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We establish a connection between oriented matroid theory and loop quantum gravity in (2+2) (two time and two space dimensions) and 8-
dimensions. We start by observing that supersymmetry implies that the structure constants of the real numbers, complex numbers, quaternions
and octonions can be identified with the chirotope concept. This means, among other things, that normed divisions algebras, which are only
possiblein 1,2, 4 or 8-dimensions, are linked to oriented matroid theory. Therefore, we argue that the possibility for developing loop quantum
gravity in 8-dimensions must be taken as important alternative. Moreover, we show that in 4-dimensions, loop quantum gravity theories in
the (1+3) or (0+4) signatures are not the only possibilities. In fact, we show that loop quantum gravity associated with the (2+2)-signature
may also be an interesting physical structure.
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It is known that the self-dual (or antiself-dual) concept assoand consequently the self-dual objed®“Z, given in (1), is
ciated with the 2-form Riemann tens@&”” plays a central again a2-form. Since in2-dimensions one can always write
role in quantum gravity la Ashtekar [1-3]. Mathematically, RAZ = ReAB, *RAB =* ReAP and tRAP =1 ReAB,
the self-dual sector aR“ % is realized by introducing a dual with R = (1/2)R*B¢4,, one sees that self-duality require-

tensor R4% such that the self-dual curvature, ment (1) can also be achieveddrdimensions. The case of
1-dimension corresponds to anvithout indices and may be
+RAB — E(RAB + a*RAP), (1) identified with the real numbers. Therefore, this shows that
2 the set
wherea = {1,i}, is again a 2-form. Using the completely D ={1,2,4,8}, (4)

antisymmetric density, .4, (e-symbol) which takes values

in the set{—1,0, 1} one can definéR 4, 4, . as describes the dimensionality of the “spacetime” where self-

duality can be accomplished. One may recognize in (4) the
. 1 A A only possible dimensions for a real division algebras [14-15]
Ray..Ap-s = 5€A1.Ap_sAp_aAp 7727070 (2)  (see also Ref. 16 and references therein). Moreover, the
set (4) corresponds to the dimensions associated with the
In this case, one immediately sees thatthe dial,.. 4, ;  normed division algebras; real numbers, complex numbers,
is a 2-form only in4-dimensions. This seems to indicate quaternions and octonions. From the point of view of string
that, from a quantum gravity perspectivedimensions is  theory and massless vector field, the dimensions in th®set
an exceptional signature. However, in Refs. 4 to 7 it iScan be understood as the true physical degrees of freedom,
shown that also makes sense to consider self-dual gravity isorresponding to dimensiors 4,6 and 10 in the covari-
8-dimensions, but one should defin&47 in terms of the  ant approach, respectively. It turns out interesting that this
n-symbol.(see Refs. 8, 9, 10 and 12) rather that in terms ofiormed division algebras are related to the objects; s,
the e-symbol. In fact, then-symbol is very similar to the ¢, andnpcp, respectively. In fact, we shall see below
e-symbol in4-dimensions; it is al-index completely anti-  that this is not a coincidence but as a result of a link between
symmetric object and takes values also in the{set,0,1}.  supersymmetry, division algebras and oriented matroids.
However, the)-symbol is defined i8-dimensions rather than The next step is to analyze the above scenarib, of 4
in 4. Moreover, while thes-symbol in 4-dimensions can  or 8-dimensions from the point of view of the “spacetime”-
be connected with quaternions, thesymbol is related to  signature. The Milnor-Bott [14] and Kervair [15] theorem for
the octonion structure constants (see Ref. 13 and Referencgsg| division algebras and Hurwitz theorem [17] for normed
therein). Thus, ir8-dimensions we can also introduce the gjyision algebras refer to Euclidean space, butin Refs. 18, 19
dual tensor and 20 it is shown that the s&t may also be linked to other
§ 1 e signatures. Ir2-dimensions we have the two possible sig-
Rayas = 50414454, R, (3)  natures(1 + 1) and (0 + 2) which may be identified with
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2-dimensional gravity (see Ref. 21 and references therein). FuA(BF/éD) =0, )
Traditionally, in 4-dimensions one assumes the signatures . .
(04 4) or (1 + 3), but in this article we will show that the where the brackg3C'D) means cc_)mpletely antlsymmetnc:

. . ) . It can be shown that the two relations (6) and (7) are equiv-
(2 + 2)-signature (two time and two space dimensions) may.

emerge also as interesting possibility (see Ref. 22 and refezra_lent to the condition for normed division algebras. So, the

ences therein). Similarly, i8-dimensions one can consider poss_ibl_e dimensions of supersymmetric Yang-Mills theories
the signature€0 + 8), (1 + 7), (2 + 6) and (4 + 4) which are limited to onlyl1, 2,4 or 8 (see Refs. 29 and 20). The
in the covariant contéxt may éorresponc{w 10), (149) interesting thing that we would like to add is that the ex-
(2+8), (44 6) and (5 + 5) (see Ref. 23). Of’ course, it pression (7) can be identified with a GrassmaiieRer re-

; B o i L
will be wonderful to have a theory which predicts no only lation and consequently thﬁﬁ sattisfying (7) is a chiro

H AB _ABCD ABCD
the dimensionality of the “spacetime” but also its signaturel°P® [30] which takes the valuese™®, e " andn
(See Ref. 24). At least the self-duality concept predicts thdiepending if we are consideririg2, 4 or 8-dimensions, re-

. Spectively. In Refs. 31 it is shown that thesymbol is a

dimensionality of the “spacetime”. But in the lack of a sensi- hirotope. Similarly. in connection to maximal SUpersymme-
ble theory which determines the signature of the “spacetimec otope. rarty, . persy
try in Ref. 32 it is shown the)-symbol is also a chirotope.

we need to explore all possibilities. Eventually this may heIpThe new ingredient is that by using the Clifford structure

to find, for a fixed dimensionality, a connection between theexpressions (6) and (7), both casesymbol-chirotope and
different signatures.

Let us analyze the above scenario from the point of Viewn—symbol—chirotope, can also be obtained. This result sug-

of gauge group theory. It is known that the algebsél , 3) gests a link between maximal supersymmetry and Clifford
can be written aso(1 i’;) — su(2) x su(2), or the algébra structure. Now, there exist a definition of an oriented ma-
so(4) asso(4) — 30(3)7 % 50(3) corresponc;ing to the signa- troid in terms of chirotopes [30]. So, we have established

tures(1 + 3) and (0 + 4) respectively. So, in both cases the a connection between supersymmetry, division algebras and
curvatureRAE can be decomposed a.\dditi,vely' oriented matroids. It is important to mention that the set

D = {1,2,4,8}, and the corresponding quantitiese*?,
RAB(w) =* RAB(Tw) + “RAB("w), (5)  €ABCP andnABCP | can also be connected with the so called
r-fold cross product [8].

The next step is now to bring these results at the level
of canonical Diffeomorphism and Hamiltonian constraints of
quantum gravity. First, suppose that the Hamiltonian opera-
tors H and H; act on the physical saté®) in the form

where Tw and ~w are the self-dual and antiself-dual parts
of the spin connectio. In an Euclidean context, this is
equivalent to write the normed group for quaterniéhd) as
0(4)=5%x 53, whereS® denotes th-sphere. The situation
in 8-dimensions is very similar sinc®(8)=5"xS"xGs,

with S7 denoting the7-sphere, suggesting that one can also m\m =0 (8)
define self-duality in8-dimensions, but modulo the excep-
tional groupGs [8-9]. and R

In (2 4+ 2)-dimensions we have analogue situation since H;|¥) =0, 9)

S0(2,2) = SU(1,1) x SU(1,1). It is worth mentioning
a number of properties of the grofi/(1,1). First of all,
the groupSU(1,1) is isomorphic to the group§L(2, R) o ) . (a)
and Sp(2). Secondly, just asSU(2) is the double cover £, iS an operator associated with the™ part of the gen-
of SO(3), we have thalSU(1,1), SL(2, R) and Sp(2) are  eral vielbein on aV/P-manifold (see Ref. 7 and references
double cover ofSO(1,2). Moreover,SU(1,1) manifold is  therein)

topologically R? x S*. In general, the important role played o (A _ EO(O) EO(“)

by the groupsSU(1,1), SL(2, R) and Sp(2) has been rec- L o g )
ognized, for long time, in a various physical scenarios, in- . . ]
cluding 2-dimensional black-holes [25], 2t physics [26], and and A¢ |% an operator associated with the self-dual connec-
string theory [27-28]. In this context;w (or ~w) must be  tion +w¢( 9= Af.

understood as a connection associated with the gauge groups In the case of2 + 2)-dimensions one has the constrains
SU(1,1), SL(2, R) andSp(2). As a consequence, {8+2)-

respectively. We shall assume thidtand H; can be writ-
ten in terms of the canonical variable§ and £, j. Here,

(10)

dimensions the self-dual connectidw can be linked with H = %Ee”k E) T Rjp0a) = 0 (11)
the groupSO(1, 2). We will see that in this case an interest-
ing possibility arises at the quantum gravity level. and
Let us consider now the Clifford algebra Lo ik 0 ) () +
" e N H = ZEe ey BB, Rjk0a) = 0. (12)
P# Tves + FV P,uCB = 2537]#1,. (6)

. . i i . + . . . . . AB
In order to have a supersymmetric Yang-Mills theories it isHer® " Rjk(oa) iS a reduction to seven dimensions‘ak

necessary thaI‘;“3 satisfies the additional condition (see 3"
Ref. 29) €
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with £12% = 1. Furthermore[ is the determinant of; (@ theory, but at least in both cases the gauge fielchn be as-
Although these constrains have the same form as the case dciated with the noncompact gro§@(1, 2). One can even

(1 + 3)-signature there are important differences. First, thehink in a connection between the two theories by assuming a
symbolse* refers togl + 2)- “spacetime” rather than to compactification of one of the time dimensions in {Re-2)-

(0+ 3). Second;"w, " = A¢ will be SU(1,1) gauge field ~ gravitational theory.

rather thanSU (2). It turns out useful to change the notation ~ In the case oB-dimensions, one has that the classical
in (11) and (12) by writing" R;,(0a) = Fjka, SO thatF% can  constraintst and H; are given by [7]

be identified with the curvature of?, FF = dA+ AN A. We

1~ .
also write H= ZEﬂ”k E,\ "Rik(0a) =0 (20)
P =FEE],. 13
a (a) ( ) and
Thus, in terms off’%, and P? the constraints (11) and (12) 1. , .
become (see Ref. 33 and references therein) H; = ZEnZ]k n“,,cEi( )El(°) *Rjk(o(l) =0. (21)
1 i pJ It can be expected that these constraints can also be written
= —— PPl FE=0 14 P
NI @4 in the form
1 y
and H=———"_PiPle® FS =0 (22)
1 . 7 a® b c g
H, = S PiFf; = 0. (15) 4y/det(Fy)
and
i itiggk (@) _ cabep Jp K 1
Here, we rggve (LCJ)SGd the |de1t|tlé§ E =e E.b E, H, = §P4Fu’ —0. (23)
andegp E; Ej = eijkE(a)' which can be derived from

However, one should be careful in this case with the mean-
ing of the determinandet(P!) because now it is defined in
Yerms of the octonion structure constatt* andzn®° rather
than in terms o&** ande®®°. In this case one can choose
a i _ sisa A¢ as aspin(7) gauge field. The formulae (16-19) for the
{47 (@), Fi()} = 9394 0(x,y) (16) pair of canor(lic)al variabled ¢ () and P!(y) also applies to
One may assume that the physical staféscan be written this case. This means that3xdimensions one can also use

The only non-vanishing Poisson bracket between the pa
of canonical variablegl? (z) and P! (y) is

in terms of a Wilson loop wave function graph theory to make finite computations. Of course the
topology of a given7-dimensional manifold is more com-
. plicated (see Ref. 34) than irdimensions. Nevertheless,
o (A) = trPexp / 4, (17) one should expect that a more rich structure may emerge be-
v yond graph theory. For instance, one may look for physical
which satisfies the representation conditions states in terms of the analogue of the Chern-Simons states
in 4-dimensions [35]. The reason for this is because Chern-
Ag\p(A) = AYT(A), Simons theory is linked to instantons4rdimensions via the
ST(A topological term
PiU(A) = (4), (18)
0Af / tre“”o‘ﬁFlea@,

Here, the integral (17) is over the loep If we want to go M4
further and consider interactions one first needs to make finitg/hile in 8-dimensions the topological term should be of the
computations. The strategy in this case is to decompose thgrm

loop~ in a finite number of edges in other words, one rep- trpel L Fog
resentsy as a graphG. This allows us to write the function a
v, (4)as[1] . ST
which can be related wittr;-instantons (see [36] and refer-
Uy (A) = P(he, (A), o, he,, (A)), (19)  ences therein).

Thus in both cases, if2 + 2)-dimensions ands-
whereh, is holonomy along each edge However, in or- dimensions, the loop quantum gravity approach [37-41] in-
der to implement this strategy one needs to complete thdicates that it is necessary for computations to use directed
computations by considering all possible grapghs It is  graph formalism. But a directed graph is a particular
worth mentioning that the program of considering Wilsoncase of a oriented matroiM. So one may expect that ori-
loops for a gauge field associated with a noncompact group ented matroid theory may play an important mathematical
S(1,2) has already been considered in the contexief2)-  tool in new developments on this program. And, in fact,
dimensional gravity (see Ref. 25). Of courg®,+ 2)-  this seems to have been recently confirmed [42]. However,
dimensional gravity, with gauge grofi/(1,1), is different  we believe that the importance of oriented matroid theory in
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loop quantum gravity should be extended beyond graph the- How this definition of an oriented matroid in terms of the
ory. The reason for this expectation comes from a numbeFarkas property can be linked to loop quantum gravity? Let
of previous connections between matroids and different scais assume that a physical state has the form

narios [43-47], including Chern-Simons theory, superstrings,

p-branes and M-theory. In the process we have even develop Ueo(A,L) =trPexp / A, (24)

the idea of the gravitoid [47] which refers to any connec- &

tion between matroids and gravitons. In all these cases, the ) o ) )

main motivation is the search for a duality principle under-"WhereC is a circuit of a given grapty. We write W (A, L)
lying M-theory. Oriented matroid theory seems to provide!© €mMPhasis that'is contained in the circuit spade= ker B,

the mathematical tool necessary for this goal, since one ofith B the incidence matrix ofy. But according to the

its central topics is precisely duality. In fact, we have pro-Farkas property it must be equally important to consider the
posed [43] the oriented matroid theory as the mathematicdilysical state,

framework for M-theory. In the case of loop quantum grav- . ol )

ity similar duality motivation can be considered. This idea Vo« (A", L7) = trP eXp/A : (25)
emerges natural since we have proved thdRir- 2) ands- ek

dimensions, oriented matroid theory is linked to loop quanare * is a cocircuit inLL and A* is a dual gauge field

tum_ gravity at_ both levels, namely th_e constraints_operator%bserve that (25) completely dualize (24). This Slimger-
(Heisenberg-like approach) and physical states @thger- like schema for¥c (A, L) and We-(A*, LY) must have

like approach). Since one can associate with every orienteigisenperg-like counterpart in terms of dual Hamiltonian op-
matroid M a dual matroidM*. One should expect that du- o 5445 constraints. In principle these dual Hamiltonian con-
ality al§o plays a central role in Ioo.p quantum gra_wty. Lelstraints can bed and H, themselves. However, in a more
us outline h_OW this can be accomphsh._ The followmg argu'general scenario one must consider dual Hamiltonian opera-
ments are, in fact, true for any of the dimensidng, 3 or 8 tors constraingl* andHl* acting on the physical statég*)

and any of the corresponding signatures. associated with - (A*, L*). In other words one must have
We shall be brief in our comments (see the Ref. 48 forthe symbolic formulae

details). Consider any gragh. Let B be the incidence ma- .

trix of G. One can introduce a pair of complementary sub- H* V") =0 (26)
spaced., L* in R™, wherem is the number of edges i,
which can be can be associated withby the expressions P
L = ker B andL+ = imB. Indeed,L and L corresponds Hf|¥7) =0. (27)
to the circuit and cocircuit space 6f. It turns out that and ~ Going backwards the constraints operatEIrSandHl* must
L+ satisfy the so called Farkas property: For every edige  come from classical constraif§* and H; which in turn

G either should be possible to derive from a dual gravitational field
E* and dual connection* via the corresponding self-dual
a) 3X € L, e € suppX, X > 0 or curvature™ R*4B. Note that we have distinguish between

two different dualities int R*45. This is because we are
considering the most general dual theory but at some level
b) 3Y € L+, e € suppY,Y > 0 but not both. one should expect that both kind of dualities are related. In
S-duality for linearized gravity [49], for instance, one starts
Here, X andY are the incidence vectors associated withwith a curvature™ R4Z and finds the dual curvaturely 45
a circuit and cocircuit respectively. Note that this propertywhich can be identified withf R*45. Some of these ideas are
is self-dual in the sense that both alternatives a) and b) cannder intensive research and we expect to report our results
be interchanging by replacing by L. The central idea in elsewhere.
oriented matroid theory is to generalize this property to any It is worth mentioning that a possible connection be-
pair of signed set$S,.S’), with S’ properly defined, such tween oriented matroid theory and Ashtekar formalism is
that (S, S’) satisfies the analogue of the Farkas property. Irmentioned in the Refs. 4 to 7. Further, in the literature
fact, an oriented matroid can be defined in terms of the paifsee [50-51] and references therein) exist a canonical ap-
(S,5") and such a generalized Farkas property. One interesproach of the(2 + 2)-imbedding, but this should be called
ing thing is that given this definition of an oriented matroid ((1 + 1) 4+ (0 + 2))-imbedding since refers to thg + 3)-
one finds that there are oriented matroids which can not bsignature rather than to the cas@dfme and2-space dimen-
realized as graphs. So the oriented matroid notion is a morsions((2 + 2)-dimension$ which we have been considered
general structure than the graph concept. Another interesting this work. Nevertheless, it may be interesting for further
aspect of this construction of oriented matroids is that the twaesearch to see if there is a link betwdéh+ 1) + (0 + 2))-
spaced. andL* (or S andS’) are equally important. Thisis imbedding and2 + 2)-loop quantum gravity.
one of the reasons why every oriented matobichas always Perhaps, the link between oriented matroid theory and
a dualM*. loop quantum gravity may provide new fascinating insights
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into other contexts in whicli2 4+ 2)-signature makes its ap- putational and Modeling Science Center at the Arizona State
pearance, including qubit-strings [52] and N=2 strings [53]. University for the hospitality, where part of this work was
developed.
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