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In this work, we employ a numerical method to approximate the solutions of a damped, double sine-Gordon equation spatially defined
a closed and bounded interval of the real line, subject to a harmonic perturbation of the Dirichlet type on one end, and a homogen:t
Neumann condition on the other. The method has schemes to approximate consistently the temporal dynamics of the local energy de
and the total energy of the medium, and the total energy over any finite interval of time and, additionally, it preserves the positivity of t
corresponding energy operators. As an application of this method, we establish nhumerically that the phenomenon of nonlinear bistat
(which is physically characterized by the coexistence of conducting and insulating regimes) is present in media governed by damped, dc
sine-Gordon equations when the systems are driven harmonically at a frequency in the forbidden band-gap. We employ this nonlinear pre
in order to accurately propagate localized pulses from the perturbed end to the free boundary. Two different methods for the transmis
of monochromatic waves are employed in this study, and our results demonstrate that an efficient propagation of information is feas
indeed.

Keywords:Double sine-Gordon equation; computer simulation; nonlinear bistability; wave propagation; signal transmission.

Este trabajo hace uso de umgiiica nurérica para aproximar las soluciones de un modelo amortiguado de doble seno-Gordon definido ¢
un intervalo cerrado y acotado démeros reales, sujeto a perturbaciones@amicas de Dirichlet en el extremo izquierdo, y condiciones
homogeneas de Neumann en el derecho. Etado incluye integradores para estimar consistentementedmitia temporal de la densidad
local de enertg, la ener@a total del modelo, Axomo la enerta acumulada en intervalos finitos de tiempo; adenel nétodo respeta la
positividad de los correspondientes operadores de EneBjcha €cnica se aplica en la demostiaticomputacional de la presencia del
fenbmeno de biestabilidad alineal (el cual se caractersiegmente por la coalescencia deinegnes conductores y aislantes) en medios de-
scritos por ecuaciones amortiguadas de doble seno-Gordon y perturbadagamente por una frecuencia en el ancho de banda prohibido.
Este proceso alineal es usado para propagar pulsos localizados del extremo perturbado a la frontera libre. Se propmrieasdosra la
propagadn confiable de ondas monocrétitas; los resultados de este trabajo indican que es posible transmitir la infanrdaananera
eficiente.

Descriptores: Ecuacon de doble seno-Gordon; simulasi computacional; biestabilidad alineal; propagacde ondas; transméi de
sdiales.

PACS: 46.15.-x; 02.60.Lj; 46.40.Cd; 05.45.Yv

1. Introduction digital amplifiers and sensors of ultra weak signals [11,12], in
the investigation of Josephson transmission lines [2,13-15],
The class of nonlinear, hyperbolic partial differential equa-and in the study of the dynamics of discrete Josehpson junc-
tions identified as th&lein-Gordon modelsis a well-known  tjons coupled via superconducting wires [12]. Moreover, the
family of equations which finds applications in many physi- spatially discrete version of the Klein-Gordon family in the
cal problems. For example, a damped sine-Gordon equatiogym of a double sine-Gordon chain is also a topic of interest
appears in the study of long Josephson junctions betweeR view of the fact that this model exhibits the presence of
superconductors when dissipative effects are taken into agne phenomenon of nonlinear bistability [16], a phenomenon

count [1]. A similar partial differential equation with differ- \hich is also present in other nonlinear media [10-12].
ent nonlinear term appears in the study of fluxons in Joseph-

son transmission lines [2]. Meanwhile, a modified Klein-  In the context of electromagnetic theory, the process of
Gordon equation appears in the statistical mechanics of nomonlinear bistabilityis characterized by the coalescence of
linear coherent structures such as solitary waves [3,4], assuma-conducting and an insulating regimes, particularly in me-
ing the form of a Langevin equation (see [5], pp. 298-309). dia which are perturbed sinusoidally at one end at a fre-
Klein-Gordon models have been studied extensively inquency in the forbidden band-gap. Several physical mod-
the literature [6,7]. Moreover, the Klein-Gordon family has els are known to exhibit the presence of the phenomenon
been a source of many interesting physical applications. Faof bistability, some of them being discrete Klein-Gordon
example, spatially discrete and continuous versions of thignd sine-Gordon systems [8,9], discrgt&ermi-Pasta-Ulam
equations have been employed in the modeling of harmonichains [10], Bragg media in the nonlinear Kerr regime [17],
oscillators coupled through strings [8-10], in the design ofand even spatially continuous, bounded media described by
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undamped sine-Gordon equations [11]. Meanwhile, in thebvility in our work will be characterized mathematically by the
contexts of nonlinear optics and soliton physics, bistabilitypresence of bilinear soliton solutions for the system under in-
refers to the existence of pairs of different soliton solutionsvestigation and, physically, by the coalescence of a conduct-
for a common mathematical model under similar parametriéng and an insulating regimes.

circumstances [18-20]. Our work is sectioned in the following way: In Sec. 2,

It is important to mention that the models mentionedwe introduce the initial-boundary-value problem that moti-
explicitly in the previous paragraph (Klein-Gordon, sine-vates our study, together with the associated local energy
Gordon and3-Fermi-Pasta-Ulam equations) exhibit the pres-density, the total energy of the system, and the total energy
ence of two nonlinear phenomena: Supratransmission araccumulated over a finite interval of time. Section 3 intro-
infratransmissionNonlinear supratransmissiois a process duces the numerical method employed to approximate the so-
characterized by a sudden increase in the amplitude of waveation of the problem under investigation. Here, we present
signals generated by the perturbed boundary, for driving anthe finite-difference schemes used to approximate the solu-
plitudes above a critical value called tbapratransmission tion to the problem, the local energy density, the total energy
threshold In fact, it has been established that spatially dis-of the system at any time, and the accumulated energy over
crete double sine-Gordon chains do exhibit the presence démporal intervals, followed by some remarks on the com-
nonlinear supratransmission [9]; moreover, its occurrenc@utational implementation of our technique. Section 4 is de-
has been predicted numerically in Ref. 16 via an energyvoted to show simulations that support the existence of the
based computational method with multiple properties of conprocess of nonlinear bistability in the problem under study.
sistency. Nonlinear infratransmissignas opposed to supra- In turn, Sec. 5 presents two applications of the phenomenon
transmission, consists in a sudden decrease in the amplitudé bistability to the propagation of monochromatic waves in
of wave signals of a medium which is already locked in thethe medium of interest. Here, we show that supratransmis-
conducting regime, when the driving amplitude is decreasedion and infratransmission may be employed in two differ-
under a critical value: Thimfratransmission threshold ent forms, in order to propagate information in an accurate

In the present work, we show that a medium governed byand efficient way in media governed by damped, double sine-
a damped, spatially continuous, double sine-Gordon equatio@ordon equations. Finally, we close our study with a section
exhibits the presence of both nonlinear supratransmission ar@f concluding remarks and directions of further investigation.
infratransmission. As a corollary, double sine-Gordon media
may exhibit the presence of nonlinear bistability. Our sim- S
ulations will be based on an extension for continuous medig' Preliminaries
of the numerical method presented in Ref. 16. Moreover, th
computational technique employed in our present manuscrip

will approximate the dynamics of a general class of nonlin-| ¢t p pe a spatial interval of the form [ L] C R, and letR+
ear partial differential equations of the hyperbolic type with represent the set of nonnegative real numberst tegiresent
arbitrary potential functions. As expected, the technique wilkjye and assume thatis a function of the ordered pair (t)
not only approximate consistently the solutions to the initial-ynere ¢ D andt € R+. Moreover lety be a nonnegative

boundary-value problem under consideration, but it will alsoya5| number. In this work, we investigate the dynamics of the
approximate the local energy density, the total energy of th‘?nitial-boundary—value problem

system, the total energy accumulated throughout time; in ad-

dition, it will preserve the nonnegative character of the local 9%y 93%u ou

o _ U ) — +
energy and the total energy operators of the continuous case 7;2 ~ 922 '+ a1 G'(u) =0, (z,1) € DxRT,

.1. Mathematical model

scenario. As we will see in this work, the nonlinear phenom- ou

ena of supratransmission and infratransmission will allow us —t(a:, 0) = u(z,0) =0, x €D,

to modulate the perturbation on the driving boundary of the gt ! (0, ¢) = Asin(Qt), t>0, (1)
medium under study, in such way that monochromatic waves ou

will be transmitted into the system in a reliable and accurate %(L t)=0, t20.

fashion.

In our investigation, we have included the presence of From a physical perspective, it is clear that the constant
damping for two main reasons: Firstly, physically realistic” fepresents the coefficient of external damping of the sys-
models necessarily reflect the presence of damping in onem. 'Moreover, for our simulations, we will fix a potential
way or another. Secondly, even when the process of suprdunction of the form
transmission is present in several damped or undamped me- 1
dia [8-12], some of those works show that, once that the G(u) = ¢ [2 — 2cosu — cos(2u)], 2
medium has reached the conducting regime, infratransmis-
sion demands the presence of damping in order for the sygvhence the double sine-Gordon law
tem to stop absorbing energy when the driving amplitude de- 1
creases drastically [11]. As we will see, the process of bista- G'(u) = 3 [sin u + sin(2u)] 3)
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readily results. A system governed by (1) is, in general, dis- t
sipative, and it is not difficult to show that the Hamiltonian
density associated to the conservative version (to be more
precise, when no damping is present) of the nonlinear, hy-
perbolic partial differential equation in (1), is the function
H : D xRt — R given by 178

1 /0u\? 1 /0u\> b1
H(x,w:Q(aj) +2<32) LGW), @)

which results from the Lagrangiafh : D x RT — R pro-
vided by the expression

X
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O
O
O
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® O
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O
O

1 /ou\? 1 /[/0u\?
Lxt)==|—] —==—] —Gu). 5
(,¢) 2<8t> 2(8:c> @) ©) | o |
Here, the dependency afon (z,t) is obviated for the sake Tno1  Tntil
O_f simplicity. The tOt"’_‘I energy of the system at timis pro- FIGURE 1. Forward-difference stencil for the approximation to the
vided by the expression solution of the initial-boundary-value problem (1) at time using
L the numerical method (19). The black circles represent known ap-
E(t) _ H(x t) da (6) proximations to the actual solutions at the tinigs; andt,, and
’ ’ the crosses denote the unknown approximations at thettime
0

Meanwhile, for every positive, real numbgr, the total en- .
ergy accumulated by the system over a finite interval of time2.2.  Forbidden band-gap

0,T]is given b . . N .
[0.TTis giv y Let v be equal to zero. Linearizing the partial differential

h equation of (1), we obtain the equation
& :/Etdt. 7
Y Dm0 e @
8z 92 v\ '

It is important to notice that the local energy density (4),
the total energy of the medium (6) and the accumulated entVe consider linear mode solutions of (9) of the form
ergy (7), are all nonnegative operators. Moreover, our physit(2,t) = Age'**~<), where the wave frequeneydepends
cal model satisfies the following mathematical identity. on the wave numbek. A straight-forward substitution yields
Proposition 1. The functionalE () associated to the partial the linear dispersion relation
differential equation in(1) satisfies

Wwi(k) =k? + 1. (10)
dE ouou\ | * 7 ou\? : I -
o () - 7/ () dx. (8) In the investigation of the nonlinear processes of supratrans-
dt ot 9z ) |, 2 ot mission and infratransmission below, we will restrict our at-

tention to the forbi - i 1 iat
Proof. The proof is straightforward. O tirlllg;‘ o the forbidden band-gap regibn< 1 associated

Proposition 1 is important for numerical considerations
on the stability and the multi-domain consistency of the
method presented in the following section. Of course, a con3. Computational technique
venient reduction of (8) is readily at hand if we take into ac-
count the Dirichlet datum on the left end &f, and the ho-

mogeneous Neumann condition imposed on the right. As %uppose thaf is a positive real number. Let— z, < 1 <

corollary, the energy of (1) is preserved throughout time in. .. < zx = L be aregular partition of the spatial intenzal
the undamped scenario when either fixed Dirichlet bounda%ith norm equal ta\z, and let) — £y < #; < <ty =T

data or homogeneous Neumann boundary conditions are "be a regular partition of the temporal inter{@&|7"] with norm

posed. o , equal toAt (obviously, Az = (b — a)/N andAt = T/M).
Remark 2. The multiplicative constant/3 in the expres- For everyk — 0,1,..., M and everyn — 0, 1,..., N, let

sions of (2) and (3) has been included for the sake of conve-

nience. As we will show in the next step of our study, the in- dr = Asin(Qty,), (11)
clusion of such constant yields a normalized expression of the

forbidden band-gap region associated to the linear mode soland letu” be the approximation provided by the method to
tions of the linearized form of the partial differential equation the actual solution of the problem (1) at the paifitand the

in (1). 0O  timety, thatis, assume that =~ u(z,, ;).

3.1. Finite-difference scheme
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(a) (b)

u(x,500)
u(x,500)

FIGURE 2. Approximate solution and approximate local energy density of the undamped, initial-boundary-value problem (1)@a fone

the double sine-Gordon potential (2), spatially defined@d], harmonically perturbed at the boundary at a frequency equali@and two

different driving amplitudesi.32 (left column) andl.33 (right column). The top row presents the simulations corresponding to the solution

of the problem, while the bottom row provides the numerical results corresponding to the local energy density. The total energy accumulated
over the period of time is equal &84.14 for A = 1.32, and1719.7 for A = 1.33.

We introduce the standard, linear operators

wk L gk
5t7.l/7k,i = nTtn? (12)
kb
5t(1)“fz = T oAt (13)
k+1 k k—1
@) & Up — 2u, +u,
1) = (At)2 , (14)

which are used to approximate the first-order partial deriva-
tive of w with respect tot in the first two cases, and the

second-order partial derivative afwith respect tof in the
last. We also employ the linear operator

sk — up g — 2uy, +Un 1

(15)

in order to approximate the second-order partial derivative of
u With respect tar, with a consistency of the second order in

space. Evidently, the operator (12) is a first-order, temporal
approximation of the partial derivative afwith respect ta
at (z,, tx), and (13) is a second-order estimate of the same
value. Meanwhile, (14) is an approximation of the second-
order partial derivative of. with respect ta, with a consis-
tency of the second order in time.

Likewise, we introduce the temporal average operator

(1) uk

pfDuk = 1 (), 16)

which is consistent of the second order in time with the exact
value ofu at (z,, ;). We also introduce the discrete deriva-

tive of G with respect tou and the time average @f at u,

respectively, as the discrete operators

k+1 k—1
wwwm:G<Hf §3)7 (17)
k) = ) O (18

2
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(a) (b)
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FIGURE 3. Dynamics of the approximate solution and the approximate local energy density of the undamped, initial-boundary-value prt
lem (1) atx = 4 with double sine-Gordon potential (2), harmonically perturbed at the boundary at a frequency €quiadial two different
driving amplitudes:1.32 (left column) andi.33 (right column). The top row presents the simulations corresponding to the solution of the
problem, while the bottom row provides the numerical results corresponding to the local energy density. The problem is spatially definec
the interval D, 4], and temporally on(, 1000]

Under these circumstances, the numerical method used in N-l k“ l

0
this work to approximate the solution to the initial-boundary- =Y HyAz+ Z Az. (21)
value problem (1) is given by n=1

Evidently, the total energy of the system accumulated over

2,k _ , ()2, k (1), K ky _ i . .
0t uly — g 8P uly + 40wl + 5V G (uf) = 0, the temporal interval(, 7] will be approximated by

u(T]L*u O n:071,...,N7 M
UO —¢k, k:O717--~7M7 (19) é = EkAt 22
U?V_u?\fflzo? k207177M, ! ; ( )

its forward-difference stencil is presented in Fig. 1. The dis-  From a computational point of view, the finite-difference
cretized version of the energy density functional (4) is pro-method (19) provides approximations to the solutions of the
vided by the discrete operator partial differential equation in (1) which, in the linear regime,
are consistent estimations of ord@((At)? + (Axz)?). Ad-

n k+1
k_ Oz J k ditionally, it is clear that the discrete operators (20) and (21)
H"_z (Brun)”+ 2. ) lz; HeGlun), (20) yield consistent approximations of the first order to (4)
=" and (6), respectively.
and the total energy of the system at times approximated The following is the discrete version of Proposition 1. It
by the expression shows that the consistency of our method is also preserved

Rev. Mex. Fis58(2012) 29-40
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1500 3.2. Computational remarks

_'Y=O

- - —y=0.005 Throughout this section, we follow the nomenclature em-

ployed in the previous stage.

To start off, it is important to point out that the local en-
ergy function given by (4) is nonnegative for the double sine-
Gordon regime investigated here; evidently, its discrete coun-
terpart, namely, the operator (20), is likewise nonnegative. It
follows that the total energy of the medium as given by (6),
as well as the discrete total energy (21), are both nonnegative
at any time. Moreover, the total energy of the medium over
finite periods of time (7), along with its discrete approxima-

‘ ‘ ‘ ‘ tion (22), are also nonnegative functionals.
01 1.1 12 13 1.4 15 On the other hand, the finite-difference scheme (19) is
Driving Amplitude nonlinear and implicit wheii is not a constant function, as

FIGURE 4. Graph of the accumulated total energy over the tempo- itis the case W!th the double ‘?’me_Gordon (?ham' ThuS., n
ral interval D, 300] versus driving amplitude, of a system governed order to approximate the solution of the regime (1) at time

by problem (1) on the spatial domait, [1]. The driving frequency ~ tk+1 When the approximations at timeg anq ty—1 are at
is equal t).7, the potential functioi® is provided by (2), the driv- hand, we employ Newton’s method for nonlinear systems of

N
o
o
o

!
!
-2
]
o
o
=
[¢)]

500+

Total Energy

ing amplitude takes on values in,[1.5], and four different damp- ~ equations. More accurately, for evéry= {0,1,..., M}, let
ing coefficients were employed, namey(solid), 0.005 (dashed),  u® = (uf,u¥, ..., u%). Let f, be the left-hand side of the
0.01 (dotted) and).015 (dashed-dotted). nth difference equation of (19), that is, let

on the grounds of the energy domain when the medium is Fa(*) =60k — V6D ub 4oV uk 6D G k), (24)

conservative. _ o for everyn € {1,..., N — 1}. Additionally, let
Proposition 3. Consider the finite-difference scherfi®),

with local energy given b§20), and total energy21). Then, fou®) = ug — ¢y, (25)
the following identity is satisfied at tHé& — 1)st time-step: Fa(u®) = uh — ki (26)

N-1 2 . .
i, (Ds ok W, k) _ ) 5 and letf = (fo, f1,...,fn). Using a recursive process,
0 (Mt 6wu0) (6f UO) 7 ; (6t u”) (23) assume that the vectorg’ andu*~! have been previously
) ) B _.computed. One readily checks that
Proof The proof is a direct consequence of mere, algebraic - .
manipulations of the expressions (19), (20) and (21). ut =u" -y, (27)
wherey is the(N + 1)-dimensional, real vector which satis-

3000 : L .'=:‘ : fies the matrix equation
—_—L=4 ] y): "—_ e
2500F | ===l =45 : H J(u*)y = —f(u*). (28)
]
------ L=3 ! 1 Evidently, the matrix/ is the Jacobian matrix df which
> 20000 |- L=7 ' o
D 2000 , is given by
[0}
c % 1 0 0 O 0 0 0
LI_J 1500+ : a di a 0 0 0 0
_.g i . 0 a do a 0 0 0
i 1000+ : J(u") = . :
500l : 0 0 0 0 a dv_1 a
' 0 0 0 O 0o -1 1
(29)
1 12 14 16 1.8 2 Here
. ; 1
Driving Amplitude T (30)
FIGURE 5. Graph of the accumulated total energy over the tem- (Az)
poral interval D, 300] versus driving amplitude, of an undamped 1 1 ¥
system governed by problem (1) on the spatial dom@&ii.]. The dn = (At)2 + (Az)? + IAL (31)
driving frequency is equal t6.7, the potential functiorG is pro-
vided by (2), and four different lengttiswere employed, namely, (ubtt —uf= 1) G (W) + Guf ™) — G(ukT)
(solid), 4.5 (dashed)j (dotted) andr (dashed-dotted). The driving + ( ol k71)2 )
Up '~ — Up

amplitude takes on values i, [2].
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FIGURE 6. Graph (a) shows the accumulated total engfgy 300 Over the temporal interva0[ 300] versus driving frequency and driving
amplitude of a system governed by (1) spatially defined®@#][ with constant damping coefficient equal@®05 and potential function
provided by (2). The right column shows the corresponding check-plot graph. In both instances, the driving frequency and the driv
amplitude take on values in the intervalsd, 1] and [0, 2], respectively.

for everyn € {1,...,N — 1}. The tridiagonal system (28) temporal period [0,500] for the smaller amplitude is equal to
is solved then employing Crout’s reduction technique with534.14, while the accumulated energy in the second case is
pivoting [21], in order to reduce the computer propagation ofequal to 1719.7.

rounding errors. .
In order to confirm the presence of the process of non-

linear supratransmission in the medium under investigation,

4. Nonlinear bistability we have computed the temporal behavior of the solution and

) . the local energy around = 4, for the system described in
Throughout this section, we study the system (1) for the dougne previous paragraph. The dynamics of the solution at this
b!e sme-Gordon potentlal (2). Itis known that the s:pa’[lallypomt is presented as the top row of Fig. 3 for the two ampli-
discrete version of this model presents the phenomenon gf,qes considered before, over the temporal interval [0,1000].
nonlinear supratransmission [9], for driving frequencies inthe solution ford = 1.32 (left column) oscillates relatively
the forbidden band-gap regidn < 1. In the present stage, ¢jgse to the value of 0, while the solution corresponding to
we follow a standard methodology (see [8]) in order to estab-y _ 1 33 (right column) exhibits oscillations of higher am-
lish that this process is also present in the spatially continuou&mude after the time = 250. This drastic change in the

problem (1). behavior of the medium is also found in the domain of the lo-
o cal energy, as the bottom row of the same graph shows. The
4.1. Supratransmission presence of the process of nonlinear supratransmission is thus

Consider the undamped form of the initial-boundary-valueSnggeSted by our computations, and we will corroborate it in

problem (1), spatially defined on [0,4], and fix a driving fre- the next calculations following a standard methodology [16].
guency equal td).7. Two driving amplitudes are consid-

ered, namely, 1.32 and 1.33. Under these circumstances, tikemark 4. Before we proceed to present more numerical
top row of Fig. 2 presents the solution of our problem forevidence in favor of the presence of the process of nonlinear
A = 1.32 (left) and A = 1.33 (right), at time500. Seem-  supratransmission in (1), we must point out that the soliton
ingly, there is a qualitative difference in both simulations: solutions depicted in Fig. 2(a) and (b) move from the driv-
while the smaller amplitude does not result in the propagaing boundary to the right at approximately the same constant
tion of wave fronts into the medium, the greater amplitudespeed. When the system is in the insulating regime, the wave
does. To confirm this observation, the bottom row of Fig. 2moves as a pulse with low (though non-constant) amplitude;
presents the energy density of the problem at time 500, fomeanwhile, the wave is a moving breather with higher (non-
the two driving amplitudes considered. The left graph showsonstant) amplitude when the medium is locked in the con-
the local energy density correspondingA4o= 1.32 and, ducting regime. The pattern shown in the figure is repeated at
compared to the right graph (which corresponds to a drivingelatively regular intervals of time, that is, localized nonlinear
amplitude equal to 1.33), it is relatively smaller. This com-modes are created at approximately fixed temporal periods.
parison evidently shows a difference between the qualitativdhese assertions are also true in the case when damping is
behavior of the dynamics of the system around the criticapresent; however, in this situation, the amplitude of the wave
amplitudeA = 1.32. Moreover, the total energy over the signals decreases as the solitons move away from the origin.
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FIGURE 8. Graph of the total energy accumulated over a temporal
period of length500 versus driving amplitude, of a medium gov-
‘erned by (1) spatially defined 00,[4], with damping coefficient

FIGURE 7. Graph of critical amplitude at which supratransmission
starts versus driving frequency, of a system governed by (1) spa
tially defined on (), 4], with constant damping coefficient equal to equal t00.005 and driving frequency equal 7. The portion of

0.005 and potential function provided by (2). The graph was 0b- e 4raph corresponding to the arrows pointing right represents the
tained using the information presented in Fig. 6. Here, the driving g0y of 2 medium which was initially at rest with initial driving

frequency and the driving amplitude take on values in the imervalsamplitude equal to, while the arrows pointing left correspond to
[0.6,1] and [0, 2], respectively. a system whose initial conditions are those of a conducting regime
. . o with initial driving amplitude equal to the supratransmission thresh-
Let us consider again the initial-boundary-value prob-g|q. The driving amplitudes take on values in the intervall[5].

lem (1) spatially defined on the interval [0,4], subject to a

driving frequency equal t0.7. We approximate now the to- ,de and as an interpolated check-plot graph in Fig. 6(b), for
tal energy accumulated over the temporal interval [0,300], foi, system governed by (1) with damping coefficient equal to
several damping coefficients and several driving amplitudesy 005, spatially defined on [0,4]. The result shows that the ac-
The results are presented as Fig. 4, for values of the drivingymulated energy blows up above a critical driving amplitude
amplitude within [1,1.5], and values afequal to0, 0.005,  whjich depends on the driving frequency. This phenomenon is
0.01 and0.015. In each case, an abrupt increase in the enjgentified amonlinear supratransmissigand its occurrence
ergy absorbed by the system through the driving boundary ifs prescribed in Fig. 7 for the system under study, as a bifur-

observed above some critical valde which depends on.  cation diagram of the critical amplitude at which nonlinear
Naturally, it is important to check the presence and thesupratransmission occurs versus driving frequency.
behavior of the critical amplitudel, for different interval Remarks 5.

lengths. So, consider the medium (1) with no damping, sub-
jectto a driving frequency df.7 on the left end of the spatial
interval [0,L], and compute the total energy over the temporal
interval [0,300], for driving amplitudes in the set [1,2]. Under
these conditions, Fig. 5 presents the amplitude-dependence
of the total energy accumulated by the medium over the given
temporal period, for various values éf namely, 4, 4.5, 5

and 7. In these four cases, the system exhibits the presence
of the phenomenon of nonlinear supratransmission. More-
over, our simulations indicate that the critical amplitude at
which supratransmission occurs tends to a fixed real number (b) Also, we must point out that we have detected the pres-

(a) Observe that the results presented so far correspond to
an idealistic system in which damping is not present.
In a more realistic situation, the value of the parameter
~ is not equal to zero and, as we shall see in the next
sections, the phenomenon of nonlinear supratransmis-
sion is also presentin such cases. However, we deemed
convenient to include this preliminary approach in or-
der to show that supratransmission is not exclusive of
damped, double sine-Gordon chains.

around 1.83 a4 is increased. ence of supratransmission in relatively long arrays gov-

We have conducted computational experiments in order ~ erned by (1). As far as the author knows, this fact
to establish the existence of a critical amplitudigat which has not been established analytically for double sine-
supratransmission starts, for several driving frequencies in ~ Gordon equations. However, the presence of this non-
the forbidden band-gap regiéh< 1. To that effect, we fixed linear process has been proved in the (bounded or semi-
regular partitions of the frequency interval [0.6,1] and the am- unbounded) undamped Frenkel-Kontorova model, us-
plitude interval [0,2] and, for each such frequency and ampli- ing the fact that the limiting medium becomes the
tude, we computed the accumulated energy over the temporal  classical sine-Gordon equation [11,12]. Similarly, the
interval [0,300]. The results of our simulations are summa- process has been analytically predicted and approxi-
rized in Fig. 6(a) as a graph of total energy over the given mated in the undamped, classicaFermi-Pasta-Ulam
period of time versus driving frequency and driving ampli- chain [10].
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2 The results of our computations for a damping coefficient
EmE 950 equal to0.005 are presented in Fig. 9 in the form of a check-
EEEEEEES 900 plot graph of total energy over the temporal interval [0,300]

1.5 - versus driving amplitude and driving frequency, following
—H 850 the methodology employed to obtain thrdratransmission
800 functionin Fig. 8, that is, the function which has associated
< 1 750 arrows pointing left. More accurately, we added the function
Emmm pictured in Fig. 6(b) and the corresponding infratransmis-
E 700 sion check-plot (not pictured here for the sake of briefness),
05 650 the result being Fig. 9. As a consequence, an important
600 conclusion of this investigation is the discovery of the non-
‘_ linear processes of supratransmission and infratransmission
%_6 07 08 0.9 1 and, ultimately, the presence of a nonlinear bistable regime
Q in the (1 + 1)-dimensional, double sine-Gordon equation.

FIGURE 9. Check-plot graph of the total energy accumulated over )
a temporal period 0500 versus driving frequency and drivingam- 5.  Wave propagation

plitude of a system governed by (1) spatially defined®@al, with ) o4 ) pe 5 frequency in the forbidden band-gap region of (1).
constant damping coefficient equalt®05 and potential function Fix a particular value of the damping coefficient and, for
provided by (2). The these results represent the sum of the check- . . ’
plot in Fig. 6, and the corresponding infratransmission curve plot- €2¢N fixed pair of paramete(s), v), let 4; and A, be, re-

ted in Fig. 8, now for several driving frequencies in the interval spectively, the infratransmission and the supratransmission

[0.6, 1] and amplitudes in the seb[2]. thresholds of the medium. Evidentlyl; < A,. The pur-
pose of this section is to show that two different perturbation
4.2. Infratransmission techniques based on the modulation of the driving amplitude

of (1) may be used to transmit binary information from the
We want to establish now the presence of the process of ineft boundary ofD to the right end.

fratransmission in (1). To that effect, we consider a medium
which has already reached the conducting regime. More corb.1. First method

cretely, we study a system governed by (1) spatially define(,}ix a spatial domairD, and letn be a positive integer num-
on the interval [0,4], with potential function (2) and damping ber. Assume thab :’ (b b,) is a finite sequence of
coefficient equal t®.005. A driving frequency equal t6.7 al ' o

oo : o , ength»n consisting of zeros and ones, and dgtbe equal
is fixed, for which the supratransmission threshold is equal, " \ve will modulate the amplitude of the harmonic per-

to 1.35. The driving amplitude is varied in the interval [0,1.5] y \ihation on the left boundary d, in order to transmit the

anq, for egch such yalue, the total energy accumulate_d O_"ertﬁnary information contained ib to the free boundary. So,
period of t|.me 0f00 is recordeq, until .th_e.supratr.a_nsm|53|on let P be a positive, real number which physically represents
threshold is found. Next, taking as initial conditions thosey,, period during which a binary bit will be generated at the

.Of a SyStFdeh'Ch '5; aIrehady ina conduc_tm_g star:e Wghlg”v' erturbed boundary and propagated into the medium. For our
”:9 a}mg itude equj]a tolt € ?ur?ratranl';m:jssmndt fres 0 o WEimulationsP will be relatively much greater thar00.
slowly decrease the value of the amplitude and, for €ach am- 1 eyery integer numbe let 7; be the interval {—1, ;1.

plitude value, we record the total energy of the systemover g, 5 _ (1 — b,)A; + b, Ay, for everyj € {0,1 n}
J J Qg J<rs P E) .

Fempofa' perigd 0500, until the medium locks itself into an We consider a system governed by (1), with time normalized
msqllﬁtmg regljlme;c ulati q h with respect to the value d?. The initial instant of time will

he dr_esu ts 0 ‘;%” Sému rc’]:\tlonsharg_ pre_sentef has a NYSse reset to-1 for practical purposes. The amplitudét) of
teresis diagram in Fig. 8, where the direction of the arrowsy,q perturbation at the left end &fis linearly increased from

indicates the direction of increase or decrease of the ampliy ;1o \ajuea. during the firstl00,/ P units of the interval

ission threshold and. ulti . of a bistabl e hSI'O; for the rest of this temporal interval, the amplitude will be
mission t_ reshold and, ultimately, ol a Istable regime N e 5nstant and equal td;. Recursively, assume that the driv-
double sine-Gordon system. In this graph, the infratrans

ing function has been defined in the interval {, for some
mission threshold is approximately equal(td9, while the g Al

ssion threshold i _ I o) Jj € {1,...,n}. We linearly change the value of(t) from
supratransmission threshold is approximately equalio, a B;_1 to B; during the first100/ P units of time of;, and

value which is in good qualitative agreement with the resultglvje let A(¢) be equal taB; for the rest of the values dfe I
J J-

displayed in Fig. 4. __ More precisely, we let
We must declare that we have performed more simula-

tions for different values of the parameteysand Q2 (with ) PBy
0 < v < 1andQ in the forbidden band-gap), and thatwe ~ A() = { ™ {gg (T D Bops t€h (55
have found the presence of nonlinear bistability in all of them. mid (B;j_1, A;(t), B;), tel;,
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(2) (b)
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FIGURE 10. (a) Graph of the solution at the pointr = 5 of a system governed by (1) versus normalized time, with a damping coefficient
equal t00.01 and spatially defined in the intervdl,[5]. The driving frequency is equal to7, and the potential functio@' is provided by (2).

The approximate critical thresholds afle = 0.22 and A; = 1.98. The driving amplitude function is provided by (32) as a consequence of
transmitting the binary sequence (35), with a period of normalizaftos 2000. The inset is the corresponding graph of the local energy
densityH nearz = 5 versus normalized time. (b) Partial graph of the corresponding fungtieersus normalized time as given by (32).

Normalized Time [t]

whereA; : I; — Ris given by 5.2. Second method

R Bi —Bj1\, . Assume again that the binary sequehce- (by,...,b,) is
A1) = B+ P ( 100 ) (t=j+1 @3 going to be transmitted from the left end(ﬁf to the 1)‘ree
boundary, letP be again the period of time during which a
single bit will be generated by the harmonically perturbed
Spd, and leby be equal to zero. Letand X be two relatively
Small, positive real numbers, and consider the time normal-
ized with respect taP. In this stage of our study, we will

mid(z, y, z) = inf{sup{z, y},sup{z, z},sup{y, z}}. (34)  impose Dirichlet boundary conditions of the form

Example 6. Let us consider a spatial domaih of length5, w(0,t) = [I(t) 4+ S(¢)] cos(§2t) (36)
and use a damping coefficient equalto1, for which the 5, the left end of the intervaD, where
nonlinear infratransmission and supratransmission thresholds

and, for everyz,y, z € R, the functionmid : R* — R as-
signs the value in the middle of the get, y, 2} when these
numbers are arranged in ascending (alternatively, descen
ing) order, that is,

are approximately equal @22 and1.98, respectively. We I(t) = 1 [(As — Ay)sin(At) + A; + Ay (37)
fix the period P equal to2000, and consider the binary se- 2
quence and N
b=(1,0,1,1,1,0,0,1,0,1,1,0,1,1,1,0,1,0,0,1) (35) S(t) 2621’9’9@'“)' (38)
]:

With this conventions, Fig. 10(a) presents the dynamics oHere, I; represents the temporal interjal— 1, j) for each
the solution of (1) atr = 5 with respect to the normalized integer numberi. Additionally, for every setA C R, the
time. Our results show that the periods when a bit equal to function x4 : R — R is the characteristic functioron A,
is propagated into the medium correspond to perturbations ofhich is equal td in A, and zero otherwise.
high amplitude at the left end of the spatial domaipmean- The functioni(t) is called theseed while the function
while, bits equal t® are reflected in the right end éfas per-  S(t) is called thesignal Clearly, if a bit equal tol ap-
turbations of much smaller amplitude. This behavior is alsgears in thejth position of the binary sequendg with
seen in the domain of the local energy density near the point € {1,...,n}, thenS is a constant function equal tcover
of interest, as the inset of Fig. 10(a) reveals. ] the temporal period;. On the other hand, i; is equal to
For illustration purposes, Fig. 10(b) shows a partial plotzero, thenS is identically equal to zero in that set. Also, we
of the driving amplitude functios in (32) corresponding to must mention that, in order to avoid the creation of shock
the vector (35), versus the time normalized with respeét.to waves around the initial timé = —1, we simulate an ini-
Particularly, it is interesting to notice that, in each intetiial  tial period of normalized time, during which the function
the setj — 1,5 — 1 + 100/ P] is employed to linearly adjust 1(¢)+S(¢) in (36) is multiplied by a coefficient which slowly
the value of the driving amplitude of the system. and linearly increases fromto 1.

Rev. Mex. Fis58(2012) 29-40



COMPUTER SIMULATION OF THE ENERGY DYNAMICS OF A SINUSOIDALLY PERTURBED DOUBLE SINE-GORDON... 39

(a) (b)
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FIGURE 11. (a) Graph of the solutiom at the pointr = 5 of a system governed by (1) versus normalized time, with damping coefficient
equal t00.01 and spatially defined in the intervad,[5]. The driving frequency is equal 1.7, and the potential functiot is provided

by (2). The approximate critical thresholds employed dre= 0.18 and A; = 1.973. The Dirichlet condition is provided by (36) as a
consequence of transmitting the binary sequence (35), with a period of normaliPation000, A = 0.005 ande = 0.02. The inset is the
corresponding graph of the local energy dengityearz = 5 versus normalized time. (b) Partial graph of the associated func$i@msl
versus normalized timg as given by (37) and (38), respectively.

Remarks 7. Cs Additionally, each interval; must be sufficiently long

(a)

(b)

(©

in order for the system to be able to settle down into a

Clearly, the seed represents a sinusoidal function non-excited regime.

which oscillates between the approximate infratrans-
mission and supratransmission thresholds of the Sys-

tem 4 The wave length of the seed must be such that the func-

tion I(t)+¢— A% be positive in temporal intervals suf-
ficiently long in order to reach the supratransmission

From a pragmatic perspective, the physical model (1) regime

perturbed by the function (36) describes the temporal
dynamics of a digital amplifier in which all the pertur-
bations to be detected have the same amplitydad

are provided mathematically in the expression of the
signalS.

Cs Finally, the functionA} — I(¢) must be positive in in-
tervals sufficiently long in order for the system to lock
into the insulating regime.

Evidently, conditionsC, and C4 guarantee that the bit
transition from0 to 1 will result in the propagation of lo-
Falized nonlinear modes into the system. In tutly and
C5 will cause the system to lock into a non-excited regime.
These considerations are observed in the following example.

If one omitsI(t), the amplitude of the sinusoidal func-
tion (36) will be bounded withirj—e, €], a condition
which does not even guarantee that the system wil
reach the excited regime at some point.

Remarks 8. Several considerations need to be made in ordegyxample 9. Let P be equal to000, and let\ ande be equal
for (1) to work properly as a digital amplifier: to 0.005 and 0.02, respectively. Fix the value o equal

Cq

Cs

t0 0.7, let L be equal tdh, and consider a damping coefficient
equal ta0.01, so that the approximate values of the infratrans-
mission and the supratransmission thresholdsdare- 0.18
and A, = 1.973, respectively. We intend to transmit the bi-
nary sequence (35) from the left end of the spatial intefval
to the right boundary by using the modulation function (36).
The results of our simulations are displayed in Fig. 11(a),
which shows the dynamical behavior of the solution at the
In order for the system to modulate to the excited stateright end of D, while the inset gives the corresponding graph
the length of each temporal intervgl must be greater of the local energy density. Evidently, the periods when a bit
than the period of time that it takes for a localized non-equal tol is transmitted correspond to temporal intervals of
linear mode to be generated at the perturbed boundarjigh activity in both domains, around the right boundary of

The approximate critical valued; and A, must be
slightly less than the exact thresholds of the system
which we denote here byl; and A, respectively.
More precisely,

0 < max{A] — A;, A} — A} <e. (39)
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D, while the periods for bits equal tbcorrespond to periods fied as the process of nonlinear bistability, which is a non-
of low activity. linear phenomenon inherent to sine-Gordon, Klein-Gordon
For illustration purposes, Fig. 11(b) presents the graphand 3-Fermi-Pasta-Ulam regimes. We built hysteresis dia-
of the functionsS and I for the first6 periods of normal- grams to evidence the presence of this process in our model
ized time associated to the transmission of the binary seand, moreover, we drew check-plot graphs and bifurcation di-
guence (35). One notices that the step functois iden-  agrams to prescribe the occurrence of the nonlinear processes
tically equal to zero during those periods associated to bitef supratransmission and infratransmission.
equal to0, and it is equal te otherwise. It must be mentioned in this point that our results rely on
a numerical technique, in view that there is no general analyt-
ical apparatus to calculate the exact solutions of the problem
under investigation. Our computational method, however,

In this work, we established that a controlled propagatiorpfOVideS consistent approximations to the solutions of the hy-
of localized modes in a sinusoidally perturbed, nonlinearPerbolic partial differential equation studied in this work, and
medium governed by a double sine-Gordon equation witdncludes schemes to approximate the local energy density and
damping, is indeed feasible. In fact, we have establishethe total energy of the system at any time, as well as a scheme
that binary information may be transmitted in a reliable wayt©® approximate the total energy accumulated by the medium
from one end of the spatial domain to the other, by modulatOVer finite, temporal periods. Moreover, for a conservative
ing the amplitude of the transmitting end which, by the way,System governed by (1), the computational technique is like-
irradiates at a frequency in the forbidden band-gap. Moravise conservative. This fact makes the method an ideal tool
concretely, we showed that our physical model exhibits thdn the investigation of nonlinear supratransmission, which is
presence of the phenomena of nonlinear supratransmissid¢tter characterized in the energy domain.
and nonlinear infratransmission, and that the amplitude of the
driving end may be modulated between the supratransmisgcknowledgments
sion and the infratransmission thresholds in order to transmit
localized waves from the driving boundary. The author would like to thank the anonymous reviewer for
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