretbe canonical
ensemble Calculations were performed usiig= 10°.

030
025}
020
C oast
0.10]

0.05F

0.00t I N I I I I ! I I 1 I
-0.4 =02 0.0 0.2 04 0.0 0.2 0.4 08 1.0 5 6 8 9 10

0.6 7‘
€/N €/N €/N
FIGURE 4. Averages ofC as a function of\, A =0.1(left), 1.0(center) 10.0(right). The gray dotted and black dashed lines correspond to
the averages of in the eigenstates and in the coherent states respectively, while the black solid line is the av€ragéhef canonical
ensemble. Calculations were performed usiig= 103.

energy spectrum exhibits negative temperatures. Thus, itential in one dimension. In particular, we concentrate in
the light of the experiments performed in optical lattices, thestudying the thermal averages of one- and two-body prop-
knowledge of this fact, provides a tool to use such a systemerties. This study was motivated by the experimental real-
as a reservoir with externally controlable temperature. ization of a single bosonic Josephson junction (BJJ) in two
weakly linked Bose-Einstein condensates. Such an array can
be considered as a closed system with a well defined energy
4. Conclusions. fixed by means of adjustable external parameters. Thus, the
natural ensemble to describe a BBJ array is a microcanonical
We have addressed the thermodynamic properties of an integnsemble-like. To model the BJJ array in the microcanical
acting N —body boson fluid confined in a double well po- ensemble, we use the two-mode Bose-Hubbard Hamiltonian,
- . . . and show that for every definite value of the energy, the equi-
60 % ] librium state in the system can be established by following
the dynamical evolution in few-body properties until station-
arity is reached. The family of coherent states, which are
1 20¢ 1 states localized in energy, allowed us to show numerically
— o ] that any arbitrary initial state, that is, any fixed energy value
T _of ] defining a microcanonical ensemble-like, reaches a sfcatisti-
cally stationary state. Our calculations were done It
—40p ] particles whose interaction was characterized by a parame-
i ter A = NU/A responsible, together with the initial state,
‘ ‘ : for the transition from delocalized to self-trapping regime.
-04 -02 0.0 0.2 0.4 By assuming that at equilibrium the microcanonical ensem-
€ ble, defined by the variablésV, £), and canonical ensembles
are equivalent, we determine the temperafligssociated to
FIGURE 5. Inverse of temperature as a functioneofCalculations  a5ch equilibrium state. We further determine the thermal av-
were performed using = 0.1 andN = 10°.

4L ]

—60[ i
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tunneling correlationC)(T') = <(b§b2 + b§b1)2>(T). From
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low and above the transition, the microcanonical and canoni-
cal descriptions are non equivalent. One can attribute this re-

the analysis for the particle population study we found thatult to the fact that in a BJJ array the entropy does not scales
there is no agreement between the microcanonical and these” but asNV, as a consequence of being a finite two-level
canonical descriptions above the transition from delocalizedystem.

to self-trapped regimes, in other words, we observed that the
thermal average olV; is essentially equal tav/2, whether
above or below the transition, while taking the average in theAcknowledgments
microcanonical ensemble allows us to detect the transition
that below the transition. Regarding the thermal averages ofhis work was partially supported by grant IN114308
the tunneling correlatiofC(T')), we observed that either, be- DGAPA (UNAM).
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