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Electronic heat transport for a multiband superconducting gap in Sr2RuO4
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This paper gives a detailed numerical study of the superconducting electronic heat transport in the unconventional multiband superconductor
Strontium Ruthenate Sr2RuO4 . The study demostrates that a model with different nodal structures on different sheets of the Fermi surface
is able to describe quantitatively experimental heat transport data. The contribution of the density of states DOS is given for each sheet of
the Fermi surface and the total contribution is also calculated. Finally, a discussion of the universal character of the electronic heat transport
in unconventional superconductors and its relation to the DOS based on the type of nodal structure of the superconducting gap in Sr2RuO4

is given.
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En este trabajo se presenta un estudio numérico detallado de la termoconductividad electrónica en el superconductor no convencional Rute-
nato de Estroncio Sr2RuO4 . Se muestra que un modelo con diferentes estructuras nodales en diferentes láminas de la superficie de Fermi es
capaz de describir cuantitativamente datos de transporte térmico obtenidos experimentalmente. La densidad de estados se calcula para cada
lámina de Fermi y se presenta su contribucion total. Porúltimo, se discute el caracter universal de la termoconductividad electrónica en los
superconductores no convencionales con diferentes estructuras nodales en la brecha superconductora como es el compuesto Sr2RuO4 .

Descriptores:Termoconductividad electrónica; superconductores no convencionales; estructura de la brecha; densidad de estados supercon-
ductora; nodos puntuales; lineas de nodos.

PACS: 74.20.Rp; 74.70.Pq; 74.25.F-; 74.25.fc

1. Introduction

It is believed that Sr2RuO4, a multiband superconductor with
a Fermi surface composed of three sheets, (called theα,
β andγ sheets), is an unconventional superconductor with
some kind of nodes in the superconducting gap [1,2]. For
instance, a number of theoretical works [3-7] have predicted
the existence of line nodes on two of three sheets of the Fermi
surface (α and theβ sheets). While, many authors take theγ
sheet to be nodeless, these works have been able to provide
an agreement with the specific heatC(T ) [8,9], electronic
heat transport experimentsκ(T ) [10], and recently with ul-
trasound measurementsα(T ) as well. However, the exis-
tence of a nodeless gap for theγ sheet contradicts the nodal
activity observed in ultrasound measurements below Tc in
Sr2RuO4 [11]. Firstly, the anisotropy inherent to thek depen-
dence of electron-phonon interaction shows thatγ sheet dom-
inates ultrasound attenuation for L[100], L[110], and T[110]
sound modes. Secondly, these modes show very similar tem-
perature power law behavior below Tc; therefore theγ sheet
should also have a similar nodal structure.

The sound attenuationα(T ) in Sr2RuO4 can distinguish
the nodal structure of theγ sheet from that one of theα andβ
sheets. In contrast, electronic thermal conductivity and spe-
cific heat have an integral effect (the three sheets contribute to
κ(T ) andC(T )), and it is very difficult to discern if the order
parameter in each of the Fermi sheets has similar nodal struc-
ture. So far, to summarize there is a considerable consensus

as to the unconventional behavior [1,2,13], and the symme-
try of the superconducting gap [14], and probably also, to the
multiband nature of the superconducting state, nevertheless
certainly there is as yet no agreement as to the nodal struc-
ture of the superconducting gap on the different sheets of the
Fermi surface.

It has been proposed a model based on symmetry con-
siderations [12], which explains the temperature behavior of
the ultrasound attenuation for the L[100], L[110], and T[110]
sound modes. According to this model, theγ sheet shoud
have well-defined point nodes, and theβ and/or α bands
could have also point nodes, but with an order of magnitude
smaller than for theγ band and resembling lines of a very
small gap. The purpose of this article is to apply, the model
found in Ref. 12 to the study of the electronic heat transport
of Sr2RuO4 .

Sr2RuO4 has a body centered tetragonal structure with a
layered square-lattice structure similar to that of many high
temperature copper-oxide superconductors [1]. The critical
temperature Tc varies strongly with non magnetic impurity
concentration, Tc ≈ 1.5 K for pure samples. The normal state
displays Fermi liquid behavior [2]. According to some au-
thors [14,15] the symmetry of the gap structure is believed to
be a time reversal broken state, with the symmetry transform-
ing as the two dimensional irreducible representation E2u of
the tetragonal point group D4h. Additionally in Ref. 17 the
order parameter of Sr2RuO4 was proposed according to a
novel mechanism due to antiferromagnetic fluctuations.
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FIGURE 1. The black dots show the positions of the point nodes
in the superconducting gap on theβ andγ Fermi surface sheets
in Sr2RuO4 , as determined by Eqs. 2 and 3. Each solid circle
represents two nodes, at positions±kz.

2. Model for the superconducting gap struc-
ture

As I mentioned before, the gap model proposed in Ref. 12
is extended here for the study of the electronic heat trans-
port. The assumption of a superconducting order parameter
according to symmetry considerations, where

∆k=(di(k) · di,∗(k))∆i(T ),

with differentdi(k)- vector order parameters for differenti-
Fermi sheets, transforming according to the two dimensional
irreducible representation E2u of the tetragonal point group
D4h, it yields the form

di(k) = ez[di
x(k) + i di

y(k)]; (1)

where the explicit expressions I use fordi
x anddi

y are

di
x(k)=δi sin(kxa)+ sin

(
kxa

2

)
cos

(
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2

)
cos

(
kzc

2

)
, (2)

and

di
y(k)=δi sin(kya)+ cos

(
kxa

2

)
sin

(
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2

)
cos

(
kzc

2

)
, (3)

with di
x and diy real. The factorsδi were obtained in Ref. 12

by fitting experimental data on ultrasound attenuation of
Ref. 11.

For this model, the nodal structure of theγ band predicts
eight symmetry-related nodes fork, lying on the symmetry
equivalent{100} planes (see Fig. 1) and also eight symmetry-
related nodes in{110} planes for theγ sheet as well. The

nodal structure of the order parameter for theβ and/orα
sheets yields to eight symmetry-related nodes fork, lying on
the symmetry equivalent{100} planes (see also Fig. 1) and
also eight symmetry-related nodes in{110} planes. All point
nodes are “accidental” in the sense that they are not required
by symmetry, but exist only if the material parametersδγ and
δβ/α have values in a certain range.

3. Electronic heat transport

In order to calculate the electronic heat transport or thermal
conductivity for an unconventional superconductor, a stan-
dard formalism previously reported [19] is extended here to
account for tight binding effects. For this purpose, the incor-
poration of tight binding effects for the nodal structure and
the Fermi surface is the most important. A self-consistent
calculation of the gap function and of the energy-dependent
impurity scattering rate is beyond the scope of this article,
this leads to the approximation where the interband scatter-
ing effects are totally neglected.

Recent induced impurity scattering measurements [23] of
the thermal conductivity for temperatures close to 100 mK,
have shown a remarkably universal character of the electronic
heat transport in Sr2RuO4 . It has been suggested [23] that
Sr2RuO4 is in the unitary impurity scattering regime. In ad-
dition to this, some time ago it was suggested the idea [21]
that the transport properties of heavy-fermion superconduc-
tors can be explained in terms of an effective electron scatter-
ing rate which, except for the lowest temperatures is approxi-
mate temperature independent and equal in magnitude to that
of the normal state. Such a lifetime arises in a self-consistent
treatment of impurity scattering near the strong regime.

Thus, in the proposed not self-consistent treatment, we
take the impurity scattering superconducting quasiparticle
lifetime τ i

n to be equal to the impurity scattering predicted
for the unitary limit in the normal state.

1
τ i
n

=
ni

πN i
0U0

. (4)

N i
0 is the density of states for thei-sheet at the Fermi level,

and the strength of the impurity potentialU i
0 À 1.

The energy of a normal-statei-sheetεi
k is the same as the

value previously reported [12]. The tight binding parameters
used for theγ sheet are

(E0 − EF , t, t′) = (−0.4,−0.4,−0.12).

These values are in agreement with Haas-Van Alfen, and
ARPES experiments [16,17]. The calculation of the ther-
mal transport makes use of the Fermi velocity as determined
from the expression for the band structure; however, a cal-
culation with the unit isotropic vector of the Fermi velocity
v̂i

F,j = (ĵ · ki) provides the same result.
The expression used to calculate the electronic heat trans-

port due to non magnetic impurity scattering in unconven-
tional superconductors is validated for energiesε ∼ T and
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FIGURE 2. Numerical fit of the in-plane thermal conductivity
components [100] normalized at Tc. Experimental data is taken
from [10].

low impurity concentrations. A suitable equation to compare
numerical calculations with experiments is given by

κj(T )
κj(Tc)

=
I

T

∑

i

∞∫

0

dεε
(
− ∂f

∂ε

)
Ai

j(ε), (5)

here the constantI = 6/(π2Tc), j refers to one of the two
basal directions [100] and [110] andi labels the sheets on the
Fermi surface.Ai

j(ε) is given by

Ai
j(ε) =

〈
v̂i,2

F,j(k)Re
√

ε2 − |∆i
k|2

〉
FS∑

i

〈
v̂i,2

F,j(k)
〉

FS

. (6)

The gap∆i
k corresponds to the expressions for di

x and diy
given in Eqs. 2 and 3.̂vi

F,j are the unit Fermi velocity vectors
for each sheet. In this equation vertex corrections have been
neglected, since we have not carried out a self-consistent
evaluation of the order parameter. It is assumed a temper-
ature dependence of the form∆i(T ) = ∆i

0

√
1− (T/Tc)3,

which is sometimes used in the literature [6].
Figure 2 shows the numerical results for the temperature

dependence of the normalized electronic heat transport cal-
culated by evaluating Eq. 5. The experimental results are
from Ref. 10. The obtained fittings are:∆β

0 ≈ 0.09 meV, and
∆γ

0 ≈ 0.3 meV.
The numerical calculation of the electronic thermal con-

ductivity for the basal [100] direction is shown in Fig. 2.
The totalκ gives an excellent agreement with the experi-
mental data. This experimental data is for pure samples with
Tc ≈ 1.44 K. Contributions from each band are also calcu-
lated. Figure 2 shows that lines of very small point gaps on
theβ and/orα sheets could dominate the behavior of the elec-
tronic thermal conductivity at low temperatures. On the other
hand, point nodes on theγ sheet give an insignificant contri-
bution at low temperatures. This shows in principle that the
electronic thermal conductivity in Sr2RuO4 is an integral ef-
fect where, in contrast to sound attenuation, the contributions

FIGURE 3. Numerical calculations of the superconducting density
of states DOS for theβ andγ sheets according to our model.

for all the bands are needed in order to explain the experi-
mental data.

It is important to notice that although the nodes in the pro-
posed model are both point nodes, the low temperature prop-
erties of the nodal structure for theβ and/orα sheets have
some of the properties of line nodes, as there is a very low
gap along the line joining the nodes. Hence, the result match
the one provided by horizontal line nodes as is the case of the
Zhitomirsky-Rice model [3]. However the fit in Fig. 2 pro-
vides in principle, a strong support for the essential features
of the order parameter symmetry model of Ref. 12.

Due to the importance of anisotropy tight binding effects,
I also consider worth to calculateκ for the [110] direction,
finding that there are no crucial differences between the cal-
culation for any of the two directions; even in the case when
anisotropic effects are included. This proves that theκ(T )
dependence on T (in contrast to the sound attenuation) is in
overall equally dominated from contributions coming from
all the sheets and explains the apparent line nodes behavior
of κ where theβ andα sheets give a major contribution.

4. Density of states and universal behavior of
the electronic heat transport

Next, I attempt to give a qualitative analysis of the universal
behavior of the superconducting electronic thermal conduc-
tivity according to this model. First, a numerical calculation
of the density of states DOS in the superconducting state of
theγ andβ sheets is performed. The numerical calculation
of the DOS is made with the equation

N(ε) = N i
0Re

〈 ε√
ε2 − |∆i

k|2
〉

FS
, (7)

N i
0 is the DOS at the Fermi level for each band, and the gap

∆i
0 corresponds to the one given by the expressions fordi

x

anddi
y. For the purpose of finding the energy dependence of

the DOS the previous expression is calculated atT = 0.
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The numerical calculation of the DOS is shown in Fig. 3.
For theβ andγ sheets Fig. 3 shows that for the low energy
Bogoliubov excitations the DOS in theβ sheet behaves lin-
early in energy, as it is predicted for line nodes. On the other
hand, theγ band shows a quadratic behavior in energy, as it is
expected for a superconducting DOS with point nodes. Also
from Fig. 3 it can be noticed that the zero temperature gap
amplitude for theγ band is larger than the one for theβ band.

In order to elucidate the universal behavior inκ from the
symmetry model, an intuitive approach which was found to
be successful in Ref. 20 will be used below. It is noticed
that a more general theoretical analysis as the one developed
for the universal behavior of the sound attenuation in Ref. 18
can be performed easily here. I show that it is possible to
provide the main results in the case of a multiband supercon-
ductor. I start with a simple expression for the expected low
energy dependence of the DOS where the nodal points (the
points where the Bogoliubov quasiparticle’s energy is zero)
determine the low temperature thermodynamic properties.

As it was noticed previously, the largest material parame-
terδγ gives rise to a well defined point-nodes topology for the
order parameter in theγ band, therefore as shown in Fig. 3, a
qualitative behavior of the DOS yields the following expres-
sion for the density of states of theγ-sheet

Ns,γ

Nγ
0

' ε2

∆γ,2
0

. (8)

On the other hand, the material parameterδβ gives rise to
a line of very small point nodes on theβ sheet and it can be
approximated by the following expression

Ns,β

Nβ
0

' ε

∆β
0

, (9)

where∆γ
0 and ∆β

0 are the maximum gaps for each Fermi
sheet.

Close to the strong scattering regime and approaching the
universal limit, I generalize the results of Ref. 20 to the case
of a two gaps superconductor. In Ref. 20 it is supposed that
the low lying Bogoliubov excitations acquire an imaginary
partε−→ ε+ iΓ. These excitations posseses an energy inde-
pendent life timeτ = 1/2Γ and because of the energy uncer-
tainty principle, the low energy quasiparticles have a spread
in energy of the order ofΓ which is called the zero energy
scattering rate [18].

Therefore, close to the unitary limit the DOS for both
sheets is given by

Ns,γ

Nγ
0

' Γ2
γ

∆γ,2
0

, (10)

and
Ns,β

Nβ
0

' Γβ

∆β
0

, (11)

whereΓγ andΓβ are the spreads in energy for theγ andβ
sheets.

The low temperature specific heatcV associate with the
constant DOS at low energies and temperaturesT ≤ Γ and
for both sheets is given according to [20] by

cV = cγ
V + cβ

V ' 2π2

3
k2

B T

[
Nγ

0

Γ2
γ

∆2
γ

+ Nβ
0

Γβ

∆β

]
. (12)

wherekB is the Boltzmann constant. This way a simple es-
timate of the bulk electronic thermal conductivity at low en-
ergies and for both sheets in the limit of the universal behav-
ior (at temperaturesT ≤ Γ) is given by the generalization of
equation in Ref. 20

κ = κγ + κβ ' cγ
V vF,γ lγ + cβ

V vF,β lβ , (13)

with

lγ = vF,γ
~
Γγ

and

lβ = vF,β
~
Γβ

the mean free paths for both sheets. Finally, I found the
electronic heat transport in the limit of the universal behav-
ior to be

κ

T
≈ π2~k2

B

3

[
v2

F,β

Nβ
0

∆β
0

+ v2
F,γ

(
Nγ

0 Γγ

∆γ,2
0

)]
. (14)

A numerical evaluation of the previous equation can
be performed by using the values for the Fermi velocities
vF,β = 95.9 Km/seg andvF,γ = 59.5 Km/seg according
to [2], the values for∆γ

0 and ∆β
0 given previously in this

paper, and the values of the DOS at the Fermi level of Ref. 2.
For the spread in energy in the unitary limit, I take a very
simple approximationΓγ ∼ ∆γ

0 following the appendix of
Ref. 18.

Therefore, I find the bulk thermal conductivity for this
two sheets model approximately equal to

κtheoretical/T ≈ 0.8W/K2m

and which is lower than the experimental value found in
Ref. 23 of

κexperimental/T ≈ 1.7 W/K2m.

5. Final remarks

It is found that with two different gap structures character-
ized in theγ, β and/orα sheets by point nodes of different
magnitude, the calculation of the temperature behavior of the
superconducting electronic heat transportκ(T ) leads to an
excellent agreement with the existent experimental data [22].
These results also show that in contrast to the ultrasound
attenuationα(T ), which is able to identify different nodal
structures in different bands, there is not relevant anisotropy
for the quantitiesκ[100] andκ[110]. This makes difficult to
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identify the nodal structure in Sr2RuO4 from electronic ther-
mal conductivity data. Finally, the numerical calculation of
the DOS for each sheet, allows us to qualitatively estimate the
value of the universal limit for the electronic heat transport to
be lower than the value observed experimentally in Ref. 23.

Acknowledgments

I thank Dr. M. Tanatar for stimulating discussions and for
providing the experimental data in Fig. 2. I also acknowl-

edge discussions with Prof. Michael Walker from the Univer-
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