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We establish a connection between oriented matroid theory and loop quantum gravity in (2+2) (two time and two space dimensions) and 8-
dimensions. We start by observing that supersymmetry implies that the structure constants of the real numbers, complex numbers, quaternions
and octonions can be identified with the chirotope concept. This means, among other things, that normed divisions algebras, which are only
possible in 1,2, 4 or 8-dimensions, are linked to oriented matroid theory. Therefore, we argue that the possibility for developing loop quantum
gravity in 8-dimensions must be taken as important alternative. Moreover, we show that in 4-dimensions, loop quantum gravity theories in
the (1+3) or (0+4) signatures are not the only possibilities. In fact, we show that loop quantum gravity associated with the (2+2)-signature
may also be an interesting physical structure.
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It is known that the self-dual (or antiself-dual) concept asso-
ciated with the 2-form Riemann tensorRAB plays a central
role in quantum gravitya la Ashtekar [1-3]. Mathematically,
the self-dual sector ofRAB is realized by introducing a dual
tensor∗RAB such that the self-dual curvature,

+RAB =
1
2
(RAB + α∗RAB), (1)

whereα = {1, i}, is again a 2-form. Using the completely
antisymmetric densityεA1..AD

(ε-symbol) which takes values
in the set{−1, 0, 1} one can define∗RA1...AD−3 as

∗RA1...AD−3 =
1
2
εA1..AD−3AD−2AD−1R

AD−2AD−1 . (2)

In this case, one immediately sees that the dual∗RA0...AD−3

is a 2-form only in4-dimensions. This seems to indicate
that, from a quantum gravity perspective,4-dimensions is
an exceptional signature. However, in Refs. 4 to 7 it is
shown that also makes sense to consider self-dual gravity in
8-dimensions, but one should define∗RAB in terms of the
η-symbol.(see Refs. 8, 9, 10 and 12) rather that in terms of
the ε-symbol. In fact, theη-symbol is very similar to the
ε-symbol in 4-dimensions; it is a4-index completely anti-
symmetric object and takes values also in the set{−1, 0, 1}.
However, theη-symbol is defined in8-dimensions rather than
in 4. Moreover, while theε-symbol in 4-dimensions can
be connected with quaternions, theη-symbol is related to
the octonion structure constants (see Ref. 13 and References
therein). Thus, in8-dimensions we can also introduce the
dual tensor

∗RA1A2 =
1
2
ηA1A2A3A4R

A3A4 , (3)

and consequently the self-dual object+RAB , given in (1), is
again a2-form. Since in2-dimensions one can always write
RAB = RεAB , ∗RAB =∗ RεAB and +RAB =+ RεAB ,
with R = (1/2)RABεAB ,, one sees that self-duality require-
ment (1) can also be achieved in2-dimensions. The case of
1-dimension corresponds to anε without indices and may be
identified with the real numbers. Therefore, this shows that
the set

D = {1, 2, 4, 8}, (4)

describes the dimensionality of the “spacetime” where self-
duality can be accomplished. One may recognize in (4) the
only possible dimensions for a real division algebras [14-15]
(see also Ref. 16 and references therein). Moreover, the
set (4) corresponds to the dimensions associated with the
normed division algebras; real numbers, complex numbers,
quaternions and octonions. From the point of view of string
theory and massless vector field, the dimensions in the setD
can be understood as the true physical degrees of freedom,
corresponding to dimensions3, 4, 6 and 10 in the covari-
ant approach, respectively. It turns out interesting that this
normed division algebras are related to the objectsε, εAB ,
εABCD andηABCD, respectively. In fact, we shall see below
that this is not a coincidence but as a result of a link between
supersymmetry, division algebras and oriented matroids.

The next step is to analyze the above scenario of1, 2, 4
or 8-dimensions from the point of view of the “spacetime”-
signature. The Milnor-Bott [14] and Kervair [15] theorem for
real division algebras and Hurwitz theorem [17] for normed
division algebras refer to Euclidean space, but in Refs. 18, 19
and 20 it is shown that the setD may also be linked to other
signatures. In2-dimensions we have the two possible sig-
natures(1 + 1) and (0 + 2) which may be identified with
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2-dimensional gravity (see Ref. 21 and references therein).
Traditionally, in 4-dimensions one assumes the signatures
(0 + 4) or (1 + 3), but in this article we will show that the
(2 + 2)-signature (two time and two space dimensions) may
emerge also as interesting possibility (see Ref. 22 and refer-
ences therein). Similarly, in8-dimensions one can consider
the signatures(0 + 8), (1 + 7), (2 + 6) and(4 + 4) which
in the covariant context may correspond to(0 + 10), (1 + 9),
(2 + 8), (4 + 6) and (5 + 5) (see Ref. 23). Of course, it
will be wonderful to have a theory which predicts no only
the dimensionality of the “spacetime” but also its signature
(See Ref. 24). At least the self-duality concept predicts the
dimensionality of the “spacetime”. But in the lack of a sensi-
ble theory which determines the signature of the “spacetime”
we need to explore all possibilities. Eventually this may help
to find, for a fixed dimensionality, a connection between the
different signatures.

Let us analyze the above scenario from the point of view
of gauge group theory. It is known that the algebraso(1, 3)
can be written asso(1, 3) = su(2) × su(2), or the algebra
so(4) asso(4) = so(3)× so(3), corresponding to the signa-
tures(1 + 3) and(0 + 4) respectively. So, in both cases the
curvatureRAB can be decomposed additively:

RAB(ω) =+ RAB(+ω) + −RAB(−ω), (5)

where+ω and−ω are the self-dual and antiself-dual parts
of the spin connectionω. In an Euclidean context, this is
equivalent to write the normed group for quaternionsO(4) as
O(4)=S3×S3, whereS3 denotes the3-sphere. The situation
in 8-dimensions is very similar sinceO(8)=S7×S7×G2,
with S7 denoting the7-sphere, suggesting that one can also
define self-duality in8-dimensions, but modulo the excep-
tional groupG2 [8-9].

In (2 + 2)-dimensions we have analogue situation since
SO(2, 2) = SU(1, 1) × SU(1, 1). It is worth mentioning
a number of properties of the groupSU(1, 1). First of all,
the groupSU(1, 1) is isomorphic to the groupsSL(2, R)
and Sp(2). Secondly, just asSU(2) is the double cover
of SO(3), we have thatSU(1, 1), SL(2, R) andSp(2) are
double cover ofSO(1, 2). Moreover,SU(1, 1) manifold is
topologicallyR2 × S1. In general, the important role played
by the groupsSU(1, 1), SL(2, R) andSp(2) has been rec-
ognized, for long time, in a various physical scenarios, in-
cluding2-dimensional black-holes [25], 2t physics [26], and
string theory [27-28]. In this context,+ω (or −ω) must be
understood as a connection associated with the gauge groups
SU(1, 1), SL(2, R) andSp(2). As a consequence, in(2+2)-
dimensions the self-dual connection+ω can be linked with
the groupSO(1, 2). We will see that in this case an interest-
ing possibility arises at the quantum gravity level.

Let us consider now the Clifford algebra

ΓAC
µ ΓυCB + ΓAC

ν ΓµCB = 2δA
Bηµν . (6)

In order to have a supersymmetric Yang-Mills theories it is
necessary thatΓAB

µ satisfies the additional condition (see
Ref. 29)

ΓµA(BΓµ
CD) = 0, (7)

where the bracket(BCD) means completely antisymmetric.
It can be shown that the two relations (6) and (7) are equiv-
alent to the condition for normed division algebras. So, the
possible dimensions of supersymmetric Yang-Mills theories
are limited to only1, 2, 4 or 8 (see Refs. 29 and 20). The
interesting thing that we would like to add is that the ex-
pression (7) can be identified with a Grassman-Plücker re-
lation and consequently theΓAB

µ satisfying (7) is a chiro-
tope [30] which takes the valuesε, εAB , εABCD andηABCD

depending if we are considering1, 2, 4 or 8-dimensions, re-
spectively. In Refs. 31 it is shown that theε-symbol is a
chirotope. Similarly, in connection to maximal supersymme-
try in Ref. 32 it is shown theη-symbol is also a chirotope.
The new ingredient is that by using the Clifford structure,
expressions (6) and (7), both cases,ε-symbol-chirotope and
η-symbol-chirotope, can also be obtained. This result sug-
gests a link between maximal supersymmetry and Clifford
structure. Now, there exist a definition of an oriented ma-
troid in terms of chirotopes [30]. So, we have established
a connection between supersymmetry, division algebras and
oriented matroids. It is important to mention that the set
D = {1, 2, 4, 8}, and the corresponding quantitiesε, εAB ,
εABCD andηABCD, can also be connected with the so called
r-fold cross product [8].

The next step is now to bring these results at the level
of canonical Diffeomorphism and Hamiltonian constraints of
quantum gravity. First, suppose that the Hamiltonian opera-
torsĤ andĤl act on the physical sates|Ψ〉 in the form

Ĥ|Ψ〉 = 0 (8)

and
Ĥl|Ψ〉 = 0, (9)

respectively. We shall assume thatĤ and Ĥl can be writ-
ten in terms of the canonical variableŝAa

i and Ê i
(a). Here,

Ê i
(a) is an operator associated with theE

(a)
i part of the gen-

eral vielbein on aMD-manifold (see Ref. 7 and references
therein)

e (A)
µ =

(
E

(0)
0 E

(a)
0

0 E
(a)

i

)
, (10)

andÂa
i is an operator associated with the self-dual connec-

tion +ω
(0a)

i ≡ Aa
i .

In the case of(2 + 2)-dimensions one has the constrains

H =
1
4
Ẽεijk E

(a)
i

+Rjk(0a) = 0 (11)

and

Hl =
1
4
Ẽεijk εa

bcE
(b)

i E
(c)

l
+Rjk(0a) = 0. (12)

Here,+Rjk(0a) is a reduction to seven dimensions of+RAB

and
εijk =

1
Ẽ

εijk,
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with ε123 = 1. Furthermore,Ẽ is the determinant ofE (a)
i .

Although these constrains have the same form as the case of
(1 + 3)-signature there are important differences. First, the
symbolsεijk refers to(1 + 2)- “spacetime” rather than to
(0 + 3). Second,+ω

(0a)
i ≡ Aa

i will be SU(1, 1) gauge field
rather thanSU(2). It turns out useful to change the notation
in (11) and (12) by writing+Rjk(0a) ≡ Fjka, so thatF a

jk can
be identified with the curvature ofAa

i , F = dA + A∧A. We
also write

P i
a = ẼE i

(a). (13)

Thus, in terms ofF a
jk andP a

i the constraints (11) and (12)
become (see Ref. 33 and references therein)

H =
1

4
√

det(P i
a)

P i
aP j

b εab
c F c

ij = 0 (14)

and
Hl =

1
2
P i

aF a
li = 0. (15)

Here, we have used the identitiesεijkE
(a)

i = εabcE j
b E k

c

and εabcE
(b)

i E
(c)

j = εijkE k
(a) which can be derived from

εijkεabcE
(a)

i E
(b)

j E
(c)

k = 1.
The only non-vanishing Poisson bracket between the pair

of canonical variablesAa
i (x) andP i

a(y) is

{Aa
j (x), P i

b (y)} = δi
jδ

a
b δ(x, y). (16)

One may assume that the physical states|Ψ〉 can be written
in terms of a Wilson loop wave function

Ψγ(A) = trP exp
∫

γ

A, (17)

which satisfies the representation conditions

Âa
i Ψ(A) = Aa

i Ψ(A),

P̂ i
aΨ(A) =

δΨ(A)
δA a

i

. (18)

Here, the integral (17) is over the loopγ. If we want to go
further and consider interactions one first needs to make finite
computations. The strategy in this case is to decompose the
loopγ in a finite number of edgese, in other words, one rep-
resentsγ as a graphG. This allows us to write the function
Ψγ(A) as [1]

Ψγ(A) = ψ(he1(A), ..., hem(A)), (19)

wherehe is holonomy along each edgee. However, in or-
der to implement this strategy one needs to complete the
computations by considering all possible graphsG. It is
worth mentioning that the program of considering Wilson
loops for a gauge fieldA associated with a noncompact group
S(1, 2) has already been considered in the context of(1+2)-
dimensional gravity (see Ref. 25). Of course,(2 + 2)-
dimensional gravity, with gauge groupSU(1, 1), is different

theory, but at least in both cases the gauge fieldA can be as-
sociated with the noncompact groupSO(1, 2). One can even
think in a connection between the two theories by assuming a
compactification of one of the time dimensions in the(2+2)-
gravitational theory.

In the case of8-dimensions, one has that the classical
constraintsH andHl are given by [7]

H =
1
4
Ẽηijk E

(a)
i

+Rjk(0a) = 0 (20)

and

Hl =
1
4
Ẽηijk ηa

bcE
(b)

i E
(c)

l
+Rjk(0a) = 0. (21)

It can be expected that these constraints can also be written
in the form

H =
1

4
√

det(P i
a)

P i
aP j

b εab
c F c

ij = 0 (22)

and
Hl =

1
2
P i

aF a
li = 0. (23)

However, one should be careful in this case with the mean-
ing of the determinantdet(P i

a) because now it is defined in
terms of the octonion structure constantηijk andηabc rather
than in terms ofεijk andεabc. In this case one can choose
Aa

i as aspin(7) gauge field. The formulae (16-19) for the
pair of canonical variablesAa

i (x) andP i
a(y) also applies to

this case. This means that in8-dimensions one can also use
graph theory to make finite computations. Of course the
topology of a given7-dimensional manifold is more com-
plicated (see Ref. 34) than in4-dimensions. Nevertheless,
one should expect that a more rich structure may emerge be-
yond graph theory. For instance, one may look for physical
states in terms of the analogue of the Chern-Simons states
in 4-dimensions [35]. The reason for this is because Chern-
Simons theory is linked to instantons in4-dimensions via the
topological term

∫

M4

trεµναβFµνFαβ ,

while in 8-dimensions the topological term should be of the
form ∫

M8

trηµναβFµνFαβ

which can be related withG2-instantons (see [36] and refer-
ences therein).

Thus in both cases, in(2 + 2)-dimensions and8-
dimensions, the loop quantum gravity approach [37-41] in-
dicates that it is necessary for computations to use directed
graph formalism. But a directed graphG is a particular
case of a oriented matroidM. So one may expect that ori-
ented matroid theory may play an important mathematical
tool in new developments on this program. And, in fact,
this seems to have been recently confirmed [42]. However,
we believe that the importance of oriented matroid theory in
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loop quantum gravity should be extended beyond graph the-
ory. The reason for this expectation comes from a number
of previous connections between matroids and different sce-
narios [43-47], including Chern-Simons theory, superstrings,
p-branes and M-theory. In the process we have even develop
the idea of the gravitoid [47] which refers to any connec-
tion between matroids and gravitons. In all these cases, the
main motivation is the search for a duality principle under-
lying M-theory. Oriented matroid theory seems to provide
the mathematical tool necessary for this goal, since one of
its central topics is precisely duality. In fact, we have pro-
posed [43] the oriented matroid theory as the mathematical
framework for M-theory. In the case of loop quantum grav-
ity similar duality motivation can be considered. This idea
emerges natural since we have proved that in(2 + 2) and8-
dimensions, oriented matroid theory is linked to loop quan-
tum gravity at both levels, namely the constraints operators
(Heisenberg-like approach) and physical states (Schrödinger-
like approach). Since one can associate with every oriented
matroidM a dual matroidM∗. One should expect that du-
ality also plays a central role in loop quantum gravity. Let
us outline how this can be accomplish. The following argu-
ments are, in fact, true for any of the dimensions1, 2, 3 or 8
and any of the corresponding signatures.

We shall be brief in our comments (see the Ref. 48 for
details). Consider any graphG. Let B be the incidence ma-
trix of G. One can introduce a pair of complementary sub-
spacesL,L⊥ in Rm, wherem is the number of edges inG,
which can be can be associated withB by the expressions
L = kerB andL⊥ = imB. Indeed,L andL⊥ corresponds
to the circuit and cocircuit space ofG. It turns out thatL and
L⊥ satisfy the so called Farkas property: For every edgee in
G either

a) ∃X ∈ L, e ∈ suppX,X > 0 or

b) ∃Y ∈ L⊥, e ∈ suppY, Y > 0 but not both.

Here,X andY are the incidence vectors associated with
a circuit and cocircuit respectively. Note that this property
is self-dual in the sense that both alternatives a) and b) can
be interchanging by replacingL by L⊥. The central idea in
oriented matroid theory is to generalize this property to any
pair of signed sets(S, S′), with S′ properly defined, such
that (S, S′) satisfies the analogue of the Farkas property. In
fact, an oriented matroid can be defined in terms of the pair
(S, S′) and such a generalized Farkas property. One interest-
ing thing is that given this definition of an oriented matroid
one finds that there are oriented matroids which can not be
realized as graphs. So the oriented matroid notion is a more
general structure than the graph concept. Another interesting
aspect of this construction of oriented matroids is that the two
spacesL andL⊥ (or S andS′) are equally important. This is
one of the reasons why every oriented matroidM has always
a dualM∗.

How this definition of an oriented matroid in terms of the
Farkas property can be linked to loop quantum gravity? Let
us assume that a physical state has the form

ΨC(A, L) = trP exp
∫

C

A, (24)

whereC is a circuit of a given graphG. We writeΨC(A,L)
to emphasis thatC is contained in the circuit spaceL=kerB,
with B the incidence matrix ofG. But according to the
Farkas property it must be equally important to consider the
physical state,

ΨC∗(A∗, L⊥) = trP exp
∫

C∗

A∗. (25)

Here,C∗ is a cocircuit inL⊥ andA∗ is a dual gauge field.
Observe that (25) completely dualize (24). This Schrödinger-
like schema forΨC(A,L) and ΨC∗(A∗, L⊥) must have
Heisenberg-like counterpart in terms of dual Hamiltonian op-
erators constraints. In principle these dual Hamiltonian con-
straints can bêH and Ĥl themselves. However, in a more
general scenario one must consider dual Hamiltonian opera-
tors constrainŝH∗ andĤ∗

l acting on the physical states|Ψ∗〉
associated withΨC∗(A∗, L⊥). In other words one must have
the symbolic formulae

Ĥ∗|Ψ∗〉 = 0 (26)

and
Ĥ∗

l |Ψ∗〉 = 0. (27)

Going backwards the constraints operatorsĤ∗ andĤ∗
l must

come from classical constrainsH∗ and H∗
l which in turn

should be possible to derive from a dual gravitational field
E∗ and dual connectionω∗ via the corresponding self-dual
curvature+R∗AB . Note that we have distinguish between
two different dualities in+R∗AB . This is because we are
considering the most general dual theory but at some level
one should expect that both kind of dualities are related. In
S-duality for linearized gravity [49], for instance, one starts
with a curvature+RAB and finds the dual curvature+WAB

which can be identified with+R∗AB . Some of these ideas are
under intensive research and we expect to report our results
elsewhere.

It is worth mentioning that a possible connection be-
tween oriented matroid theory and Ashtekar formalism is
mentioned in the Refs. 4 to 7. Further, in the literature
(see [50-51] and references therein) exist a canonical ap-
proach of the(2 + 2)-imbedding, but this should be called
((1 + 1) + (0 + 2))-imbedding since refers to the(1 + 3)-
signature rather than to the case of2-time and2-space dimen-
sions((2 + 2)-dimensions) which we have been considered
in this work. Nevertheless, it may be interesting for further
research to see if there is a link between((1 + 1) + (0 + 2))-
imbedding and(2 + 2)-loop quantum gravity.

Perhaps, the link between oriented matroid theory and
loop quantum gravity may provide new fascinating insights
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into other contexts in which(2 + 2)-signature makes its ap-
pearance, including qubit-strings [52] and N=2 strings [53].
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36. D. Mülsch and B. Geyer,Int. J. Geom. Meth. Mod. Phys.1
(2004) 185; hep-th/0310237.

37. L. Smolin, “An Invitation to loop quantum gravity”, published
in *Cincinnati 2003, Quantum theory and symmetries* 655-
682; hep-th/0408048.

38. A. Corichi, J. Phys. Conf. Ser.24 (2005) 1; gr-qc/0507038.

39. C. Rovelli, Phys. Rev. D59 (1999) 104015; e-Print: gr-
qc/9806121.

40. L. Smolin,Nucl. Phys. B739(2006) 169; hep-th/0503140.

41. T. Thiemann, Class. Quant. Grav.23 1923 (2006); hep-
th/0401172.

42. J. Brunnemann and D. Rideout,Oriented Matroids – Combina-
torial Structures Underlying Loop Quantum Gravity, e-Print:
arXiv:1003.2348.

43. J. A. Nieto, Adv. Theor. Math. Phys.8 (2004) 177; hep-
th/0310071.

44. J. A. Nieto, Adv. Theor. Math. Phys.10 (2006) 747, hep-
th/0506106.

45. J. A. Nieto,J. Math. Phys.45 (2004) 285; hep-th/0212100.
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