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WKB quantization for completely bound quadratic dissipative systems
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We study the energy quantization for completely bound dissipative systems over a full cycle of motion. We approach the problem by me
of an effective phenomenological Hamiltonian and the WKB quantization rule to obtain the energy levels in the system. An example of t
approach is given for the quantum bouncer with quadratic dissipation.
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Se estudia la cuantizasi de ener@ para sistemas completamente ligados con digipagiadatica utilizando la teda WKB. Se propone
un nuevo Hamiltoniano efectivo que restaura la continuidad de la trayectoria en el espacio fase y permite obtener latcctudeat@asig
a tra\es delarea encerrada. llustramos nuesti@toado para el caso del rebotadoantico con disipadin.
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1. Introduction ronment, as a result, one brings about a master equation with
the dissipation parameter included in the solution [1].
The study of quantum dissipative systems has been a topic of In this article a new approach to tackle quadratic dissi-
great interest because of its fundamental importance in reglative systems is proposed. We will study quantum systems
world applications [1]. In classical mechanics, the equationsinder a quadratic velocity dissipative field where only bound
of motion for conservative systenis. systems in which the  states are allowed,e. the particle is completely spatially
sum of the kinetic energy K and potential energy U is con-confined for any energy. For this type of quantum systems
stant, can be derived from a Hamiltonian function which rep-an effective Hamiltonian will be proposed which not only
resents the energy of the system in terms of generalized cgields the correct equations of motion for position and mo-
ordinates g and momenta p, and is used as a basis for theentum but also restores the periodicity of the system and
so-called canonical quantization to obtain the correspondnence the WKB quantization rule can be applied. The article
ing Hamiltonian operator and, thus, the Sadinger equa- s organized as follows. First we will start by giving the gen-
tion for the system [2-5]. Unfortunately, the Setinger  eral formulation of the theory and the effective Hamiltonian.
equation has exact solutions for a few simple systems and itthen we will apply our theory to the quantum bouncer with
therefore essential to develop special techniques for attackinguadratic dissipation using the WKB approach to obtain the
more complex problems. The WKB method is a techniqueenergies of the system. The conclusions are summarized in
for obtaining approximate solutions to the time-independenthe last section.
Schiddinger equation in one dimension and it is particularly
useful in calculating bound-state energies [6—8]. The WKB . ) ]
theory sheds light on how quantization occurs and it give®- Effective Hamiltonian

the right answer for the order of magnitude for the quantum ] ] ] ]
involved [9]. Let us consider the motion of a particle of masasin one

For dissipative systems difficulties arise in the quantundiMension subject both to a field depending only on the

formalism and even the WKB theory cannot be applied duecoordinates and a frictional field proportional to the square
to the non periodic orbits for this particular systems. AI_of the particle’s velocity. The equation of motion for the sys-

though the Hamiltonian function yielding the correct equa—tem is given by

tions of motion can be quantized by solving the Sclinger dv dU

equation problems arise in the interpretation of the wave m@ =T

function [10, 11]. Alternative methods to study dissipation in

guantum systems have been proposed, the main approach to —4Z —y(z)? if v>0
address dissipation at the quantum level consists of the cou- —y(z)vfvl= )

U 2
pling between the quantum dissipative system and the envi- —a (@) it v <0,
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where~(z) > 0 is the dissipation parameter and might de- o2 () = mg(2e~272/m — e=2(d=z)/m _q) ©)
pend on the particle’s coordinate. Equation (1) can be rewrit- LA ~ ’
ten as . .

m d dUu m where we have taken into account that the particle undergoes

ma oy _ Y o T2
2 dx (vi) = dx F (@) g VE @ a perfectly elastic collision when it bounces on the surface of

where5(z) = 2vy(z)/m anduv. represents the velocity of the Earth. Plugging Eq. (8) and Eq. (9) into Eq. (7) we have
the particle whemw > 0 andv < 0, respectively. The general

solution to Eq. (2) is given by m—d;]: = —mg(2e=2/m — = 2ldta)/m) (10)
2
e U dv_
B vy + mi;)t = —mge_zv(d_x)/m. (11)

=T/ i(@)de (C +/Uﬁ($)€if ﬂm)did%) . (3)  The Hamiltonian for Eq. (10) and Eq. (11) is given by

where( is an integration constant that depends on the initial _ ﬁ n m2ge—2'yd/m[62'y:v/m —1] (12)
conditions. Note that whef = 0 the sum of the kinetic en- 2m 2y ’
ergy and potential energy is constant. Solving Eq. (3yfor P2

and inserting the result into Eq. (1) we obtain the following  H+ =

equations of motion of the system
do dU which is identical to the Hamiltonian given in Ref. 12. The
md—+ =~ phase space diagram described by the Hamiltonian given in
t v Eq. (12) and Eq. (13) is depicted in Fig. 1 for different en-
oz ~[A@)de [ /U~ [ 3(@)dz g ) 4 ergies. Note how the trajectories in the phase space diagram
V(e ( * V(e v) @ are discontinuous at = 0. On the other hand, the effective

o —27 [e 2yd/ —2][e 2yz/ —-1], (13)

dv dU Hamiltonian which is given by
me—— — =
dt dz b, = Tt
< (2)de -~ (z)dz e 2
+5(x)el T (c + / UA(x)e ! ”“”‘“dx) NG
B p2 N A(BQ'ya:/m _ 1) + B(e—Q'yx/m _ 1) (14)
From Eqg. (4) and Eq. (5) we can construct an effective Hamil- 2m 2 ’

tonian in the usual way since the force is now only a function
of the coordinate. Lefl represent the Hamiltonian for the
case wherny > 0 andv < 0, respectively, then the effective
Hamiltonian of the system can be written as
Hypy — H{ +H_ P (H+ —H)

2 | 2
For the case of weak dissipatiare. H, ~ H_, and for a
full cycle of motion we can drop the last term in Eq. (6).

We end this section by considering the problem studied
in Ref. 12, which corresponds to the motion of a particle of
massm dropped a distance above the surface of the Earth
and we consider that during its motion there is a friction force
which is proportional to the square of the particle’s velocity.
The equation of motion which describes the dynamics of the
particle is given by

(6)

dv —-mg—yv? if v>0

m—=—mg — yv|v|= 7
dt g -l {—mg—i—vv2 if v<o0, @

wherey > 0 is the dissipation parameter. The system given

in Eq. (7) is a particular case of Eq. (1) whefe= mgz 5 1. phase space diagram for the effective Hamiltonian
andy(z) = v > 0. Using Eq. (3) we have the square of the (sqjig jine) describing a particle bouncing on the surface of the

velocity in terms of the particle’s position Earth and subjected to a frictional force proportional to the square
1 —2y(d—=)/m of the particle’s velocity. The pointers correspond to the Hamil-
v2 (z) = mg(l —e )7 (8) tonian H of the system when the particle is going up and down,

Y respectively.
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where

A= m29€_27d/m/2’7 TABLE |. Numerical values that show the energy loss of a neu-
tron dropped in a uniform gravitational field and subjected to a
2 (,—27d/m frictional force that is proportional to the square of the particle’'s
B =mZg(e 2)/27, velocity. The table shows the WKB solutions for= 0 and for
is a continuous function. Note that > 0 andB < 0. The 7 =1.07 x 107%,
phase space diagram described by the effective Hamiltoniamn

and

. . - - o2 L WKB with no dissipation WKB with dissipation
given in Eq. (14) is depicted in Fig. 1 by the solid line. P P
Note how the effective Hamiltonian encloses the same area g 2.2351% 1031 2.20095¢ 103!
in phase space as the other Hamiltonians. These features of; 3.93214¢10-3! 2.94089¢ 103!
the effective Hamiltonian will allow us to use the WKB the- & 31486¢10-11 329341 10~
ory to obtain the energy levels of the quantized dissipative ' , '
system. 3 6.5356910~*' 3.53142¢10%!

4 7.65126¢10~3! 3.71361x1073!

3. WKB Quantization

To see the effects of dissipation in the eigenvalues of the The inequality given in Eq. (19) is satisfied for all ener-
guantum bouncer we are going to use the WKB quantizatiogjies wheny = 0 andk > 1/z,, hence the WKB approxi-

rule which may be written as mation is legitimate only if the term in parenthesis inside the
square root of Eq. (19) is smalile. we must have weak
j(l{p(x, E)dz = 2rh(n + ), (15)  dissipation.

Expanding the integrand in Eq. (17) in a power series and
whereg is a phase angle which is determined by the conneckeeping only the first three terms we end up with the follow-
tion procedure of the wave function at the turning points.  ing trascendental equation
Eg. (15) means that the area enclosed by the curve represent-
ing the motion in phase space determines the possible quan- (Em)*/? (1540m®g*—704m*¢?y2 E?+1024v* E*)

tized values of=. Making the assumptiomgd < m?g/2v, V21155m10g5
we can taked = m?g/2y = —B, and using Eq. (14) we 5
have for the effective energy = 7h (n + 4) , (20)
p2
E= om + Asinh(2yz/m). (16)  note that if the dissipation parameter is zdre, v = 0, we

et the WKB eigenvalue solution for the quantum bouncer.
. ) . ) 2002 an experiment to discern this gravitational effect
pha§e space for Fhe energy given in Eq. (16) is obtained by, ¢ quantum level was performed by Nesvizhevsky [13].
solving the following integral This experiment consisted of dropping ultracold neutrons

The area enclosed by the curve representing the motion i

VamE from a height ofl4um unto a neutron mirror and watching
m (B p? . 3 them bounce [14, 15]. They found a neutron ground state at
2y sinh (A 2mA) dp = 2rh <n * ) - (47 2.24305 x 107317, this energy value is well approximated
—V2mE by the WKB theory.

where the phase angle for a half-space potential is given by [N Table I we have the numerical values for the quantized
B3 = 3/4andn = 0,1,2... [6]. The WKB method is €nergy of a neutron dropped in a uniform gravitational field
expected to be valid whelik/dx| < k2, wherek is the ~ Subjected to africtional force proportional to the square of the

wavenumber [7-9]. For our case particle’s velocity. Note how the particle loses energy due to
dissipation which is consistent with the classical picture of a
h%k%/2m = E — Asinh(2vz/m), purely dissipative system.
hence
5 4. Conclusions

dk 1 dk? 1 E  h2k?

=l = T . as)

dx 2k dx kx} A 2mA We have shown that for any completely bound quantum sys-

5 ) . ~ tem with quadratic friction we can obtain an effective Hamil-
wherezj = h*/m*g. Therefore, the WKB method is appli- tonjan which restores the continuity of the phase space trajec-

cable if the following inequality is satisfied tory and thus enables us to apply the WKB quantization rule
Sz to obtain the quantized energies of the system. We must how-

Kl > \/1 4 <E _ %k > ' (19) ever recognize that the WKB solution is not exact but gives us
A 2mA an accurate value for the eigenvalues of the quantum system.

An important remark is that the problem explored through
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the WKB quantization rule shows that the system loses en-

ergy due to dissipation which is perfectly consistent with the

classical picture of a purely dissipative system.
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