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This paper deals with a commutable pendulum which has two different natural frequencies in two space regions. The first region corresponds
to the first three quadrants of the phase space; while the second region coincides with the fourth quadrant. This apparently trivial system shows
a very complex behavior, regardless of the fact that it is based on the simple pendulum model. In the case where the two natural frequencies
coincide, the flow is stable. However, just by varying the natural frequency in the fourth quadrant, the system may be asymptotically stable
or unstable and also may have simple limit cycle, complex limit cycles and even chaotic behavior. In all these cases the trajectories have
simple analytical descriptions.
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En este trabajo se estudia el péndulo con conmutaciones de frecuencia en dos regiones del plano. La primera región coincide con los tres
primeros cuadrantes del plano, mientras que la segunda región coincide con el cuarto cuadrante. Este sistema, aparentemente trivial, presenta
un comportamiento realmente complejo a pesar de estar basado en el modelo del péndulo simple. En situaciones cuando las dos frecuencias
naturales coinciden, el comportamiento es estable. Sin embargo, cuando se cambia la frecuencia natural en el cuarto cuadrante, el sistema
puede ser asintóticamente estable o inestable, puede tener un ciclo lı́mite sencillo, ciclos ĺımites complejos y ḿas áun, puede presentar
comportamiento cáotico. Otra caracterı́stica importante es que en todos estos casos las trayectorias pueden ser descritas analı́ticamente de
forma sencilla.

Descriptores: Caos; ṕendulo conmutable; sistema dinámico complejo.

PACS: 05.45.-a; 05.45.Ac

1. Introduction

The complex and chaotic behavior of trajectories of dy-
namical systems is of great interest in Physics and Math-
ematics and it has been extensively studied by different
authors [1-3]. For instance, first chaotic model appears in
paper of E. Lorenz [8] which is considered as foundation of
modern chaos theory. Lorenz description of the butterfly ef-
fect is commonly used to describe the atmospheric behavior.
In telecommunications, chaos can be used to encode private
electronic information. In the industry, chaotic mechanisms
are used to mix liquids. In medicine, chaos may be used to
stimulate the brain and to develop more efficient pacemak-
ers [7-15].

There are two different cases of chaotic systems: discrete-
time and continuous-time dynamic systems. In discrete-time
dynamic systems, chaos may appear in all dimensions. The
sufficient conditions of chaos in one-dimension for discrete
system are given by Sharkovskii and Li-Yorke theorem [4,5].

In case of autonomous continuous-time systems de-
scribed by ordinary differential equations with continuous
right-hand side the chaos may appear only if the system di-
mension is higher or equal to three. Chaos cannot appear
in autonomous continuous-time two-dimensional systems
due to Poincaŕe-Bendixson theorem [1,2]. All well known
examples of continuous chaos (Lorenz [8], Rössler [9],
Sprott [10] and other attractors, Chuaet al. [11], Pikovskii-
Rabinovich [12] and Anischenko-Astakhov [13] generators)

have the dimension three and chaos may be verified numeri-
cally only.

Chaos appears in two-dimensional nonlinear and non au-
tonomous oscillators with sufficiently great external or para-
metric excitation, for example in Ueda oscillator [14]. In the
nonlinear Zaslavsky oscillator [15], chaos appears if there ex-
ists an impulsive excitation. Other authors study the gener-
ation of chaos on the basis of commutable linear systems;
however the complexity of their models avoid the obtaining
of analytical solutions [16,17].

In this paper a simple piece-wise linear two-dimensional
dynamical system with constant piece-wise coefficients and
a nonlinear commutation law for these coefficients is consid-
ered. More exactly, the trajectories of commutable ideal pen-
dulum with two regions in phase space having different fre-
quencies are studied. One of these regions coincides with the
fourth quadrant of plane while the other region coincides with
the rest of the quadrants. The trajectories of such commutable
pendulum have a simple analytical description for each re-
gion of the plane; the trajectories are continuously differen-
tiable and formed by two sections: three quarters of a circle
and one quarter of an ellipse. The unique changing param-
eter is the frequency on ellipsoidal region of the trajectory.
Nevertheless, the global behavior of the trajectories may be
very complicated. This paper is a continuation of [19] having
new results specially in proofs of chaos existence. The main
result is the proof that the commutable two-dimensional pen-
dulum may have chaotic behavior for a large set of commu-
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tation laws and different values of parameter in commutation
law. This result does not contradict to Poincaré-Bendixson
theorem because the right-hand part of equation describing
commutable pendulum is piece-wise constant.

The rest of the paper is organized as follows. In Sec. 2,
the commutable pendulum is defined. The appearance of
chaos in discrete one-dimensional equations is briefly ana-
lyzed in Sec. 3. Section 4 is devoted to the study of complex
trajectories described by the commutable pendulum despite
its simple equations. The chaotic behavior of the commutable
pendulum is analyzed in Sec. 5. Finally, in Sec. 6 some con-
clusions are drawn.

2. Commutable ideal pendulum

Consider the special type of commutable pendulumS defined
as a continuous-time dynamical system in two-dimensional
phase space. Two ideal pendulumsS1 andS2 are acting in
two regions of state spaceQ1 andQ2 . The regionQ1 coin-
cides with the fourth quadrant,Q1 = {x < 0, ẋ > 0} and
Q2 = R2 − Q1. In that sense, the commutable pendulumS
is defined as:

S =
{

S1 : ẍ + ω2x = 0, x ∈ Q1,
S2 : ẍ + x = 0, x ∈ Q2.

(1)

The commutable pendulumS has two commutation lines:
L1,2 for the transition from regionQ1 to regionQ2 andL2,1

from regionQ2 to regionQ1:

L1,2 = {x = 0, ẋ > 0},
L2,1 = {x < 0, ẋ = 0}. (2)

The graphical representation of commutable system is
given in Fig. 1. If the trajectories of pendulumS pass through
line L2,1, it changes its natural frequency and passes from
S2 to S1. The frequencyω has constant value in IV quad-
rant, but may depend on the initial conditions in the point
P2 : ω = const= ω(x(2)), wherex(2) is the angular posi-
tion at the moment of passing from III quadrant to IV quad-
rant, clearly at this instant the angular velocity is equal to
zero. The trajectories and their first derivatives are continu-
ous on the linesL1,2, L2,1. Figure 1 shows typical trajectory
of commutable pendulumS defined by Eq. (1) and commu-
tation lines (2).

Solving Eq. S2 is just trivial. This solution represents
three quarters of a circle. Suppose the solution starts at a
point

P1 = {x(0) = A, ẋ(0) = 0}, (3)

then the solution trajectory in quadrants II and III is
x(t) = A cos(t), 0 ≤ t ≤ π. After half a turn, at com-
mutation pointP2 from S2 to S1, the coordinates are

P2 = {x(2) = x(π) = −A, ẋ(2) = ẋ(π) = 0}. (4)

EquationS1 defines commutable pendulum dynamics in
IV quadrant and its trajectory is given by

x(t) = −A cos(ω(t− π)), π ≤ t ≤ π +
π

2ω
. (5)

FIGURE 1. Commutation regions and commutation lines for a com-
mutable pendulum.

Thus, the trajectory reaches the pointP3 of commutation
from S1 to S2 at instantt3 = π + (π/2ω) and

P3 = {x(3) = x(t3) = 0, ẋ(3) = ẋ(t3) = Aω}. (6)

The dynamics of the commutable pendulum in first quad-
rant is defined by Eq.S2 and, considering its initial condi-
tions atP3, its trajectory is

x(t) = Aω sin
(
t− π − π

2ω

)
,

π +
π

2ω
≤ t ≤ 3π

2
+

π

2ω
. (7)

Thus, the first recurrent point of commutable pendulum
trajectory on the transversal axis{x > 0, ẋ = 0} is P4 with
coordinates

P4 =
{

x

(
3π

2
+

π

2ω

)
= Aω, ẋ

(
3π

2
+

π

2ω

)
= 0

}
. (8)

By comparingx(0) = A and

x

(
3π

2
+

π

2ω

)
= Aω,

it can be readily noticed that ifω = const< 1, the trajectory
of this commutable pendulum is asymptotically stable. But,
if ω = const> 1 the commutable pendulum is unstable [18].

It is clear that the dynamics of the commutable pendu-
lum is defined by a law of frequency change which may be
described by a simple one-dimensional discrete equation. In
the following section, it is studied the appearance of chaos
in one-dimensional discrete equations. This is because the
chaotic behavior of the commutable pendulum is directly re-
lated with the chaos of the discrete equation describing the
change of frequencyω in IV quadrant.
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FIGURE 2. Graphs of commutation lawsFi(z), i = 0, . . . , 8.

3. Chaos in discrete one-dimensional equa-
tions

Consider the discrete one dimensional equations of the form

z(n + 1) = αz(n)Fi(z(n)), n = 0, 1, 2, . . . . (9)

Thus, in this section, the following functions are studied
as illustrative examples:

F0(z) = (1− z), F1(z) =
√

1− z,

F2(z) = 4
√

1− z, F3(z) = (1− z)3,

F4(z) = (1− z3), F5(z) = (1− z5),

F6(z) = cos
(π

2
z
)

, F7(z) =
(
1− sin

(π

2
z
))

,

F8(z) =
(
1− tan

(π

4
z
))

. (10)

Plots of functions (10), withα = 1, are given in Fig. 2.
Notice thatFi(z) must to fulfill condition:Fi : [0, 1] → [0, 1]
for i = 0, . . . , 8. Therefore the upper limit for parameterα
can be obtained as follows:

max
z∈[0,1]

(zFi(z)) ≤ βi, βi < 1, i = 1, ..8, (11)

and
αi

max =
1
βi

> 1. (12)

Chaotic trajectories may appear for any law in (10) with
adequate values of parameterα > 1. In order to compute
the interval for parameterα which ensures chaotic trajecto-
ries, it is sufficient to solve Li-Yorke equation for existence
of solutions with period 3 [5].

For functionsF0(z), . . . , F8(z) in (10), Li-Yorke condi-
tion of existence of 3-periodic solutions is

z(3) = z(0). (13)

FIGURE 3. Graph of Eq. (14) for functionF3(z) with α = 7.8,

8.5, 9.4.

It is clear that any 1-periodic pointz(0) such that
z(1)=z(0) of discrete Eq. (9) is also 3-periodic solution of
this equation. Therefore it is necessary to prove existence of
3-periodic solutions of (9) which are not 1-periodic solutions
of this equation,z(1) = z(0). In other words, it is necessary
to find at least one solutionz(0) for a given valueα of the
following equation:

ϕ(α, z(0)) =
z(3)− z(0)
z(1)− z(0)

= 0. (14)

Herez(1), z(2) andz(3) are presented in terms ofz(0)
by following recurrent formulas

z(1) = αz(0)Fi(z(0)),

z(2) = αz(1)Fi(z(1))

= α(αz(0)Fi(z(0)))Fi(αz(0)Fi(z(0))),

z(3) = αz(2)Fi(z(2))

= α(αz(1)Fi(z(1)))Fi(αz(1)Fi(z(1))))

= α(α(αz(0)Fi(z(0)))Fi((αz(0)Fi(z(0))))

× Fi(α(αz(0)Fi(z(0)))Fi(α(αz(0)

× Fi(z(0)))Fi(αz(0)Fi(z(0)))))) (15)

By substituting (15) in (14) the final form of Li-Yorke
Eq. (14) is obtained. This equation is a nonlinear equation
both in z andα. It is possible to solve it only numerically
by fixing α and seeking for a rootz(0) of (14) such that
0 < z(0) < 1.

Observe that if for parameterαi
max Eq. (14) has a solu-

tion, then by continuity there existsαi
min such that for all

α ∈ [αi
min, α

i
max] Eq. (14) has a solution. Hereαi

max=(1/βi),
but αi

min is obtained graphically without extreme precision.
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TABLE I. Intervals of chaos existence in commutable pendulum

FunctionFi Value ofβi Interval ofα ∈ [αi
min, α

i
max] for chaos existence

F0
2

(3
√

3)
= 0.25 3.83 < α < 4

F1
2

(3
√

3)
= 0.3849 2.56 < α < 2.59

F2
4
5

4
√

1
5

= 0.5349 1.858 < α < 1.869

F3
27
256

= 0.1055 7.8 < α < 9.4814

F4
3

4 3√4
= 0.47247 1.98 < α < 2.116

F5
5

6(6)1/5 = 0.5823 1.6 < α < 1.7171

F6 0.357 2.65 < α < 2.80

F7 0.1670 5.3 < α < 5.98

F8 0.296 3.23 < α < 3.37

Figure 3 illustrate this process for functionF3 andα = 7.8,
8.5, 9.4. Forα = 7.8 the graph of functionϕ(7.8, z(0)) has
zeros. Forα < 7.8 the graph of functionϕ(7.8, z(0)) has no
zeros.

All initial conditions z(0) which generateκ−periodic
satisfy the equation

z(κ)− z(0) = 0. (16)

It is clear that for functionsF0(z), F3(z), F4(z), F5(z)
and for allκ Eq. (16) is an algebraic equation with real co-
efficients. For this reason Eq. (16) has a finite number of
zeros for anyκ. Therefore, the setU(0) of all initial val-
uesz(0) which generate periodic solution of any period is a
denumerable set. It is well-known that the Lebesgue mea-
sure ofU(0)is equal to zero. Therefore, the setM which
is the complement of a setU(0) in the interval[0, 1], i.e.
M = [0, 1]/U(0), has a Lebesgue measure equal to 1.

As consequence, forz(0) ∈ M the sequence
z(0), z(1), . . . , z(κ), . . . generated by initial conditionz(0)
and Eq. (9) is not periodic but it is bounded. Li and Yorke
have shown that this sequence is chaotic if there exists a so-
lution of period 3.

From Fig. 3 it is clear that Li-Yorke Eq. (14) forF3(z)
and α ∈ [7.8, 9.48] has solutions, and as consequence 3-
periodic solutions can be obtained for these values ofα.
Therefore, forα ∈ [7.8, 9.48] andFi(z) = F3(z) Eq. (9)
has chaotic behavior.

The results of numerical investigation for functions
F0(z), . . . , F8(z) in (10) are summarized in Table I. Notice
that these calculations only give sufficient conditions for ap-
pearance of chaotic trajectories. For other values of param-
eterα chaotic solutions may appear or not. In similar way,
different laws which are not included in Table I may be also
studied. However, it is sufficiently sure that the chaotic tra-
jectories will appear. for any monotonic functionF (z) simi-
lar to those considered in (10) with an appropriated value of
parameterα.

4. Complexity in commutable pendulum

Consider now the commutable pendulum (1)-(2) with the fre-
quency for regionS1 defined as

ω = α(1 + x(2)) = α(1− x(1)) = αF0(x(1)). (17)

According to Fig. 1 and equations (3)-(8), the first recur-
rence pointx(4) of the trajectory is equal to

x(4) = ωx(1))

= α((1 + x(2)))x(1) = α(1− x(1))x(1)). (18)

Equation (18) coincides with classical discrete logistic
equation [5]. The trajectories of commutable pendulum (1)-
(2) with the frequency defined by (17) have a wide range of
behavior as the parameterα is modified. The behavior of the
commutable pendulum with functionF0(z) has been thor-
oughly analyzed in Ref. 18 and 19. For that reason in the
present work functionF3(z) is used to validate the existence
of many discrete equations, which are capable of generating
complex trajectories in the pendulum when they are used to
define the frequency in regionS1.

Thus, by taking into account definition of functionF3(z)

ω = α(1 + x(2))3 = α(1− x(1))3 = αF3(x(1)) (19)

as the frequency for the commutable pendulum in regionS1,
the results given in Figs. 4-7 can be readily obtained when
initial angular position isx(1) = x1(0) = 0.6 and initial
angular velocity iṡx(1) = x2(0) = 0.

Firstly, it is considered the case whenα = 1. The simu-
lation result given in Fig. 4 shows that the commutable pen-
dulum evolving under this condition is asymptotically stable.
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FIGURE 4. Asymptotically stable behavior forα = 1.

FIGURE 5. Simple limit cycle forα = 4.

However, the behavior of the commutable pendulum can
be changed by selecting a different value for parameterα.
Consider nowα = 4 and the previous initial conditions. In
this case there exists a simple limit cycle as the one presented
in Fig. 5.

In the same way, a double limit cycle can be obtained by
the suitable choice of parameterα. The commutable pendu-
lum has a double limit cycle whenα = 5 (see Fig. 6).

A triple limit cycle can be obtained whenα = 7.8 and the
commutable pendulum starts fromx(1) = x1(0) = 0.6 and
ẋ(1) = x2(0) = 0, as shown in Fig. 7. Li-Yorke theorem
states that ini this case for other initial condition the com-
mutable pendulum has periodic solutions of any period and
also chaotic solutions similar to those shown in Figs. 8-10.
This conclusion will be verified in the following section.

It is important to remark that the trajectories depicted
in Figs. 4 to 7 have been generated by considering (19) as
the frequency for the commutable pendulum in regionS1.
Therefore, the same equation is applied in the following sec-
tion to obtain chaos in the commutable pendulum.

FIGURE 6. Triple limit cycle forα = 5.

FIGURE 7. Triple limit cycle forα = 7.8.

FIGURE 8. Chaotic trajectory forα = 8.3.
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FIGURE 9. Chaotic trajectory forα = 8.5.

FIGURE 10. Chaotic trajectory forα = 8.7.

5. Chaos in a commutable pendulum

According to Table I for7.8 < α < 9.4814 the function
F3(z) have chaotic solutions [4,5]. For this reason the be-
havior of commutable pendulum may be also chaotic whenα
is defined within such an interval.

Figures 8, 9 and 10 show the evolution in time of chaotic
solutions forα = 8.3, α = 8.5 andα = 8.7, respectively,
and initialx(1) = x1(0) = 0.9, andẋ(1) = x2(0) = 0.

The simplicity of this model relies on the fact that each
one of Figs. 8, 9 and 10 is formed by a3/4 of a circle (S2)
and an1/4 of an ellipse (S1).

Remark 1 It is important to mention that each trajectory
is deterministic and it is possible to compute analytically any
point at any instant t.

On the other hand, Figs. 11, 12 and 13 show position,
velocity and averages values as function of time forα = 8.5,
respectively, andx(1) = x1(0) = 0.9 ẋ(1) = x2 = 0.

FIGURE 11. Angular position of the commutable pendulum when
α = 8.5.

FIGURE 12. Angular velocity of the commutable pendulum when
α = 4.

FIGURE 13. Averages for position and velocity of the commutable
pendulum whenα = 8.5.

It is well known that in case of ideal pendulum these mean
values tend to zero as time tends to infinity. However, for the
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chaotic commutable pendulum the mean velocity tends to a
small positive value as time tends to infinity, while the mean
value of position is negative. This feature will be analyzed
next.

The time of one revolutionTrev for commutable pendu-
lum is equal to

Trev =
3π

2
+

π

2ω
. (20)

In Eq. (20), the first term represents the sum of transition
time from positionP1 to P2 and from positionP3 to P4.
The second term is the transition time from positionP2 to
P3. For P2 close to−1 the frequencyω in IV quadrant is
close to zero and the transition time fromP2 to P3 is large.
During this time the value ofx(t) is negative and the velocity
has a small positive value. As consequence, the mean value
of position is negative while the mean velocity is equal to a
small positive number.

6. Conclusions

Generating continuous chaos can be useful in many systems,
for instance: liquid mixing, brain simulation, financial stud-
ies, etc. In physics, pendulum models are often used to de-

scribed the behavior of atoms in crystal structures [7,15]. The
emission of light quantum may be considered as instanta-
neous commutation of some atom characteristics, which are
modeled, in this paper, as pendulum frequency commutation.

In that sense, it has been shown that complex dynamics
and chaos may appear in relatively simple dynamical sys-
tems such as the commutable pendulum with two different
frequencies.

In this paper, the nonlinear commutations are based on
discrete mappings which allows the system to generate very
complex trajectories including chaos. However, the existence
of other simple commutation laws is not denied and they must
to be analyzed in the future.

The proposed approach can be easily extended to other
dynamical systems of different areas of science and engineer-
ing as mechanical and electronic systems, robotics, etc.
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