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Complex dynamics and chaos in commutable pendulum
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This paper deals with a commutable pendulum which has two different natural frequencies in two space regions. The first region corresponds
to the first three quadrants of the phase space; while the second region coincides with the fourth quadrant. This apparently trivial system shows
a very complex behavior, regardless of the fact that it is based on the simple pendulum model. In the case where the two natural frequencies
coincide, the flow is stable. However, just by varying the natural frequency in the fourth quadrant, the system may be asymptotically stable
or unstable and also may have simple limit cycle, complex limit cycles and even chaotic behavior. In all these cases the trajectories have
simple analytical descriptions.
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En este trabajo se estudia émululo con conmutaciones de frecuencia en dos regiones del plano. La priméracagcide con los tres

primeros cuadrantes del plano, mientras que la segundaregincide con el cuarto cuadrante. Este sistema, aparentemente trivial, presenta

un comportamiento realmente complejo a pesar de estar basado en el modélwdddd gimple. En situaciones cuando las dos frecuencias
naturales coinciden, el comportamiento es estable. Sin embargo, cuando se cambia la frecuencia natural en el cuarto cuadrante, el sistema
puede ser asifiticamente estable o inestable, puede tener un dialitel sencillo, ciclosimites complejos y ras ain, puede presentar
comportamiento daico. Otra caractéstica importante es que en todos estos casos las trayectorias pueden ser desdétitasramat de

forma sencilla.

Descriptores: Caos; fgndulo conmutable; sistema dimico complejo.

PACS: 05.45.-a; 05.45.Ac

1. Introduction have the dimension three and chaos may be verified numeri-
cally only.
The complex and chaotic behavior of trajectories of dy-  Chaos appears in two-dimensional nonlinear and non au-
namical systems is of great interest in Physics and Mathtonomous oscillators with sufficiently great external or para-
ematics and it has been extensively studied by differeninetric excitation, for example in Ueda oscillator [14]. In the
authors [1-3]. For instance, first chaotic model appears imonlinear Zaslavsky oscillator [15], chaos appears if there ex-
paper of E. Lorenz [8] which is considered as foundation ofists an impulsive excitation. Other authors study the gener-
modern chaos theory. Lorenz description of the butterfly efation of chaos on the basis of commutable linear systems;
fect is commonly used to describe the atmospheric behaviohowever the complexity of their models avoid the obtaining
In telecommunications, chaos can be used to encode privatg analytical solutions [16,17].
electronic information. In the industry, chaotic mechanisms | this paper a simple piece-wise linear two-dimensional
are used to mix liquids. In medicine, chaos may be used t@lynamical system with constant piece-wise coefficients and
stimulate the brain and to develop more efficient pacemaka nonlinear commutation law for these coefficients is consid-
ers [7-15]. ered. More exactly, the trajectories of commutable ideal pen-
There are two different cases of chaotic systems: discretetulum with two regions in phase space having different fre-
time and continuous-time dynamic systems. In discrete-timguencies are studied. One of these regions coincides with the
dynamic systems, chaos may appear in all dimensions. Thigurth quadrant of plane while the other region coincides with
sufficient conditions of chaos in one-dimension for discretethe rest of the quadrants. The trajectories of such commutable
system are given by Sharkovskii and Li-Yorke theorem [4,5].pendulum have a simple analytical description for each re-
In case of autonomous continuous-time systems degion of the plane; the trajectories are continuously differen-
scribed by ordinary differential equations with continuoustiable and formed by two sections: three quarters of a circle
right-hand side the chaos may appear only if the system diand one quarter of an ellipse. The unique changing param-
mension is higher or equal to three. Chaos cannot appeater is the frequency on ellipsoidal region of the trajectory.
in autonomous continuous-time two-dimensional system&evertheless, the global behavior of the trajectories may be
due to Poinca-Bendixson theorem [1,2]. All well known very complicated. This paper is a continuation of [19] having
examples of continuous chaos (Lorenz [8]psRler [9], new results specially in proofs of chaos existence. The main
Sprott [10] and other attractors, Chatal. [11], Pikovskii-  result is the proof that the commutable two-dimensional pen-
Rabinovich [12] and Anischenko-Astakhov [13] generators)dulum may have chaotic behavior for a large set of commu-
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tation laws and different values of parameter in commutation [ v I
law. This result does not contradict to Poinedendixson 08 QI
theorem because the right-hand part of equation describing | 81 L,
commutable pendulum is piece-wise constant. . __p30.x3)
The rest of the paper is organized as follows. In Sec. 2, [ -7
the commutable pendulum is defined. The appearance oz, osf e
chaos in discrete one-dimensional equations is briefly ana-& [ P1(x(1),0)

r veloc

lyzed in Sec. 3. Section 4 is devoted to the study of complex
trajectories described by the commutable pendulum despite:‘;‘b -o2r
its simple equations. The chaotic behavior of the commutable & _o4}
pendulum is analyzed in Sec. 5. Finally, in Sec. 6 some con-
clusions are drawn.
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Consider the special type of commutable pendufudefined
as a continuous-time dynamical system in two-dimensionaFFIGURE 1. Commutation regions and commutation lines for a com-
phase space. Two ideal pendulu§isand S2 are acting in ~ Mutable pendulum.
two regions of state spacgl and@2 . The regionQ1 coin- ] )
cides with the fourth quadran@1 = {z < 0,4 > 0} and Thus, the trajectory reaches the pafts of commutation
Q2 = R? — Q1. In that sense, the commutable pendulgm from 51 to S2 atinstantis = 7 + (7/2w) and
is defined as:
1:& 4w = 1
g— S ﬂf—i—wx 0, =€l (1)
S2:&+x=0, z€@Q2

The commutable penduluihas two commutation lines:
L, 5 for the transition from regiod)1 to regionQ2 and Ls ;
from region@2 to regionQ1:

P3 = {a(3) = z(t3) = 0, &(3) = @(t3) = Aw}.  (6)

The dynamics of the commutable pendulum in first quad-
rant is defined by Eq.S2 and, considering its initial condi-
tions atP3, its trajectory is

Lips={z=0,% >0}, 2(t) = Awsin (t — 7 — ——
Loy = {x <0, =0} @) ) ( 2w)
The graphical representation of commutable system is T+ T <t< 3 + T (7)
givenin Fig. 1. Ifthe trajectories of pendulusipass through 2w 2w

line Ly 1, it changes its natural frequency and passes from
S2 to S1. The frequencyw has constant value in IV quad-
rant, but may depend on the initial conditions in the point
P2 : w = const= w(z(2)), wherez(2) is the angular posi-

tion at the moment of passing from Il quadrant to IV quad- 3r & 3t x
{x( )Aw,i(2+2>0}.(8)

Thus, the first recurrent point of commutable pendulum
trajectory on the transversal axis > 0,4 = 0} is P4 with
coordinates

rant, clearly at this instant the angular velocity is equal to P4 = o + %
zero. The trajectories and their first derivatives are continu-
ous on the line<.; 2, Lo ;. Figure 1 shows typical trajectory
of commutable pendulurf defined by Eqg. (1) and commu-
tation lines (2).

Solving Eq. S2 is just trivial. This solution represents x <
three quarters of a circle. Suppose the solution starts at a

point . it can be readily noticed thatif = const< 1, the trajectory
P1={z(0) = 4,2(0) = 0}, C) of this commutable pendulum is asymptotically stable. But,
then the solution trajectory in quadrants Il and Il is if w = const> 1 the commutable pendulum is unstable [18].
w(t) = Acos(1),0 < ¢ < 7. After half a turn, at com- It is clear that the dynamics of the commutable pendu-
mutation pointP2 from S2 to S1, the coordinates are lum is defined by a law of frequency change which may be

P2 ={2(2) = a(r) = —A,2(2) = i(r) =0}. (4) described by a simple one-dimensional discrete equation. In
_ _ ~ the following section, it is studied the appearance of chaos
EquationS1 defines commutable pendulum dynamics inin one-dimensional discrete equations. This is because the

IV quadrant and its trajectory is given by chaotic behavior of the commutable pendulum is directly re-
4 lated with the chaos of the discrete equation describing the
=— - <t< —.
z(t) Acos(w(t —m)),m <t <+ 2w ®) change of frequenay in IV quadrant.
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a=7.8
- — -—a=85
4+ /N == a=9.4

FIGURE 2. Graphs of commutation laws;(z),7 = 0,. .., 8. z(0)

FIGURE 3. Graph of Eq. (14) for functiorFs(z) with a = 7.8,
8.5,9.4.

3. Chaos in discrete one-dimensional equa-

tions It is clear that any 1-periodic point(0) such that

z(1)=z(0) of discrete Eq. (9) is also 3-periodic solution of

Consider the discrete one dimensional equations of the fornthis equation. Therefore it is necessary to prove existence of
3-periodic solutions of (9) which are not 1-periodic solutions

z(n+1) = az(n)Fi(z(n)), n=0,1,2,.... (9  ofthis equationz(1) = z(0). In other words, it is necessary
to find at least one solution(0) for a given valuex of the

Thus, in this section, the following functions are studied . -
following equation:

as illustrative examples:

Fo()=(1-2), Fi(z)=vI=% plax(0) = =25 =0 14)
Foy(2)=vV1—2 Fsz)=(1-2)3, _
5 Herez(1), z(2) andz(3) are presented in terms of0)
Fi(2) = (1= 2%), Fs(2)=(1-2%), by following recurrent formulas
Fo(z) = cos (52) Filz) = (1-sin(52)). 2(1) = az(0)Fy(2(0)),
Fs(z) = (1 — tan (Zz)) . (10) 2(2) = az(1)Fi(2(1))
Plots of functions (10), witkx = 1, are given in Fig. 2. = a(az(0)Fi(2(0))) Fi(az(0)Fy(2(0))),
Notice thatF;(z) must to fulfill condition: F; : [0,1] — [0, 1] 2(3) = az(2)F;(2(2))
fori = 0,...,8. Therefore the upper limit for parameter
can be obtained as follows: = a(az(1)F;(2(1))) Fi(az(1)Fi(2(1))))
Ig[%}i](zpi(z)) <BifBi<1i=1,.8, (11) = a(a(az(0)F;(2(0))) Fi((ez(0) Fi(2(0))))
] 7 x Fi(a(az(0)Fi(2(0)))Fi(a(az(0)
an
RIS Tt 12) % F(2(0)))Fy(az(0)Fy((0)))))) (15)

Chaotic trajectories may appear for any law in (10) with By substituting (15) in (14) the final form of Li-Yorke
adequate values of parameter> 1. In order to compute EQ. (14) is obtained. This equation is a nonlinear equation
the interval for parametex which ensures chaotic trajecto- both inz anda. It is possible to solve it only numerically
ries, it is sufficient to solve Li-Yorke equation for existence by fixing a and seeking for a root(0) of (14) such that

of solutions with period 3 [5]. 0<2z(0)<1.
For functionsFy(z), ..., Fs(z) in (10), Li-Yorke condi- Observe that if for parametet’,,, Eq. (14) has a solu-
tion of existence of 3-periodic solutions is tion, then by continuity there exists’,,, such that for all
a € [alin 0had EQ. (14) has a solution. Her€,,,=(1/5;),
2(3) = 2(0). (13)  butai, is obtained graphically without extreme precision.
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TABLE . Intervals of chaos existence in commutable pendulum

FunctionF; Value of 3; Interval ofa € [ayin, sy fOr chaos existence
2 _
Fy G =0.25 383 <a<4
2 _

F Gy = 03849 2.56 < a < 2.59
F %ﬁ = 0.5349 1.858 < ar < 1.869
Fj 2= = 0.1055 7.8 < <9.4814
Fy 4§ﬂ = 0.47247 1.98 < a < 2.116
Fs W =0.5823 1.6 < a < 1.7171
Fes 0.357 2.65 < a < 2.80
Fr 0.1670 5.3 < a < 5.98
Fs 0.296 3.23 < a < 3.37

Figure 3 illustrate this process for functidi anda = 7.8, 4. Complexity in commutable pendulum
8.5, 9.4. For = 7.8 the graph of functionp(7.8, z(0)) has

zeros. Fory < 7.8 the graph of functiony(7.8, 2(0)) has no  consider now the commutable pendulum (1)-(2) with the fre-

zeros. - _ ~quency for regior1 defined as
All initial conditions z(0) which generates—periodic

satisfy the equation w=a(l+22) = a(l — 2(1) = aFo(z(1).  (17)
z(k) — z(0) = 0. (16)
According to Fig. 1 and equations (3)-(8), the first recur-

It is clear that for functionsy(2), F3(2), Fu(2), F5(2)  rence point:(4) of the trajectory is equal to

and for allx Eq. (16) is an algebraic equation with real co-

efficients. For this reason Eq. (16) has a finite number of

zeros for anyx. Therefore, the selt/(0) of all initial val- 2(4) = wa(1))

uesz(0) which genera_lte periodic solution of any period is a =a((1+2(2)z(1) = a(l — z(1))z(1)). (18)
denumerable set. It is well-known that the Lebesgue mea-

sure of U(0)is equal to zero. Therefore, the sef which

is the complement of a séf(0) in the interval|0, 1], i.e. Equation (18) coincides with classical discrete logistic

M = [0,1]/U(0), has a Lebesgue measure equal to 1. equaFion [5]. The trajectories of commutable pepdulum (2)-
As consequence, forz(0) € M the sequence (2) with the frequency defined by (17) have a wide range of

2(0),2(1),...,2(k),... generated by initial condition(0) behavior as the parameteris modified. The behavior of the

and Eq. (9) is not periodic but it is bounded. Li and Yorke commutable pendulum with functiofy(z) has been thor-
have shown that this sequence is chaotic if there exists a s@ughly analyzed in Ref. 18 and 19. For that reason in the
lution of period 3. present work functiorFs(z) is used to validate the existence
From Fig. 3 it is clear that Li-Yorke Eq. (14) fdfs(z)  ©of many discrete equations, which are capable of generating
ando € [7.8,9.48] has solutions, and as consequence 3£omplex trajectories in the pendulum when they are used to
periodic solutions can be obtained for these valuesvof define the frequency in regiofil.
Therefore, fora € [7.8,9.48] and Fi(z) = F3(2) EQ. (9) Thus, by taking into account definition of functidf (=)
has chaotic behavior.
The results of numerical investigation for functions 3 3
Fy(2),...,Fs(z) in (10) are summarized in Table I. Notice w=a(l+2(2)"=a(l —z(l)" = aFy(z(1))  (19)

that these calculations only give sufficient conditions for ap- .
pearance of chaotic trajectories. For other values of paran@s the frequency for the commutable pendulum in region

etera chaotic solutions may appear or not. In similar way, (€ results given in Figs. 4-7 can be readily obtained when
different laws which are not included in Table | may be alsoiNitial angular position isz(1) = 21(0) = 0.6 and initial
studied. However, it is sufficiently sure that the chaotic tra-2ngular velocity isi(1) = x»(0) = 0.

jectories will appear. for any monotonic functiét(z) simi- Firstly, it is considered the case whan= 1. The simu-
lar to those considered in (10) with an appropriated value ofation result given in Fig. 4 shows that the commutable pen-
parametery. dulum evolving under this condition is asymptotically stable.
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FIGURE 6. Triple limit cycle fora = 5.
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FIGURE 7. Triple limit cycle fora = 7.8.

However, the behavior of the commutable pendulum can

be changed by selecting a different value for parameter
Consider nown = 4 and the previous initial conditions. In

this case there exists a simple limit cycle as the one presente: 08y

in Fig. 5.

In the same way, a double limit cycle can be obtained by

the suitable choice of parameter The commutable pendu-
lum has a double limit cycle whem = 5 (see Fig. 6).

A triple limit cycle can be obtained when= 7.8 and the
commutable pendulum starts franl) = x,(0) = 0.6 and
#(1) = x2(0) = 0, as shown in Fig. 7. Li-Yorke theorem
states that ini this case for other initial condition the com-

mutable pendulum has periodic solutions of any period and

also chaotic solutions similar to those shown in Figs. 8-10
This conclusion will be verified in the following section.
It is important to remark that the trajectories depicted

in Figs. 4 to 7 have been generated by considering (19) as

the frequency for the commutable pendulum in regiin

' -08}

2
(=]
=~

Angular velocity x

Angular position x

Therefore, the same equation is applied in the following secFIGURE 8. Chaotic trajectory fory = 8.3.

tion to obtain chaos in the commutable pendulum.
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FIGURE 9. Chaotic trajectory forv = 8.5. Q=85
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FIGURE 12. Angular velocity of the commutable pendulum when
FIGURE 10. Chaotic trajectory fory = 8.7. a=4.
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5. Chaos in a commutable pendulum o8
06} b
According to Table | for7.8 < a < 9.4814 the function
F5(z) have chaotic solutions [4,5]. For this reason the be- ~ ** 1
havior of commutable pendulum may be also chaotic when g; 02 1
is defined within such an interval. o
Figures 8, 9 and 10 show the evolution in time of chaotic < PSTTTTT
solutions fora = 8.3, @ = 8.5 anda = 8.7, respectively, 02 1
and initialz(1) = z1(0) = 0.9, andi(1) = z2(0) = 0. .
The simplicity of this model relies on the fact that each
one of Figs. 8, 9 and 10 is formed by3a4 of a circle (52) -0.6 1
and anl/4 of an ellipse £1). Y . . . ‘
0 200 400 600 800 1000

Remark 1 It is important to mention that each trajectory
is deterministic and it is possible to compute analytically any N _
point at any instant.t FIGURE 13. Averages for position and velocity of the commutable
On the other hand, Figs. 11, 12 and 13 show position,pendljlum whem = 8.5.
velocity and averages values as function of timedor 8.5, Itis well known that in case of ideal pendulum these mean
respectively, and(1) = z1(0) = 0.9 (1) = x5 = 0. values tend to zero as time tends to infinity. However, for the

Time in seconds
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chaotic commutable pendulum the mean velocity tends to acribed the behavior of atoms in crystal structures [7,15]. The
small positive value as time tends to infinity, while the meanemission of light quantum may be considered as instanta-
value of position is negative. This feature will be analyzedneous commutation of some atom characteristics, which are
next. modeled, in this paper, as pendulum frequency commutation.

The time of one revolutiof}e, for commutable pendu- In that sense, it has been shown that complex dynamics
lum is equal to and chaos may appear in relatively simple dynamical sys-

(20) tems such as the commutable pendulum with two different

2 T

In Eq. (20), the first term represents the sum of transition
time from positionP1 to P2 and from positionP3 to P4.
The second term is the transition time from positiBa to
P3. For P2 close to—1 the frequency in IV quadrant is
close to zero and the transition time fraf2 to P3 is large.

During this time the value of(t) is negative and the velocity
has a small positive value. As consequence, the mean valwynamical systems of different areas of science and engineer-
of position is negative while the mean velocity is equal to aing as mechanical and electronic systems, robotics, etc.
small positive number.

6.

frequencies.
In this paper, the nonlinear commutations are based on
discrete mappings which allows the system to generate very
complex trajectories including chaos. However, the existence
of other simple commutation laws is not denied and they must
to be analyzed in the future.

The proposed approach can be easily extended to other
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