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The Jones vector as a spinor and its representation on the Poincaré sphere
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Recibido el 18 de febrero de 2011; aceptado el 28 de julio de 2011

It is shown that the two complex Cartesian components of the electric field of a monochromatic electromagnetic plane wave, with a temporal
and spatial dependence of the formei(kz−ωt), form a SU(2) spinor that corresponds to a tangent vector to the Poincaré sphere representing
the state of polarization and phase of the wave. The geometrical representation on the Poincaré sphere of the effect of some optical filters is
reviewed. It is also shown that in the case of a partially polarized beam, the coherency matrix defines two diametrically opposite points of
the Poincaŕe sphere.
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Se muestra que las dos componentes Cartesianas complejas del campo eléctrico de una onda plana electromagnética monocroḿatica, con
dependencia temporal y espacial de la formaei(kz−ωt), forma un espinor SU(2) que corresponde al vector tangente a la esfera de Poincaré
que representa el estado de polarización y fase de la onda. Se revisa la representación geoḿetrica en la esfera de Poincaré del efecto de
algunos filtrosópticos. Se muestra también que en el caso de un haz parcialmente polarizado, la matriz de coherencia define dos puntos
diametralmente opuestos de la esfera de Poincaré.

Descriptores:Vector de Jones; esfera de Poincaré; polarizacíon; espinores.

PACS: 02.20.Qs; 03.50.De; 42.25.Ja

1. Introduction

In a recent paper [1] it has been shown that the (real) Carte-
sian components of the electric field of a monochromatic
electromagnetic plane wave can be expressed in terms of a
two-component SU(2) spinor, which specifies the amplitude,
state of polarization, and phase of the wave in such a way that
two real mutually orthogonal vectors made out of this spinor
define the point of the Poincaré sphere corresponding to the
state of polarization and a tangent vector to the Poincaré
sphere that determines the phase of the wave. Furthermore,
the inner product of the spinors corresponding to two of these
waves with the same wavevector (which is related to the par-
allel transport of tangent vectors to the Poincaré sphere along
a great circle arc [1,2]), determines if the waves are in phase
according to Pancharatnam’s definition [3]. (The relationship
between the inner product of spinors and the parallel trans-
port along geodesics of the sphere was already recognized
in Payne’s 1952 paper [2], without developing, however, its
relationship with the interference of electromagnetic waves.
See also Ref. 4.)

The fact that the amplitude, state of polarization, and
phase of a monochromatic electromagnetic plane wave can
be represented by a two-component spinor allows us to derive
many useful relations employing the same formalism as in
Quantum Mechanics [1], instead of the not so widely known
results of spherical trigonometry [3] (see also Ref. 5).

The state of polarization of a wave is usually specified
making use of the Stokes parameters or the Jones vector (see,
e.g., Refs. 6–11). The Stokes parameters can be expressed in
terms of the two-component spinor mentioned above [1] and,
as we shall show below, the Jones vector is essentially this
spinor, expressed in an appropriate basis.

In Sec. 2 we give a summary of the relevant results of
Ref. 1, relating them with the definition of the Jones vec-
tor. We show that, apart from the phase factor that gives
the time and space dependence of the electric field, the Jones
vector is a two-component spinor on which the rotations on
the Poincaŕe sphere act through the spin-1/2 representation.
In Sec. 3 we review the effect of some optical filters and
its geometrical representation on the Poincaré sphere. We
show that the effect of a phase shifter corresponds to a rota-
tion of the Poincaŕe sphere, while that of an attenuator cor-
responds to a conformal transformation of this sphere (see
also Refs. 10 and 11). In Sec. 4 we consider partially po-
larized beams, showing that the Stokes parameters can be
arranged into a2 × 2 matrix that, except in the case of un-
polarized light, defines two diametrically opposite points of
the Poincaŕe sphere.

Although some of the results obtained in this paper, such
as the matrix form for phase shifters and attenuators, are
found in the literature using other approaches (see,e.g.,
Ref. 12 and the references cited therein), one remarkable fea-
ture of the spinor formalism is that, besides the state of po-
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larization represented by a point of the Poincaré sphere, we
also have the phase of the wave through the direction of a tan-
gent vector to the sphere at that point, which is not included
in other approaches. Thus the action of the optical filters are
transformations not only on the points of the Poincaré sphere,
but also on the tangent vectors to this sphere.

2. The Poincaŕe sphere

The Cartesian components of the electric field of a
monochromatic electromagnetic plane wave propagating in
thez-direction in a dielectric medium are usually expressed
in the form

Ex = Re
{
A1 exp[i(kz − ωt + φ1)]

}
,

Ey = Re
{
A2 exp[i(kz − ωt + φ2)]

}
, (1)

whereA1, A2 are real, positive constants,ω andk are the an-
gular frequency and wave number of the wave, respectively.
At each point of space, the resulting electric field describes an
ellipse centered at the origin and, therefore, the (real) electric
field can be conveniently written as

E =
[
a cos 1

2φ cos(ωt− kz + 1
2χ)

−b sin 1
2φ sin(ωt− kz + 1

2χ)
]
x̂

+
[
a sin 1

2φ cos(ωt− kz + 1
2χ)

+b cos 1
2φ sin(ωt− kz + 1

2χ)
]
ŷ, (2)

wherea, b are real constants, with|a| > |b|, |a| is the ma-
jor semiaxis of the ellipse,|b| is the minor semiaxis, andφ/2
is the angle made by the major axis of the ellipse with the
x-axis, so that it suffices to consider values ofφ between 0
and2π. The phaseχ/2 is necessary when one considers the
superposition of two or more waves [1].

Since |b/a| 6 1, for each value of the ellipticity,b/a,
there is a uniqueθ ∈ [0, π] such that

b

a
= tan

(
π

4
− θ

2

)
.

Hence,

a =
√

2 A cos
(

π

4
− θ

2

)
= A

(
cos

1
2

θ + sin
1
2

θ

)
,

b =
√

2 A sin
(

π

4
− θ

2

)
= A

(
cos

1
2

θ − sin
1
2

θ

)
, (3)

for some constantA, which, with no loss of generality, we
can assume positive. In this way,a > 0, while b is positive
for 0 6 θ < π/2 (in which case the wave has right-hand po-
larization) andb is negative forπ/2 < θ 6 π (then the wave
has left-hand polarization). The valuesθ = 0 andθ = π cor-
respond to circular polarization, whileθ = π/2 in the case
of linear polarization. Making use of Eq. (3), Eq. (2) can be
rewritten in the form

E = A

{[
cos

1
2

θ cos
(

ωt− kz +
1
2
χ +

1
2
φ

)

+sin
1
2

θ cos
(

ωt− kz +
1
2
χ− 1

2
φ

)]
x̂

+
[
cos

1
2

θ sin
(

ωt− kz +
1
2
χ +

1
2
φ

)

− sin
1
2

θ sin
(

ωt− kz +
1
2
χ− 1

2
φ

)]
ŷ

}
. (4)

The parametrization of the electric field given by Eq. (4)
contains the same number of independent parameters as ex-
pressions (1) (four real parameters). However, by contrast
with (1), the parameters appearing in Eq. (4) specify more
directly the polarization state of the wave [via Eqs. (3)]. Fur-
thermore, by considering the anglesθ andφ as spherical co-
ordinates in the usual manner (i.e., θ as the polar angle and
φ as the azimuthal angle), each pair of values(θ, φ) defines a
point of the Poincaŕe sphere [6–8].

Another set of parameters commonly employed to spec-
ify the polarization of a wave is given by the Stokes param-
eters,s0, s1, s2, s3, which are related to the anglesθ andφ
by means of [6, 7] (see also Ref. 3 and the references cited
therein)

(s1, s2, s3) = s0(sin θ cos φ, sin θ sin φ, cos θ), (5)

wheres0 is the total flux density. Hence,(s1, s2, s3)/s0 is
the point of the Poincaré sphere that corresponds to the po-
larization of the wave.

In the Jones formalism, thecomplexCartesian compo-
nents of the electric field form a column matrix (see,e.g.,
Ref. 11 and the references cited therein),

(
Ec

x

Ec
y

)
=

(
A exp[i(kz − ωt + φ1)]

B exp[i(kz − ωt + φ2)]

)
, (6)

whereA andB are real constants. (We employ the super-
script c in the components of the electric field to emphasize
the fact that they are complex.)

2.1. Two-component spinors

From Eq. (4) we see that the components of the electric field
are given by the compact expression

Ex + iEy = A

[
cos

1
2

θ ei(ωt−kz+χ/2+φ/2)

+sin
1
2

θ e−i(ωt−kz+χ/2−φ/2)

]
, (7)

or, in terms of the unit two-component spinor

o =

(
o1

o2

)
= e−iχ/2

(
e−iφ/2 cos 1

2θ

eiφ/2 sin 1
2θ

)
, (8)
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we have

Ex + iEy = A(ei(ωt−kz)o1 + e−i(ωt−kz)o2), (9)

where the bar denotes complex conjugation.
The two-component spinor (8) may be familiar from

Quantum Mechanics; it is the normalized eigenspinor with
eigenvalue+~/2 of the spin projection along the direction
with anglesθ, φ. The unit spinoro defines two mutually or-
thogonal vectors with Cartesian components

Ri ≡ o†σio, Mi ≡ otεσio, (10)

whereo† is the transpose conjugate ofo, ot denotes the trans-
pose ofo, theσi are the standard Pauli matrices, and

ε ≡
(

0 1
−1 0

)

[2,13]. The vectorRi is real and is the point of the Poincaré
sphere that represents the polarization state of the wave,i.e.,
(R1, R2, R3) = (sin θ cosφ, sin θ sin φ, cos θ). Hence, the
Stokes parameters are directly related to the unit spinoro by

si

s0
= o†σio. (11)

The direction ofRe Mi does depend on the phaseχ and,
therefore,Ri together withRe Mi represent the state of polar-
ization and the phase of the wave [1]. SinceReMi is orthog-
onal toRi, Re Mi is a tangent vector to the Poincaré sphere
(ReMi forms an angleχ with the meridian passing through
the pointRi). In this manner, the vectorRi, gives the point
of the Poincaŕe sphere corresponding to the polarization state
of the wave, andRe Mi can be viewed as a tangent vector to
the Poincaŕe sphere, whose direction gives the phase of the
wave.

If o′ = Qo, with Q ∈ SU(2), theno′ is also a unit spinor
and the vectorsR′i andM ′

i , defined byo′, are related toRi

andMi, respectively, by means of the SO(3) transformation,
(aij), given by

Q†σiQ =
3∑

j=1

aijσj ;

that is

R′i =
3∑

j=1

aijRj ,

and

M ′
i =

3∑

j=1

aijMj .

Hence, eachQ ∈ SU(2) gives rise to a rotation on the
Poincaŕe sphere. Conversely, given a rotation on the Poincaré
sphere, there exists aQ ∈ SU(2), defined up to sign, corre-
sponding to the rotation.

2.2. Two spinor bases

Since the componentsEx andEy appearing in Eq. (9) are
real, Eq. (9) is equivalent to

Ex − iEy = A
(
ei(ωt−kz)o2 + e−i(ωt−kz)o1

)
. (12)

Hence, from Eqs. (9) and (12) we see that

Ex = Re {A[ei(kz−ωt)(o1 + o2)]},
Ey = Re {A[ei(kz−ωt)(io1 − io2)]} (13)

and, therefore, the components of the electric field are the
real part of thecomplexfunctionsEc

x, Ec
y, given by the Jones

vector
(

Ec
x

Ec
y

)
=
√

2e−iπ/4Aei(kz−ωt) e
iπ/4

√
2

(
1 1
i −i

)(
o1

o2

)
(14)

[cf. Eq. (6)].
One can readily verify that the2× 2 matrix

U ≡ eiπ/4

√
2

(
1 1
i −i

)
=

1
2

(
1 + i 1 + i
−1 + i 1− i

)
, (15)

appearing in Eq. (14), belongs to SU(2) and that

Uσ1U−1 = σ3, Uσ2U−1 = σ1, Uσ3U−1 = σ2. (16)

This means thatU corresponds to a SO(3) transformation that
permutes the coordinate axes,X, Y, Z, of the Poincaŕe sphere
and that, apart from the factor

√
2 e−iπ/4Aei(kz−ωt),

the Jones vector (
Ec

x

Ec
y

)

is essentially the two-component spinor
(

o1

o2

)

in a different basis. That is, letting
(

õ1

õ2

)
≡ U

(
o1

o2

)
, (17)

from Eq. (14) we have
(

Ec
x

Ec
y

)
=
√

2 e−iπ/4Aei(kz−ωt)

(
õ1

õ2

)
. (18)

While the basis spinors
(

o1

o2

)
=

(
1
0

)
and

(
o1

o2

)
=

(
0
1

)
(19)

(which correspond toθ = 0 andθ = π, respectively) repre-
sent circularly polarized waves, the basis spinors

(
õ1

õ2

)
=

(
1
0

)
and

(
õ1

õ2

)
=

(
0
1

)
(20)
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represent linearly polarized waves [see Eq. (18)] and corre-
spond to the points of the Poincaré sphere on theX-axis (see
Eq. (21) below). Thus, the SU(2) matrixU , given by Eq. (15),
represents the connection between these two frequently em-
ployed bases of polarization states (see also Sec. 3.1, below).

Equations (9) and (12) constitute a decomposition of a
wave as a superposition of circularly polarized waves, with
the componentso1 ando2 being the relative amplitudes of
this decomposition. Similarly,̃o1 andõ2 are the relative am-
plitudes of the decomposition of the wave as a superposition
of two linearly polarized waves. (In fact,anypair of different
points of the Poincaré sphere represent a basis; the pairs of
points diametrically opposite are the orthogonal bases [1,3].)

According to Eq. (17), the vectorsRi andMi are given
in terms of the spinor̃o by [see Eqs. (10)]

Ri = õ†UσiU−1õ, Mi = õtεUσiU−1õ, (21)

where we have made use of the relation(U−1)tε = εU ,
which applies to unimodular2 × 2 matrices. Equations (21)
are of the same form as Eqs. (10), witho replaced bỹo and
σi replaced byUσiU−1. As shown in Eqs. (16), the matri-
cesUσiU−1 are a cyclic permutation of the Pauli matrices
(which explains the definition of the Pauli matrices adopted,
without justification, in Ref. 11, Appendix B).

Thus, apart from the factorei(kz−ωt), the components of
the Jones vector (6) are the components of a constant SU(2)
spinor (that is, independent oft and z), õ, in a basis that
differs from the standard one [Eq. (18)]. The unit spinorõ

allows us to find the vectorsRi and Re Mi that represent
the polarization state and phase of the wave on the Poincaré
sphere [Eqs. (21) and (16)] and, since the inner product of
SU(2) spinors is invariant under SU(2) transformations, the
inner product of the spinors corresponding to two waves with
the same wavevector determines if the waves are in phase ac-
cording to Pancharatnam’s definition [1, 3] (see also Ref. 14
and the references cited therein).

3. Geometrical representation of the effect of
optical filters

Since the state of polarization of a monochromatic electro-
magnetic plane wave is represented by a point of the Poincaré
sphere or, up to a phase factor, by a unit two-component
spinor,e.g., o or õ, the effect of an optical filter on the po-
larization of a wave passing through the filter corresponds to
some transformation of the Poincaré sphere into itself or to
some spinor transformation (see also Refs. 11 and 9).

In this section, following Ref. 11, we consider some sim-
ple examples of optical filters, finding their representation on
the spinor space and on the Poincaré sphere.

3.1. Phase shifters

If an optical filter produces a phase shiftδ1 for the x-
component of the electric field and a, possibly different,
phase shiftδ2 for the y-component, the electric field (4) is
replaced by

E = A

{[
cos

1
2
θ cos(ωt− kz +

1
2
χ +

1
2
φ + δ1) + sin

1
2
θ cos(ωt− kz +

1
2
χ− 1

2
φ + δ1)

]
x̂

+
[
cos

1
2
θ sin(ωt− kz +

1
2
χ +

1
2
φ + δ2)− sin

1
2
θ sin(ωt− kz +

1
2
χ− 1

2
φ + δ2)

]
ŷ

}
. (22)

This expression is equivalent to

Ex+iEy=A

{
ei(ωt−kz+(δ1+δ2)/2)

[
cos

1
2
δ cos

1
2
θ ei(χ+φ)/2 − i sin

1
2
δ sin

1
2
θ ei(χ−φ)/2

]

+ e−i(ωt−kz+(δ1+δ2)/2)

[
cos

1
2
δ sin

1
2
θe−i(χ−φ)/2 + i sin

1
2
δ cos

1
2
θ e−i(χ+φ)/2

]}
,

which is duly of the form (9), with the two-component spinoro replaced by

(
o′1

o′2

)
= e−i(δ1+δ2)/2

(
cos 1

2δ i sin 1
2δ

i sin 1
2δ cos 1

2δ

) (
o1

o2

)
, (23)

whereδ ≡ δ2 − δ1.
Apart from the overall phase factore−i(δ1+δ2)/2, the transformation (23) is given by the SU(2) matrix

(
cos 1

2δ i sin 1
2δ

i sin 1
2δ cos 1

2δ

)
=

(
cos

1
2
δ

)
I + i

(
sin

1
2
δ

)
σ1 = exp

(
i
1
2
δσ1

)
, (24)

Rev. Mex. Fis.57 (2011) 406–413



410 G.F. TORRES DEL CASTILLO AND I. RUBALCAVA GARĆIA

whereI is the2 × 2 identity matrix, which corresponds to
a rotation on the Poincaré sphere through an angle−δ about
theX-axis.

There exist two diametrically opposite points of the
Poincaŕe sphere that are invariant under this rotation (the
points on the intersection of the Poincaré sphere and the
X-axis), which, therefore, correspond to polarization states
that are not affected by this filter. These two polarization
states are linearly polarized waves with the electric field
along thex-axis or they-axis [the states (20)], as one would
expect. (Note that, owing to the definition of the angleφ
given in Sec. 2, a rotation of the coordinate axes in thexy-
plane through an angleα produces the substitution ofφ/2 by
(φ/2)− α, which corresponds to the action of the matrix

(
eiα 0
0 e−iα

)
= exp(iα σ3) (25)

on the spinoro. This SU(2) matrix, in turn, corresponds to a
rotation on the Poincaré sphere through an angle−2α about
the Z-axis. Thus, a rotation by90◦ in the xy-plane, which
transforms a linear polarization along thex-axis into a lin-
ear polarization along they-axis, corresponds to a rotation
by 180◦ in the Poincaŕe sphere.)

According to Eqs. (16), with respect to the basis (20),
formed by linearly polarized states, the spinor transforma-
tion (23) is given by the unitary matrix

e−i(δ1+δ2)/2 exp
(

i
1
2
δσ3

)
= e−i(δ1+δ2)/2

(
eiδ/2 0

0 e−iδ/2

)

=
(

e−iδ1 0
0 e−iδ2

)
, (26)

as one would expect, owing to the definition ofδ1 andδ2.
In order to reduce the possible confusions coming from

the simultaneous use of two different bases, it is convenient
to make use of Dirac’s notation, denoting by|+〉 and|−〉 the
states with circular polarization (19), respectively. Then,

|x〉 ≡ 1√
2
e−iπ/4|+〉+

1√
2
e−iπ/4|−〉,

|y〉 ≡ − 1√
2
eiπ/4|+〉+

1√
2
eiπ/4|−〉, (27)

correspond to states with linear polarization (the states (20),
which are essentially the states|v〉 and|h〉 with vertical and
horizontal polarization employed in Ref. 5). (See Eq. (15).)
In this manner, the SU(2) transformation (24) is expressed as

(
cos

1
2
δ

)
I + i

(
sin

1
2
δ

)
(|+〉〈−|+ |−〉〈+|),

which, by virtue of Eqs. (27), amounts to

|x〉eiδ/2〈x|+ |y〉e−iδ/2〈y| (28)

and corresponds to the diagonal matrixdiag(eiδ/2, e−iδ/2)
appearing in Eq. (26).

The effect represented by the SU(2) transformation (28)
comes from the anisotropy of the medium, which produces
different effects on the linearly polarized waves with electric
field along thex-axis or they-axis. In an analogous manner,
a gyrotropic medium (see,e.g., Ref. 15) produces different
effects on the waves with right or left circular polarization;
therefore, the effect of a gyrotropic medium is represented
by

|+〉e−iδ1〈+|+ |−〉e−iδ2〈−| = e−i(δ1+δ2)/2

× (|+〉eiδ/2〈+|+ |−〉e−iδ/2〈−|),

whereδ ≡ δ2 − δ1, or by the unitary matrix

e−i(δ1+δ2)/2 exp
(

i
1
2
δ σ3

)
,

which corresponds to a rotation on the Poincaré sphere
through an angle−δ about theZ-axis.

Hence, with respect to the basis (20), formed by states
with linear polarization, making use of Eqs. (16) or (27), the
effect of a gyrotropic medium will be represented by a matrix
of the form

e−i(δ1+δ2)/2 exp
(

i
1
2
δσ2

)
= e−i(δ1+δ2)/2

×
(

cos 1
2δ − sin 1

2δ

sin 1
2δ cos 1

2δ

)
. (29)

A quarter-wave plate [9] is a phase shifter correspond-
ing to a rotation on the Poincaré sphere throughπ/2 about
an axis on theXY -plane. Hence, with respect to the basis
{|+〉, |−〉}, it is represented by the SU(2) matrix

(cos π/4)I − i(sin π/4)[(cos 2θ) σ1 + (sin 2θ) σ2]

=
1√
2
[I − i(cos 2θ) σ1 − i(sin 2θ)σ2],

whereθ is the angle between the axis of the plate and the
x-axis [see the discussion after Eq. (25)], and, according to
Eqs. (16), with respect to the basis{|x〉, |y〉}, it is represented
by

1√
2
[I − i(cos 2θ)σ3 − i(sin 2θ) σ1].

A half-wave plate is a phase shifter corresponding to a rota-
tion on the Poincaré sphere throughπ about an axis on the
XY -plane and, therefore, is represented by the square of the
matrix corresponding to a quarter-wave plate.

3.2. Attenuators

In the case of an optical filter that produces an attenuation
given by a factore−η1 for the x-component of the electric
field and an attenuation given bye−η2 for they-component,
the electric field (4) is replaced by
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E = A
{

e−η1

[
cos

1
2
θ cos

(
ωt− kz +

1
2
χ +

1
2
φ

)
+ sin

1
2
θ cos

(
ωt− kz +

1
2
χ− 1

2
φ

)]
x̂

+ e−η2

[
cos

1
2
θ sin

(
ωt− kz +

1
2
χ +

1
2
φ

)
− sin

1
2
θ sin

(
ωt− kz +

1
2
χ− 1

2
φ

)]
ŷ
}

. (30)

This expression is equivalent to

Ex + iEy = Ae−(η1+η2)/2
{

ei(ωt−kz)
[
cosh

1
2
η cos

1
2
θ ei(χ+φ)/2

+ sinh
1
2
η sin

1
2
θei(χ−φ)/2

]
+ e−i(ωt−kz)

[
cosh

1
2
η sin

1
2
θ e−i(χ−φ)/2 + sinh

1
2
η cos

1
2
θ e−i(χ+φ)/2

]}
,

which is of the form (9), with the two-component spinoro replaced by

(
o′1

o′2

)
= e−(η1+η2)/2

(
cosh 1

2η sinh 1
2η

sinh 1
2η cosh 1

2η

) (
o1

o2

)
= e−(η1+η2)/2 exp(1

2η σ1)
(

o1

o2

)
, (31)

whereη ≡ η2 − η1. The2 × 2 matrix appearing in Eq. (31)
is unimodular, but does not belong to SU(2) and, therefore,
it does not correspond to a rotation on the Poincaré sphere.
Rather, it corresponds to a conformal transformation of the
sphere (see,e.g., Ref. 16). In any case, the effect of the atten-
uator on the polarization state of a wave is represented by a
transformation on the points of the Poincaré sphere.

Clearly, if there is an attenuation given by a factore−η1

for the x-component of the electric field and an attenuation
given bye−η2 for they-component, the column matrix (6) is
replaced by

(
E′

x

E′
y

)
= e−(η1+η2)/2

(
eη/2 0
0 e−η/2

)(
Ex

Ey

)
, (32)

and the non-unitary, unimodular matrix appearing in this last
equation, which can be expressed asexp(1

2η σ3), is exactly
what we should expect taking into account Eqs. (31) and (16).

4. Partially polarized beams

As is often remarked, by contrast with the Jones vector, the
Stokes parameters can also be used to deal with partially
polarized beams. In this section we show that the two-
component spinor formalism can be easily adapted to handle
partially polarized light, and, as we shall see, the resulting de-
scription is equivalent to that given by the coherency matrix
(cf. Ref. 11, Appendix B).

The Stokes parameters allow us to distinguish a com-
pletely polarized beam from a partially polarized beam. Let-
ting

S ≡ s0
2 − s1

2 − s2
2 − s3

2, (33)

it turns out that for a completely polarized beam,S = 0 [cf.
Eq. (5)], while for a partially polarized beam,S > 0 (see,
e.g., Ref. 6, Sec. 10.8.3). The four Stokes parameters can be
related to a2× 2 Hermitean matrix,C, by means of

sα = tr (Cσα), (α = 0, 1, 2, 3) (34)

where tr denotes the trace,σ0 ≡ I, andσ1, σ2, σ3, are the
Pauli matrices, as above.

The Hermitean matrixρ ≡ C/s0 has the usual properties
of a density matrix (or density operator) as defined in Quan-
tum Mechanics (see,e.g., Ref. 17), namely

tr ρ = 1, tr ρ2 6 1. (35)

In fact, Eqs. (34) (together with the conditionC† = C) are
equivalent to

C =
1
2

(
s0 + s3 s1 − is2

s1 + is2 s0 − s3

)
(36)

that is,

C =
1
2

3∑
α=0

sασα (37)

and one readily verifies thattrC=s0, andtrC2=s0
2 − S/2,

which amount to Eqs. (35), taking into account thatS > 0.
Furthermore,det C = S/4; hence, in the case of a com-

pletely polarized wave (S = 0), the matrixC, having de-
terminant equal to zero, must be of the formψψ†, whereψ
is some two-component spinor. In fact, writingC = s0oo

†,
whereo is a normalized spinor, we recover the (“pure state”)
case considered in Sec. 2. Indeed,

tr (Cσ0) = s0tr (oo†) = s0o
†o = s0,

and

tr (Cσi) = s0tr (oo†σi) = s0o
†σio = si, (i = 1, 2, 3)

[see Eq. (11)], reproducing Eqs. (34).
The matrixC, being Hermitean, possesses two mutually

orthogonal unit eigenspinors with real eigenvalues. These
unit spinors correspond to two diametrically opposite points
of the Poincaŕe sphere [see Ref. 1, Eq. (18)]. SinceC is a
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2 × 2 matrix, its two eigenvalues coincide only whenC is a
multiple of the identity matrix and, only in this case, which
corresponds to “unpolarized” light (s1 = s2 = s3 = 0), the
direction of the eigenspinors ofC is not uniquely defined. In
all cases, the unit eigenspinors ofC are defined up to a phase
factor, hence, there are no uniquely defined tangent vectors
to the Poincaŕe sphere at these points, analogous to the vec-
tor ReM defined in Sec. 2.

Thus, in the case of a partially polarized beam (a “mixed
state”), the polarization state defines two diametrically oppo-
site points of the Poincaré sphere (except in the case of unpo-
larized light). However, these two points (which correspond
to the eigenspinors ofC) do not fully specify the matrixC,
since the eigenvalues need to be known. According to the
discussion in Sec. 2, the vectors±(s1, s2, s3) point along the
directions of the points of the Poincaré sphere representing
the partially polarized beam.

When the beam is completely polarized,C is of the
form C = s0oo

†; the unit spinoro is an eigenspinor ofC
(Co = s0oo

†o = s0o) and any spinor orthogonal too (e.g.,
the mate ofo [1]) is also an eigenspinor ofC (with eigenvalue
equal to zero).

As with any matrix, the form and properties ofC depend
on the basis employed. Fortunately, making use of Eq. (37),
which givesC in terms of the Pauli matrices, and Eqs. (16),
we can obtain at once the expression ofC in the basis formed
by the unit spinors (20); the resulting expression is

C̃ =
1
2
(s0I + s1σ3 + s2σ1 + s3σ2)

=
1
2

(
s0 + s1 s2 − is3

s2 + is3 s0 − s1

)
. (38)

Taking into account the relationship between the Stokes pa-
rameters and the elements of the coherency matrix,Jij (see,
e.g., Ref. 6, Sec. 10.8.3), we have

C̃ =
(

Jxx Jyx

Jxy Jyy

)
. (39)

When a partially polarized beam passes through a phase
shifter, the matrixC, corresponding to the initial beam, is re-
placed byQCQ†, whereQ is the SU(2) matrix representing
the effect of the filter on the state of polarization (exp(i 12δ σ1)
or exp(i 12δ σ3) in the cases considered in Sec. 3.1; note that
the factorse−i(δ1+δ2)/2 appearing in Eqs. (23) and (29) are

not present inQCQ† because they have unit modulus). The
eigenspinors ofQCQ† are the images underQ of those ofC;
therefore, the diametrically opposite points on the Poincaré
sphere defined byQCQ† are obtained from those defined
by C by means of the rotation corresponding toQ (see also
Refs. 18 and 19).

Similarly, when a partially polarized beam passes through
an attenuator, the initial matrixC is transformed into

e−(η1+η2)/2 exp
(

1
2
ησ1

)
C

[
e−(η1+η2)/2 exp

(
1
2
ησ1

)]†

= e−(η1+η2) exp
(

1
2
ησ1

)
C exp

(
1
2
ησ1

)

[see Eq. (31)], which is of the form (37), with(s0, s1, s2, s3)
replaced by

e−(η1+η2)(s0 cosh η

+ s1 sinh η, s1 cosh η + s0 sinh η, s2, s3). (40)

Thus, apart from the overall factore−(η1+η2), the effect of an
attenuator on the Stokes parameters has the form of a Lorentz
boost in thex-direction (see also Refs. 10 and 11).

5. Conclusions

We have shown that the several objects and formalisms em-
ployed in the study of the polarization of electromagnetic
waves are deeply related, despite their apparent differences.
In particular, the identification of the Jones vector with a
SU(2) spinor, allows us to represent the Jones vector by a tan-
gent vector to the Poincaré sphere, in terms of which, among
other things, the Pancharatnam phase can be visualized.
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