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Algorithm to compute the electric field gradient tensor in ionic crystals
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Recibido el 19 de septiembre de 2011; aceptado el 25 de noviembre de 2011

A simple algorithm and a computational program to numerically compute the electric field gradient and the concomitant quadrupolar nuclear
splitting is developed for an arbitrary ionic crystal. The calculations are performed using a point charge model. The program provides three
different ways for the data input: by Bravais lattices, by lattice parameters, or by introducing any spatial structure. The program calculates
the components of the electric field gradient, the asymmetry parameter and the quadrupolar splitting for a given number of nearest neighbors
with respect to the nuclear charge as origin. In addition, the program allows the use of different Sternheimer antishielding factors.
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1. Introduction

The electrostatic energyW due to the interaction of a nu-
clear charge distributionρ(r) and the electrostatic potential
V (r) generated by its electric environment is given by

W =
∫

vol

ρ(r)V (r)d3τ (1)

whered3τ is the volume element and r= (x1, x2, x3) are
spatial coordinates. The integral is calculated over the nu-
cleus volume. A suitable way to evaluate it is to make a mul-
tipole expansion of the electrostatic potentialV (r) around the
center of charge of the nucleus as origin, assuming thatV (r)
is a slowly varying function over the nuclear region. Expand-
ing in a Taylor serie around the nucleus center of charge, one
obtains [1,2]

V (r)=V (0)+r · (∇V )r=0

+
1
2

∑

i

∑

j

xixj

(
∂2V

∂xi∂xj

)
+ · ·· (2)

The relevant terms in this expansion are the first and third
terms, due to the fact that the second one is zeroi because,
when multiplied by the nuclear charge, it represents the in-
teraction of the nuclear dipole moment (which is zero) with
the external electric field,~E. The next non-zero terms are
several orders of magnitude smaller than the third one [3] so,
in a good approximation, the interaction energy can be ex-
pressed as

W =
1
2

3∑

j,k=1

VjkQjk (3)

whereVjk are the electric field gradient (EFG) tensor com-
ponents, andQij are the quadrupolar nuclear moment com-
ponents; both are second rank tensors. Choosing a principal
axis system for the EFG tensor, the interaction energy can be
expressed as the sum of two terms
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1
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The first term, called isomer shift, represents the effect
due to the nucleus sizeii. The second one corresponds to the
so called quadrupolar nuclear splitting∆Q, so the interaction
hamiltonian between the nuclear quadrupolar momentQ̃ and
the EFG tensor∇ ~E, with respect to an arbitrary axes system
with origin in the nuclear charge centroid, is given by

Ĥ = −1
6
eQ̃⊗∇ ~E (5)

where⊗ denotes tensorial product. Considering thez axis
along the largest component of the EFG (Vzz = eq) and the
Laplace equation, the hamiltonian (5) is transformed through
the Wigner-Eckart theorem [4] into

Ĥ =
e2qQ

4I(2I − 1)
[3I2

z − I2 + η(I2
x − I2

y )], (6)

whereI2, Ix, Iy andIz are the nuclear spin magnitudes, and

η =
Vxx − Vyy

Vzz
(7)

is the so called asymmetry parameter, which indicates how
much the electric potential departs from spherical symme-
try. An analytical solution of (6) can only be obtained for
the I = 3/2 case [6]. By far, the most used isotope in
Mössbauer spectroscopy is57Fe, for which the useful tran-
sition isI = 3/2 → I = 1/2 and, in what follows, we will
restrict to this case. The analytical solution is:

E =
e2qQ

4I(2I − 1)
[3I2

z − I2]

√
1− η2

3
(8)
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That is, the nuclearI = 3/2 energy level is split into two
levels (± 3/2 and± 1/2) and the ground levelI = 1/2
stays degenerated. This gives rise to two absorption lines in
the Mössbauer spectrum separated by an energy

∆Q =
eVzzQ

2

√
1 +

η2

3
(9)

which is called the quadrupolar nuclear splitting.

1.1. Electric Gradient Tensor

In rectangular coordinates, the EFG of a set ofn point
charges is:

Vxixj
=

n∑

k=1

qk

(
r2
kδij − 3xik

xjk

r5
k

)
(10)

whereqk and rk = (x1k
, x2k

, x3k
) are the respective charge

and position of thekth ion. The electric interaction of the
nucleus with its surroundings has two different origins: the
charge density of the electrons of the nucleus under study,
and the ligands of the crystal lattice [5,6].

The interatomic distances in a crystal are much larger
than the atomic displacements due to the lattice vibrations,
so a useful approximation to the EFG can be done in ionic
crystals using Eq. (10) with a point charge model. The ap-
proximation is useful in the following sense: if one is only
interested in determining the type of structure surrounding an
ion, the electronic contribution to the EFG is almost the same
for a given ionic state (including the spin state), so the main
changes in the EFG are due to the ligand structure. In partic-
ular, for the case of57Fe, the quadrupole splitting is given by
Eq. (9), which can be written as

∆Q =
e2Q

2

√
1 +

η2

3
(qlig + qval), (11)

where qlig and qval refer to the ligand and valence elec-
tron contributions respectively, without taking into account
the shielding and anti-shielding Sternheimer factors [7-11].
Now, if two ions in the same ionic state are surrounded by
different ligand structures, the difference on their quadrupole
splitting will be essentially due to the ligand contribution to
the EFG; that is

∆Q′ −∆Q =
e2Q

2

√
1 +

η2

3
(q′lig − qlig), (12)

so then the comparison of the magnitude of the calculated
quadrupole splittings, corrected by an appropriated Stern-
heimer factor, will suffice for discriminating the different lig-
and structures surrounding the57Fe ion in the crystal.

2. Structure of the computational program

The program was focused as an useful tool in a Mössbauer
spectroscopy laboratory, so it computes the components of

the EFG tensor and the quadrupolar splitting for a57Fe nu-
cleus by default. However, it is able to work with any nu-
cleus, just by introducing its respective quadrupolar moment
value.

In order to compute the EFG in a great number of crys-
talline lattices, three different input data modes were devel-
oped, allowing for a wide range of applications. Those modes
are briefly described here:

• N arbitrary ions: In this section of the program, the
coordinates and valences of each ligand constituting
the crystalline array are inputted manually. The spa-
tial distribution of the ions can be totally arbitrary. The
algorithm can handle a number of ions as large as nec-
essary, being this number, of course, finite.

• Bravais lattices:Here, an election of one of the four-
teen possible Bravais Lattices in three dimensions is
made, just by introducing the parameter(s) that define
such lattice. The program allows to select the place in
the lattice in which the EFG will be computed.

• Lattice parameters:When available, one can input the
values of the lattice parameters, so the program identi-
fies the respective lattice, reconstructing it in order to
carry out the computations.

The program was developed in a structured computa-
tional language, so there is a main module calling different
functions and subroutines.

2.1. Functions

There are three functions defined in the program.

• The functionR calculates the euclidean rectangular
distance between theith ligand coordinates and the nu-
cleus under study taken as the origin.

• The functionV computes theVxixi component of the
EFG tensor in principal axes for theith ion with Eq.
(10), for each value ofk, and whereqk is the valence
charge of the ligand,qlig.

• The functionDQ calculates the value of the quadrupo-
lar splitting as a function ofVzz and the asymmetry pa-
rameter, through Eqs. (9) and (11), leaving the result in
terms of the(1 − γ∞) factor, without considering the
valence contribution in the total charge.

2.2. Main module

Here, the physical constants to be used in the program are
defined. It establishes the value of the quadrupolar moment
Q to be usediii, and the ionic configuration to be worked out,
which are:
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2.2.1. N arbitrary ions

• Introduce the numberN of ligands to be considered in
the computation.

• Introduce the three coordinates (in angstroms) and the
valence of each ion.

• The distance to the origin is computed for each ion, via
theR function.

• The components of the EFG are calculated, addingiv to
each one the contribution of each ion through function
V .

• The largest component of the EFG is assigned to|Vzz|,
and|Vyy| ≥ |Vxx|.

• The asymmetry parameter is computed with Eq. (7).

• The value of the quadrupolar splitting is computed with
the functionDQ.

• The results of the EFG components, the asymmetry
parameter and the quadrupolar splitting are shown on
screen and saved in a file.

2.2.2. Bravais Lattices

• Choose one of the seven possible groups in three di-
mensions.

• Select the lattice to be taken into accountv and intro-
duce the parameter(s) that define it. Then choose the
number of nearest neighbors to be deemed, the valence
of each layer of neighbors, and the position in the struc-
ture in which the EFG is to be computed (in the center
or the vertex of the structure).

• With this information, the program reckons the coordi-
nates of the ligands in the lattice, through the algorithm
presented in the next section. Once the coordinates are
determined, the distance of each ligand to the origin
is computed. In order to identify and count the layers
of nearest neighbors, the information of all the gen-
erated neighbors is ordered and displayed in growing
distances to the originvi. The components of the EFG
are calculated for the chosen layers of neighbors.

• The largest component of the EFG assigned to|Vzz|,
and|Vyy| ≥ |Vxx|.

• The asymmetry parameter is computed with Eq. (7).

• The value of the quadrupolar splitting is reckoned with
the functionDQ.

• The results of the EFG components, the asymmetry
parameter and the quadrupolar splitting are shown on
screen and saved in a file.

2.2.3. Lattice parameters

• Introduce the six lattice parameters, (a, b, c) and (α, β,
γ), in angstroms and degrees respectively.

• The program identifies the lattice that corresponds with
the lattice parameters introduced, and with the infor-
mation of the lattice, the program proceeds in the same
form than in the previous section,Bravais lattices.

3. Algorithm

In what follows, the main algorithm used by the sectionsBra-
vais latticesand lattice parametersto find the points in the
lattice where the ligands are to be considered for the compu-
tations, is described:

a) Select the number of nearest neighbors to be consid-
ered.

b) • If all the neighbors have the same valence, intro-
duce it.

• If not, introduce the valence of each layer of
neighbors.

c) Choose to compute the EFG in the center or in the ver-
tex of the structure.

d) With the six lattice parameters (a, b, c) y (α, β, γ), the
rectangular components of the crystallographic axes
are calculated through the next transformation equa-
tions, obtained in the appendix A

ax = a (13)

bx = b cos γ

by = b sin γ

cx = c cosβ

cy = c(cos α csc γ − cosβ cot γ)

cz=c sin β
√

1−(cos α csc β csc γ− cot β cot γ)2

e) If the studied nucleus is centered in the body, the coor-
dinates of the ligands are calculated as follows:

• If the structure is simple (SC, ST, SO, SM, tri-
clinic, trigonal or hexagonal)vii, the coordinates
of the ith ion are computed through Eqs. (14),
where the numbersn1, n2 andn3 are whole num-
bers in the interval[−m,m]viii.

xi =
(

n1 +
1
2

)
ax

+
(

n2 +
1
2

)
bx +

(
n3 +

1
2

)
cx (14)
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yi =
(

n2 +
1
2

)
by +

(
n3 +

1
2

)
cy

zi =
(

n3 +
1
2

)
cz

• If the structure is body centered (BCC, BCT or
BCO)vii, the coordinates of theith ion are com-
puted through Eqs. (15), the same way as in sim-
ple structures, but excluding the point(0, 0, 0).

xi = n1ax + n2bx + n3cx (15)

yi = n2by + n3cy

zi = n3cz

• If the structure is face centered (FCC or FCO)vii,
the coordinates of theith ion are computed
through Eqs. (16), (17) and (18) for the ligands in
the faces parallel to the crystallographic planes,
where the numbersn1, n2 y n3 are whole num-
bers in the interval[−m,m]viii and such thatn1

y n2 can not be zero.

xi =
1
2
n1ax +

1
2
n2bx + n3cx (16)

yi =
1
2
n2by + n3cy

zi = n3cz

xi =
1
2
n1ax +

1
2
n2cx + n3bx (17)

yi =
1
2
n2cy + n3by

zi =
1
2
n2cz

xi =
1
2
n1cx +

1
2
n2bx + n3ax (18)

yi =
1
2
n2by +

1
2
n1cy

zi =
1
2
n1cz

• If the structure is two face centered (2FCO or
2FCM)vii, the coordinates of theith ion are com-
puted through Eqs. (19), where the numbers
n1, n2 y n3 are whole numbers in the interval
[−m,m]viii and such thatn3 can not be zero.

xi = n1ax + n2bx +
1
2
n3cx (19)

yi = n2by +
1
2
n3cy

zi =
1
2
n3cz

f) If the studied nucleus is centered in the vertex of the
structure, the coordinates of the ligands are computed
as follows:

• If the structure is simple (SC, ST, SO, SM, tri-
clinic, trigonal or hexagonal)vii, the coordinates
of the ith ion are computed through Eqs. (15),
excluding the point(0, 0, 0).

• If the structure is body centered (BCC, BCT or
BCO)vii, the coordinates of theith ion are com-
puted through Eqs. (20), the same way as in sim-
ple structures, excluding the point(0, 0, 0).

xi =
1
2
n1ax +

1
2
n2bx +

1
2
n3cx (20)

yi =
1
2
n2by +

1
2
n3cy

zi =
1
2
n3cz

• If the structure is face centered (FCC or FCO)vii,
the coordinates of theith ion are computed
through Eqs. (16), (17) and (18) for the ligands in
the faces parallel to the crystallographic planes,
where the numbersn1, n2 andn3 are whole num-
bers in the interval[−m, m]viii and such thatn1

y n2 can not be zero.

• If the structure is two face centered (2FCO or
2FCM)vii, the coordinates of theith ion are com-
puted through Eqs. (21), where the numbers
n1, n2 y n3 are whole numbers in the interval
[−m,m]viii and such thatn1 andn2 can not be
zero.

xi =
1
2
n1ax +

1
2
n2bx + n3cx (21)

yi =
1
2
n2by + n3cy

zi = n3cz

g) The distance to the origin is computed for each ion, via
theR function.

h) The ligands are ordered in growing distances to the
originvi.

i) The number of ions in each layer of the nearest neigh-
bors is countedix.

j) The valences introduced in the step b) are assigned to
each layer of the nearest neighbors computed previ-
ously.

k) The components of the EFG are computed, addingvi

to each one the contribution of each ion through func-
tion V .
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TABLE I. Comparison of the measured and the calculated values of
∆Q for some structures of the FeSe1−xTex system [13].

Measured Avarage calculated Structure

∆Q (mm/s) ∆Q (mm/s)

0.09 0.026 Hexagonal FeSe

0.29 0.122 Tetragonal FeSe1-xTex

0.91 0.213 FeTe2

It is important to point out that in our calculations the con-
tribution of the Sternheimer factors to the EFG has not been
taken into account, so the calculated values will be normally
smaller than the experimental values. However, the purpose
of these calculations is to endow a guide to discriminate be-
tween different site environments of the iron nucleus through
the relative magnitudes of the calculated EFG.

As an example of the results, in Ref. 13 a study of the
FeSe1−xTex (0≤x≤1) was done and the quadrupole split-
tings were calculated for the structures identified in X-ray
difractogram: hexagonal FeSe, tetragonal FeSe1−xTex, and
FeTe2. The calculated values (without correction by the
Sternheimer factors) were related in the way shown in Ta-
ble I.

Notwithstanding the expected differences between the
(uncorrected) calculated and experimental values of the
quadrupole splittings, the comparison of their magnitudes al-
lows the proposed association with the proposed structures.

4. Conclusions

The algorithm and the program developed here are useful as a
high applicability tool in both experimental spectroscopy and
in any theoretical research in solid state and crystallography,
requiring this kind of computations.

The program presented in this work is extremely versatile
and friendly with the final user, and only requires the struc-
tural information of the system under study. In spite of the
fact that the EFG tensor and its quadrupolar splitting compu-
tations are based in a simple point charge model, disregarding
the valence contribution, it is a useful tool to discriminate the
different structures present in complex ionic systems.

The program was written in Fortran 77, to assure high
compatibility across different platforms, but the structure of
the program and the algorithm are equally useful if the pro-
gram is written in any other structured computational lan-
guage, like C, Phyton, Pascal, etc., without compromising
its accuracy and stability.

Of course, the program can be improved including the
effect of the electronic density in the EFG tensor, but that
matter may be explored in a future work. However, the com-
putation of the shielding and antishielding factors is compli-
cated, so their effect has to be taken into account with empir-
ical adjustments, without changing significantly the relative
magnitudes of the quadrupolar splittings.
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Appendix

A. Transformation from crystallographic to
rectangular coordinates

Consider the crystallographic axesā, b̄ andc̄, and the rectan-
gular ones̄x, ȳ andz̄, as shown in Fig. 1.

The crystallographic axes can be expressed in the carte-
sian base, as:

ā = aêx (A.1)

b̄ = b cos γêx + b sin γêy (A.2)

c̄ = f cos τ1êx + f sin τ1êy + hêz (A.3)

Solving the system of equations that arise from the seven
triangles shown in Fig. 1, and considering the respective con-
strictions, a general expression of the crystallographic axes in
the rectangular base in terms of the lattice parameters can be
written as

FIGURE 1. Geometrical scheme of the coordinate transformation.
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ā = aêx (A.4)

b̄ = b cos γêx + b sin γêy (A.5)

c̄ = c cosβêx + c(cosα csc γ − cosβ cot γ)êyc sin+β
√

1−(cos α csc β csc γ− cot β cot γ)2êz (A.6)

for any non-orthonormal set of crystallographic axes.

i. As well as all the odd terms in the expansion.

ii. This term only produces a shift in the nuclear levels, but does
not alter the nuclear quadrupole splitting, so it is irrelevant for
its computation.

iii. The program uses the valueQ = 0.16b of the quadrupolar
nuclear moment for the57Fe, recently reported by Martı́nez-
Pinedoet al.,[12].

iv. Due to the superposition principle of the electric potential.

v. If possible, choose between the simple, the body centered, the
two faces centered or the face centered correspondent structure.

vi. The ordering process is carried out with a bubble ordering al-
gorithm, which does not compromises the efficiency of the pro-
gram because the lists of neighbors to be ordered are not gen-
erally too large in standard calculations in solid state.

vii. These are common abbreviations in crystallography. SC: Sim-
ple Cubic; ST: Simple Tetragonal; SO: Simple Orthorhombic;
SM: Simple Monoclinic; BCC: Body Centered Cubic; BCT:
Body Centered Tetragonal; BCO: Body Centered Orthorhom-
bic; FCC: Face Centered Cubic; FCO: Face Centered Or-
thorhombic; 2FCO: Two Face Centered Orthorhombic; 2FCM:
Two Face Centered Monoclinic.

viii. The numberm (chosen in the step a)) depends on the number
of nearest neighbors to be considered in the computation. For
example,m = 2 is enough to find the third nearest neighbors.

ix. Indeed, the program can be used only to count the number of
neighbors, their coordinates and distances to the origin for a
wide range of lattices.
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