
INVESTIGACIÓN Revista Mexicana de Fı́sica57 (2011) 481–484 DICIEMBRE 2011

WKB quantization for completely bound quadratic dissipative systems
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We study the energy quantization for completely bound dissipative systems over a full cycle of motion. We approach the problem by means
of an effective phenomenological Hamiltonian and the WKB quantization rule to obtain the energy levels in the system. An example of this
approach is given for the quantum bouncer with quadratic dissipation.
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Se estudia la cuantización de enerǵıa para sistemas completamente ligados con disipación cuadŕatica utilizando la teorı́a WKB. Se propone
un nuevo Hamiltoniano efectivo que restaura la continuidad de la trayectoria en el espacio fase y permite obtener la cuantización de enerǵıa
a trav́es delárea encerrada. Ilustramos nuestro método para el caso del rebotador cuántico con disipación.

Descriptores: Cuantizacíon WKB; sistemas disipativos; cuantización semicĺasica.
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1. Introduction

The study of quantum dissipative systems has been a topic of
great interest because of its fundamental importance in real
world applications [1]. In classical mechanics, the equations
of motion for conservative systems,i.e.systems in which the
sum of the kinetic energy K and potential energy U is con-
stant, can be derived from a Hamiltonian function which rep-
resents the energy of the system in terms of generalized co-
ordinates q and momenta p, and is used as a basis for the
so-called canonical quantization to obtain the correspond-
ing Hamiltonian operator and, thus, the Schrödinger equa-
tion for the system [2–5]. Unfortunately, the Schrödinger
equation has exact solutions for a few simple systems and its
therefore essential to develop special techniques for attacking
more complex problems. The WKB method is a technique
for obtaining approximate solutions to the time-independent
Schr̈odinger equation in one dimension and it is particularly
useful in calculating bound-state energies [6–8]. The WKB
theory sheds light on how quantization occurs and it gives
the right answer for the order of magnitude for the quantum
involved [9].

For dissipative systems difficulties arise in the quantum
formalism and even the WKB theory cannot be applied due
to the non periodic orbits for this particular systems. Al-
though the Hamiltonian function yielding the correct equa-
tions of motion can be quantized by solving the Schrödinger
equation problems arise in the interpretation of the wave
function [10,11]. Alternative methods to study dissipation in
quantum systems have been proposed, the main approach to
address dissipation at the quantum level consists of the cou-
pling between the quantum dissipative system and the envi-

ronment, as a result, one brings about a master equation with
the dissipation parameter included in the solution [1].

In this article a new approach to tackle quadratic dissi-
pative systems is proposed. We will study quantum systems
under a quadratic velocity dissipative field where only bound
states are allowed,i.e. the particle is completely spatially
confined for any energy. For this type of quantum systems
an effective Hamiltonian will be proposed which not only
yields the correct equations of motion for position and mo-
mentum but also restores the periodicity of the system and
hence the WKB quantization rule can be applied. The article
is organized as follows. First we will start by giving the gen-
eral formulation of the theory and the effective Hamiltonian.
Then we will apply our theory to the quantum bouncer with
quadratic dissipation using the WKB approach to obtain the
energies of the system. The conclusions are summarized in
the last section.

2. Effective Hamiltonian

Let us consider the motion of a particle of massm in one
dimension subject both to a fieldU depending only on the
coordinates and a frictional field proportional to the square
of the particle’s velocity. The equation of motion for the sys-
tem is given by

m
dv

dt
= −dU

dx

− γ(x)v|v|=



−dU

dx − γ(x)v2 if v > 0

−dU
dx + γ(x)v2 if v < 0,

(1)
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whereγ(x) > 0 is the dissipation parameter and might de-
pend on the particle’s coordinate. Equation (1) can be rewrit-
ten as

m

2
d

dx
(v2
±) = −dU

dx
∓ γ̃(x)

m

2
v2
±, (2)

whereγ̃(x) = 2γ(x)/m andv± represents the velocity of
the particle whenv > 0 andv < 0, respectively. The general
solution to Eq. (2) is given by

m

2
v2
± + U

= e∓
∫

γ̃(x)dx

(
C +

∫
Uγ̃(x)e±

∫
γ̃(x)dxdx

)
, (3)

whereC is an integration constant that depends on the initial
conditions. Note that whenγ = 0 the sum of the kinetic en-
ergy and potential energy is constant. Solving Eq. (3) forv2

±
and inserting the result into Eq. (1) we obtain the following
equations of motion of the system

m
dv+

dt
= −dU

dx

− γ̃(x)e−
∫

γ̃(x)dx

(
C +

∫
Uγ̃(x)e

∫
γ̃(x)dxdx

)
, (4)

m
dv−
dt

= −dU

dx

+ γ̃(x)e
∫

γ̃(x)dx

(
C +

∫
Uγ̃(x)e−

∫
γ̃(x)dxdx

)
. (5)

From Eq. (4) and Eq. (5) we can construct an effective Hamil-
tonian in the usual way since the force is now only a function
of the coordinate. LetH± represent the Hamiltonian for the
case whenv > 0 andv < 0, respectively, then the effective
Hamiltonian of the system can be written as

Heff =
H+ + H−

2
+

p

|p|
(

H+ −H−
2

)
. (6)

For the case of weak dissipation,i.e. H+ ≈ H−, and for a
full cycle of motion we can drop the last term in Eq. (6).

We end this section by considering the problem studied
in Ref. 12, which corresponds to the motion of a particle of
massm dropped a distanced above the surface of the Earth
and we consider that during its motion there is a friction force
which is proportional to the square of the particle’s velocity.
The equation of motion which describes the dynamics of the
particle is given by

m
dv

dt
=−mg − γv|v|=

{
−mg − γv2 if v > 0

−mg + γv2 if v < 0,
(7)

whereγ > 0 is the dissipation parameter. The system given
in Eq. (7) is a particular case of Eq. (1) whereU = mgx
andγ(x) = γ > 0. Using Eq. (3) we have the square of the
velocity in terms of the particle’s position

v2
−(x) =

mg(1− e−2γ(d−x)/m)
γ

, (8)

v2
+(x) =

mg(2e−2γx/m − e−2γ(d−x)/m − 1)
γ

, (9)

where we have taken into account that the particle undergoes
a perfectly elastic collision when it bounces on the surface of
the Earth. Plugging Eq. (8) and Eq. (9) into Eq. (7) we have

m
dv+

dt
= −mg(2e−2γx/m − e−2γ(d+x)/m), (10)

m
dv−
dt

= −mge−2γ(d−x)/m. (11)

The Hamiltonian for Eq. (10) and Eq. (11) is given by

H− =
p2

2m
+

m2g

2γ
e−2γd/m[e2γx/m − 1], (12)

H+ =
p2

2m
+

m2g

2γ
[e−2γd/m − 2][e−2γx/m − 1], (13)

which is identical to the Hamiltonian given in Ref. 12. The
phase space diagram described by the Hamiltonian given in
Eq. (12) and Eq. (13) is depicted in Fig. 1 for different en-
ergies. Note how the trajectories in the phase space diagram
are discontinuous atp = 0. On the other hand, the effective
Hamiltonian which is given by

Heff =
H+ + H−

2

=
p2

2m
+

A(e2γx/m − 1) + B(e−2γx/m − 1)
2

, (14)

FIGURE 1. Phase space diagram for the effective Hamiltonian
(solid line) describing a particle bouncing on the surface of the
Earth and subjected to a frictional force proportional to the square
of the particle’s velocity. The pointers correspond to the Hamil-
tonianH± of the system when the particle is going up and down,
respectively.
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where
A = m2ge−2γd/m/2γ

and
B = m2g(e−2γd/m − 2)/2γ,

is a continuous function. Note thatA > 0 andB < 0. The
phase space diagram described by the effective Hamiltonian
given in Eq. (14) is depicted in Fig. 1 by the solid line.
Note how the effective Hamiltonian encloses the same area
in phase space as the other Hamiltonians. These features of
the effective Hamiltonian will allow us to use the WKB the-
ory to obtain the energy levels of the quantized dissipative
system.

3. WKB Quantization
To see the effects of dissipation in the eigenvalues of the
quantum bouncer we are going to use the WKB quantization
rule which may be written as

∮
p(x,E)dx = 2π~(n + β), (15)

whereβ is a phase angle which is determined by the connec-
tion procedure of the wave function at the turning points.
Eq. (15) means that the area enclosed by the curve represent-
ing the motion in phase space determines the possible quan-
tized values ofE. Making the assumptionmgd ¿ m2g/2γ,
we can takeA = m2g/2γ = −B, and using Eq. (14) we
have for the effective energy

E =
p2

2m
+ A sinh(2γx/m). (16)

The area enclosed by the curve representing the motion in
phase space for the energy given in Eq. (16) is obtained by
solving the following integral

m

2γ

√
2mE∫

−√2mE

sinh−1

(
E

A
− p2

2mA

)
dp = 2π~

(
n +

3
4

)
, (17)

where the phase angle for a half-space potential is given by
β = 3/4 and n = 0, 1, 2 . . . [6]. The WKB method is
expected to be valid when|dk/dx| ¿ k2, wherek is the
wavenumber [7–9]. For our case

~2k2/2m = E −A sinh(2γx/m),

hence

∣∣∣∣
dk

dx

∣∣∣∣ =
∣∣∣∣

1
2k

dk2

dx

∣∣∣∣ =
1

kx3
0

√
1 +

(
E

A
− ~2k2

2mA

)2

, (18)

wherex3
0 = ~2/m2g. Therefore, the WKB method is appli-

cable if the following inequality is satisfied

k3x3
0 À

√
1 +

(
E

A
− ~2k2

2mA

)2

. (19)

TABLE I. Numerical values that show the energy loss of a neu-
tron dropped in a uniform gravitational field and subjected to a
frictional force that is proportional to the square of the particle’s
velocity. The table shows the WKB solutions forγ = 0 and for
γ = 1.07× 10−22.

n WKB with no dissipation WKB with dissipation

0 2.23517×10−31 2.20095×10−31

1 3.93214×10−31 2.94089×10−31

2 5.31486×10−31 3.29341×10−31

3 6.53569×10−31 3.53142×10−31

4 7.65126×10−31 3.71361×10−31

The inequality given in Eq. (19) is satisfied for all ener-
gies whenγ = 0 andk À 1/x0, hence the WKB approxi-
mation is legitimate only if the term in parenthesis inside the
square root of Eq. (19) is small,i.e. we must have weak
dissipation.

Expanding the integrand in Eq. (17) in a power series and
keeping only the first three terms we end up with the follow-
ing trascendental equation

(Em)3/2
(
1540m8g4−704m4g2γ2E2+1024γ4E4

)
√

21155m10g5

= π~
(

n +
3
4

)
, (20)

note that if the dissipation parameter is zero,i.e. γ = 0, we
get the WKB eigenvalue solution for the quantum bouncer.
In 2002 an experiment to discern this gravitational effect
at the quantum level was performed by Nesvizhevsky [13].
This experiment consisted of dropping ultracold neutrons
from a height of14µm unto a neutron mirror and watching
them bounce [14, 15]. They found a neutron ground state at
2.24305 × 10−31J, this energy value is well approximated
by the WKB theory.

In Table I we have the numerical values for the quantized
energy of a neutron dropped in a uniform gravitational field
subjected to a frictional force proportional to the square of the
particle’s velocity. Note how the particle loses energy due to
dissipation which is consistent with the classical picture of a
purely dissipative system.

4. Conclusions

We have shown that for any completely bound quantum sys-
tem with quadratic friction we can obtain an effective Hamil-
tonian which restores the continuity of the phase space trajec-
tory and thus enables us to apply the WKB quantization rule
to obtain the quantized energies of the system. We must how-
ever recognize that the WKB solution is not exact but gives us
an accurate value for the eigenvalues of the quantum system.
An important remark is that the problem explored through
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the WKB quantization rule shows that the system loses en-
ergy due to dissipation which is perfectly consistent with the
classical picture of a purely dissipative system.
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