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We show some instances of singular lagrangians from the classical mechanics of particles and apply Dirac’s method for building the canonical
equations. We find then the reason for the singularity, and therefore, we get the Hamilton equations with the familiar procedure, that is without
the need of Dirac’s procedure. Known cases of singular lagrangians in special relativity are also presented, and their non-singular alternatives.
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Se presentan algunos lagrangianos singularesméito de la me@nica chsica de paftulas, y se les aplica el @odo de Dirac para
construir las ecuaciones damicas. Se halla la rén de la singularidad, y, con ello, se obtienen las ecuaciones de Hamilton por el camino
acostumbrado, esto es, sin necesidad ddbdo de Dirac. Se presentan taBtbcasos conocidos de lagrangianos singulares en la relatividad
especial y sus alternativas no singulares.

Descriptores: Lagrangiano singular; méaaica chsica; relatividad especial.

PACS: 45.20.Jj; 11.10.Ef

1. Introduction for all §p;, 6¢;, consistent with the restrictions:
The transition from the lagrangian to the hamiltonian formal- "L (O Oy,
ism is carried out by expressing the generalized velocities Z <8C]i 0gi + pr 5pi> =0, k=1...,0, (3¢

(i=1,...,n) in terms of the momenta,(q, 4,t)=0L/dq;, =1

and eliminating them in the functiol = > p¢— L. Thisis  that is, o §’s of all p;, d¢; depend on the remaining ones.

possible if the mathematical condition Eliminating them from Eq. (3b) by the well-known multi-
opi|| || °L 0 " plier's procedure, one has
04; || [10d:04; ||~ dH

. 0
qi = W + Z Vk azk s
is satisfied. This signifies that they build a set of independent ’ ’

variables. But if the determinant vanishes there exists one or 5. _ _ OHo _ ka a‘iﬁk? i=1,...,n, (3d)
more relations between thgs: 9q; dqi
¢k(p7 q? t) = 0’ k = ]‘7"‘7a7 (2) Or brleﬂy
, : . OH oH
wheren — « is the rank of the matrixd?L/d¢;0q;). Thus qi = ap; Di = — 94, i=1,...,n, (3e)

not allp’s are independent. In such situation one says that the
lagrangian is degenerated or singular, and the Hamilton equavith
tions of motion cannot be obtained by the familiar procedure. H=H,+ Z Vg Ok
In an attempt to generalize the hamiltonian dynamics, Dirac

[1-3] developed a method for building the canonical equa- . Dirac thenllr.npo.ses to th@imary restrlctlon&z)k the con-
tions starting from the complete hamiltonian sistency conditiong; = 0, from which one can obtain ad-
ditional restrictions. Some of these can be identities-(0),

H = Hy+ Z OkDr, 3) others of the forny,,, (¢, p) = 0 (like functions (2)), and oth_-
ers of typeg;(q,p) + vihi(p, q) = 0, that can be used to fix
whereH, = 3" ¢ip; — L depends on the coordinates and thesome of the unknown variableg. The second possibility is
independenp’s, andv;, are new independent variables. This treated in a similar way as conditiotg = 0.
comes from taking a virtual variation &f ([7]):

2. Cases of singular lagrangians

) oL . .
§Ho=) (Qiépi_a 5q7:) => (@6pi—pidq;), (38) _ _
i It is remarkable that most classical mechanics textbooks do
or not treat the topic on singular lagrangians, or if they do they

lack on a discussion of some specific cases (not even ‘ar-
Z (di _ 8H0) 5pi — (}’?i + 8H0> 5¢; =0, (3b) tificial examples’), although the aim of generally building
Op; 9 the appropriate canonical equations have had a considerable
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development, since the beginning of the way initiated byThe consistency conditiod; = p» — p1 = 0 leads to the
Dirac [1]. But self in specialized papers one seldom finds exsecondary restriction

amples of systems with such behavior. oV ov

Here, we write down a set of particular lagrangians of a o= — — — =0. (11)
special type: 91 Og>
1 This is a relation betweean, g2 andqs which we briefly write
inm(fﬁ +d3 4+ 165> + 211 43 cos g3 as
214y dysings) + V( ) @ $2 = q2 — F(q,q3) = 0. (12)
3 SIN - ,q2,4q3), . . -
12 435 4 a2 4 We then build the consistency conditign = 0, or
wherel andm are constants, the Mittelstaedt’s lagrangian [4] .
1 1 ¢2:[¢2aH]:O’
s . \2 2
L= om (41 + 42)° + 2 43 + Vg1, 92, g3), () from which we find
that of Cawley ([5]) v(1+F1)—mp1 F1—upsF3=0
.. 1 oF
L=q14+V(q1,92,3) (V =5 q%) . (6) <FZ = aq_) . (13
the lagrangian of Deriglazov [6] [¢2, H] is the Poisson bracket @f;, and H. Eq. (13) allows
9.0 9. o fixing variablev:
L=g@+a@+2aadida+Via,e) ()
- mp1F1+upsFs
v = . (14)

(V = ¢} + ¢3). They all have in common that the potential 1+ F,
energyV depends only on the coordinates of the system, and - ) ]
that they are singular. Certainly, it is not difficult to see thatWith the additional relations (12) and (14), we can now write

there exist®nerelation between thg's in each instance: the canonical equations of motion:
¢1 =p3 — Ip1cosgz — I pasings =0, (42) qu=mpL=v, Q2= 43 = 1P,
$1=ps—p1 =0, (5a) p1 =V, p2 = Vo, p3 = V3, (15)
¢$1=p3 =0, (6a) With

mp1 F1 +pup3 F3
1+ 7,

Thus in these cases one cannot arrive at the canonical equnys; the independent equations of motion are
tions of motion using the well-known procedure, and we are

$1=q1p1 —q2p2 =0. (7a) a2 = F(q1,q3), v =

forced to use Dirac’s method (see however, Sec. 4). . _mp1—upsF3 C
Q1——1+F ) 43 = HUP3,
1
3. Dirac’s method for lagrangians (5) and (7) P1= (V1) p3=(V3),,_p- (16)
Actually, we will only give the details for lagrangian (5) be- Egs. (16) can easily be written in newtonian form:
cause the results for the other are found in the reference [6]. ) ) 5
We start obtaining the momenta of the system, using L+ Faigi+ F3ds+ Fai gy
Ea. ) +2F1301G3 + Fazd3 =m (Vi) _p > (17)
. . 1. . 1. .

pr=—(@+d), p2=_(@1+d2), p3= s 8) Gs =1 (V) gyop - (18)
s0,p» depends op; and onlyp; (or ps) andp; are indepen- On the other hand, for Deriglazov’s lagrangian (7) it is
dent. The primary restriction is then Eq. (58)— p; = 0.  found that

For gettingHy (Eqg. (3)), we eliminate the velocities from p?
> ¢; p; — L in favor of the independents, resulting = 1@ (q1,42) + v (q1p1 — q2p2), (19)

m
H(J:EP%"‘gpg_V- 9) and
=qVi—q@Va=0, or =q@—F =0,
The complete hamiltonian is then S2=aVa=aVe 2= a2 (@)
p1
m v=—o P
H=Zpi+ 50 -Vivm-p). (10 2 (F + 41 F)
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Therefore, the independent canonical equations are Substituting Eq. (23b) into (5) we get
1 1/1 1
q'lzp—l L= m (1+F1) ‘h 2(F,3+)CI§
2F2 +2q, FFy’ m m "
1
2 .. /
. P1 +—= 1+ F1)F3qig3+ V', (24)
= omr gyt T Wera @0 m

with

and from here one also gets the Newton’s equation of motion (

) = V 7F ) 9 N
(Deriglazov use¥’ (z,y) = 2? + y? andF(z) = +x) a1 43) (QI (41 42) q3)

Likewise, the substitution of Eq. (23d) into (7) leads to

2F (F + qiF 1) G1 + 2F(2F1 + 1 F 1) L=(qF1+F)>2E+V(q),
~ (Vi) gempiqy =00 (D) V(@) = V(g F(q)),
2
] ] H = # - Vl(Ql)- (25)
4. An alternative procedure to arrive to the (F+aFy)

equations of motion Let us write the equation of motion for Deriglazov’s la-
grangian (25)dp, /dt = OL/0q:
The particular cases here considered, imply the relations 2(F+q1F1)2
¢1 = 0 (4a) to (7a) between the momenta. Without regarding
the hamiltonian formalism, we can deduce the consequence +2(F+q1 F1)(2F1+q F11)¢i — Vi =0. (26)
of such relations.

Q1

This equation is exactly the same as Eq. (21). This can be

For lagrangian (4) the's are given by seen from Eq. (23d) that we write @t = F(q;):
p1 =m¢; +mlgscosgs, ¢ (Vl)q2=F((I1) = (a2 V72)qz=F(q1) ’ (27)
p2 =mgz +mlgssings, (22) sothat
1
ps = mi*gs +ml (g1 cosqs + g2 sings), Vi) gy=ria) = a F(V2)go=riqr) - (28)
from which, we know, follows Eq. (4a). If we now take the Vi= . (F 0 F1)(Va)periy, (29
1

time derivative of Eq. (4a), substitute these andp, from
Egs. (22) and take into account Lagrange’s equations, wand thus factof” cancels out from Eq. (21), andl + ¢1 F
write from Eq. (26).

Regarding (5) we get, after substituting (23b) into (5),

Vilcosqs +Valsings — V3 =0. (23a)
1 3 ,2 3 3 1 ) 2 32 1 N AB o /
. o - L=-—A% — t 5 )| G+t—— qagtV, (30)
In a similar way, the implication af; = 0 for the remaining 2m 2m - 2p m
cases is where we have done the abbreviations
Vi=Va of g2=F(q,¢s),  (23b) o o
Vy =0, (23¢) V' (a1.a3) = V(a1.92 = Fa1,43),93). (31
The two momenta and the generalized velocities are then
aVi=eVe of @=Fl)  @d o0 Jeneralized velodt

Equations (23a)-(23d) are relations between the coordinates, fLL Aj j
) . 1= 5= q1 + qs,
of each system, thus one coordinate cannot be independent.” 0¢:
In these cases, the reason for the lagrangian to be singularis 4 g B 1
that the coordinates are not independent (see Appendix), andps=——¢1 + ( + > qs,
so the canonical equations cannot be obtained by the famil- mn
iar procedure, in which it is necessary that the coordinates be _m+tpu B? uB . uB
generalized (independent). Therefore, eliminating one of the ¢ Az PLT T Pe 3= T Pitaps. (33)
coordinates from the corresponding lagrangian, it would bel'hus the hamiltonian is
possible to build straightforwardly the Hamilton’s equations.
Let us do it for lagrangians (5) and (7). H= 2A2 Pt 505 2A2 (Bpr — Aps)® = V'(q1,43)- (34)

(32)
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We can now easily write the canonical equations of motion: whereg;; are the components of the metric tensor, and sum
over repeated indices is understood, then the volume element

2
1 = %pl _ %p3, G = _% p1+ ups, in the space of the system can be written as
P = ‘/:I1 + % A,l P1 dr = ”gmnH dq1 dg2 dgs, (39)
" B where||g... || is the determinant of the metric tensor. But if,
1z (Bp1— Apa) (B,1 p1— ZA,I pg) ; (85) asitis here the case, Eq. (1) is violated, then the volume ele-
ment vanishes, and thus the system is restricted to a space of

p3=Vjs+ % Aszp lower dimensioné.g.a surface).

— % (Bp1 — Aps) (B’gpl — iA,3p3> ) 5. Relativistic lagrangians

There are several possibilities to build the free particle rela-
tivistic lagrangian that reduce to the classical expression in
the limit ¢ — oo. For instance,

From here we come to the equations of motiongoand
g3 by eliminatingp; andps in the two last equations (35).
For this purpose, we derive Egs. (32) with respect tnd

substitute the result in (35). We get, after solving fprand _ R
G5 and taking into account that L=-meye = ¢, (40)
As=B1=Fis, (36) for the one dimensional motion is
1 .
the equations L~-mc+ 3 mg?
Aj+ A1 d7 + Bsds +2A 54143 when the velocity of the particle is much smaller thahe
B2 corresponding hamiltonian is, therefore
+uBV7’3—%VA:O, 37) o
H:pq_L:cw =c/p?+m2e2, (41)
. / B / p2 + m2c2
gs — uVis + MZ‘/*l =0. (38) \

By Eqg. (23b), regarding that where

mcq . cp

(V) gyer = Vi2) gy 5 p= \/027_7(}2’ = \/ﬁ
we can see that Egs. (37) and (38) are fully equivalent to
Egs. (17) and (18). usi

For the cases presented here we then see that even thoug%
there exists a relation between the momenta, it is not nec- dr? = 2 dt? — dg?, (42)
essary to apply Dirac’s method for building the canonical
equations. We can continue using the conventional proceinstead of the coordinate timeq and¢ are then functions of

dure, without the need of invoking any generalization of thethe parameter: ¢(7), t(7), so that the lagrangian now is
dynamics.

One tries to come in another way to the hamiltonian by
ng the proper time of the particle:

These lagrangians are of the type L=—-mc\c2t'?2—¢'?2, (43)
L= LO(QWM Qm) + V(Q7 Qm) where
’_ dt ’r dq
which is known to be singular. Of course, this does not T dr’ T= g

change the fact that they are so because one uses more coordi- oy the lagrangian (43) we can construct two momepta
nates than there are degrees of freedammeringthe number  5q, given by

of coordinates accordingly, the problems reduce to ordinary

ones (see Appendix). Moreover, restrictions (23b) and (23d) oL mcdt
are not set ‘on the fly’, rather they are a consequence of the Po=7%57 =7 212 _ g2’
way we build the lagrangian. )
We can summarize the results in other terms. If we inter- p= oL _  mcq . (44)
pret the velocity dependent part of (4) to (7) as the kinetic aq 2t —¢

energy of the systefh ) - , .
9y y It is not difficult to see that there exists a relation between

’ 1 ds\2 1 o them:
—§m E —imgzj 4qi qj, p3262p2+m204, (45)
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so that (43) is singular. This lagrangian is peculiar in a certain  Lagrangian (40) describes a relativistic particle if we de-

sense. For all lagrangians of the form mand it to be real, so that < c. In the case represented by
, 0o 1o Eq. (54), one can add the condition< ¢ for completeness,
L(t',q") = F(c"t'" — ¢'%), (46)  or demand that the proper time(appearing in Eq. (59), for

example) must be real.

We are not diminishing the interesting properties
of lagrangian (43), like invariance, parametrization
independencé, rather we are only showing here the con-

whereF is an arbitrary function of the invariant t'2 — ¢'2,
the only functionF' that violates Eq. (1) is just the square
root. Indeed, the determinant (1) for the function (46) is

92L ) s s N sequences for the existence of a relation between momenta,
H 24,04, = —ACF' (F'+2(2t"* = ¢'?) F"), (47)  and how can one overcome it without the necessity of gener-
alize the classical dynamics.
whereF’ is the derivative ofF’ with respect of its argument, There is another example of a (relativistic) singular la-
so that the determinant is zero for a functiBrsatisfying the  grangian, namely ([6], we write it here for a ‘one’ dimen-
equation sional motion)
F’+2(02t'2—q/2)F”:0, (48)
PELE R %)
thatiS _2q(q0 QI)+2mQ7 (
Fle)=avz+b, (49) whereqy = ¢o(7), ¢1 = ¢1(7), ¢ = ¢q(7) are the unknowns
wherea andb are constants. andm is a constantl is singular because
(43) is in this sense the ‘worst’ choice one can take, much
in the same manner as the construction of lagrangian (A3) in 37/3 -0 or p=0 (59)
the Appendix. If one should have started with the relativistic 9q ’

covariant Newton's second law and this is a relation betweers.

d?q’ dq'? On the other hand, the equations of motion are
meo gy =meo = 0, (50)
A Q) _o 4 (@)
whereq® = ct, ¢! = ¢, and the line element is given by dr\q) 7 dr\q)
ds = (dg", dq), and the metric tensay;; has components 1
(45 —d3)—m* =0, (60)
goo =1, g = —1, g0 = go1 =0, (51) q
. from which the third, that is a consequence of Eq. (59), can
one would have arrived at be solved for(r):
1
L=sm(t?—q?), (52) 1 5
2 q=*+—\/dj — di. (61)

that is certainly not singular. With lagrangian (52) one can i )
directly get the hamiltonian by the familiar procedure: The first two Egs. (60) can thus be expressed in the form

) ) d : d .
by p 90 _ q .
H= - 54a =0, — | —7=—=]=0, (62
2mc2  2m (543) dT( di%) dT(\/ﬁ%‘ﬁ) 2

The equations of motion are according to (43)

and they are equivalent to the equations of motion resulting

Smd (' —t d" from (43)
(g ) _ 0, (53) According to Deriglazov, Dirac’s method applied to (60),
(2t'2 — q/2)3/2

leads to the hamiltonian
Cgmt/ (q/ T q//) q
= _ 2 2 2
(02t12_q/2)3/2 =0, (54) H = §(p0—p1 —m*) +vp, (63)

and they clearly reduce to only one equation, from which itand hence the canonical equations are

follows
ql:qpm pi :0; Q:Ua p:Ov 7;:0’1’ (64)

g=cit+co, (55)
arelation betweeg andt. On the contrary, from (52) one get With the conditions (primary and secondary)
the equations 5 9 )
t"=0, ¢ =0, (56) p=0,  py—pi—m" =0 (65)
or The secondary condition is similar to the primary one (45)
t=a; 7+ by, q=axT + ba. (57) for lagrangian (43).
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The canonical equations of motion (64) contain an unde- Yy
termined variabley, that equalsj. One can intend to fix it
employing the Egs. (64). From Eqs. (64) one seesithand

p; are constant, so that -] /
. 2,
i1=2go=Agy, A= constant (66) X
Po
or
@ =Aq + B, (67)

where B is an arbitrary constant. On the other side, variable
q can be written as ey

2_1_‘42 -2

=13 (68) (xl,yl)
from which it follows FIGURE 1. Two ends of the springs are fixed at= —I; and
x = l2. The other ends are joined at a point, whose coordinates
1_ A2 are (z,y) at timet. The pendulum is inclined at this time. The
4=+ —5— Go, (69)  position of the mass is given k1, y1).
m

and hence

v=2 128, (70)  Appendix

Of course, from the canonical equations of motigrandgq; A, Singular lagrangian of a physical system

cannot be determined as functionsmofso thatv, like ¢, re-

mains undetermined. The system in the plane shown in Fig. 1 consists of two mass-
For lagrangians (43) and (58), one cannot avoid the uskess springs of lengths andl, and constants; andks with

of Dirac’s method for constructing the hamiltonian, not evenends fixed att = —I;,y = 0 andz = lz,y = 0, the other

by employing the restrictions as was done in Sec. 4. In th@nds being joined at the free poift, y) where a pendulum

case of (43) the alternative is to take a different lagrangian9f length/ and massn hangs.

for instance that given by Eq. (52). In setting the newtonian equations of motion for the mass

m one takes into account that at the pdinty)

6. Conclusions Fi+Fy+71=0, (A1)

In the classical mechanics of particles, there is no case reyhereF; andF, are the forces exerted by each spring and
ported of a singular lagrangian for a real system; all instances is the tension of the string. This implies that the resultant

that we know are of artificially built systems. Even that of the of F, andF, must have the same inclinatighas the string,
system described in the Appendix is really not singular. Thusihat is

it seems that the lagrangians of classical mechanics are basi- fan ) — I (A2)
cally non degenerate. F,’
Singularities appears first when we treat to generalize t%vhereF —F
z — L'lz

. . . . + I, andFy :F1y+F2y.
cases where there is not a previously given rule for build- o o .
. o : . The equilibrium condition (A2) can also be deduced di-
ing L, like in the special relativity. There one has the free-

dom to choose the lagrangian among several possibilitie rectly from the Lagrange’s equations of motion, for which the

some of which are regular and others singular. One does nii?grangmn Is given by
care too much about this because one have a method, Dirac’s 1 oy o . L
method, for working out the problem, even at the expense of L = 5™ (95 +y° +1707 + 2189 cosV + 21y Jsin 19)
frequently introducing undetermined variables like tfe

Perhaps it would be more natural to set the condition on V(@,y) —mg (lcosd +y). (A3)
new lagrangians to be regular. One can argue against this th

the additional variables that appear in the theory can re- %x’y) stands for the potential energy of both springs:

veal symmetries of the system, like gauges. However, if two 1 , 1 )

lagrangians, one regular and the other singular, lead to the” (#,¥) = 5 k1 (11 = 1) + 5 k2 (r2 = 12)7, (Ad)
same set of equations (for example, field equations), they

must share comparable symmetries. rn=vVli+z)?+y*  re=+(—2)*+y>
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It is not difficult to show that the momenta takex andy as independent variables andandy; depend-
) ing on them trough Egs. (A9). Then, lagrangian
P =mx+ mldcosd,

. Ly = Ly(z1, 91,41, 11), A10
py =my+mldsind, (A5) ! 1@y 1,1 ( )
Py = m 1% +ml (¢ cos © + §sin ¥), is transformed into
L(z,y,%,9) = Li(z1(2,9),1(z,v),

il((xayvi.vy))vyl(xvi%zbay))' (All)

By the well-known property, the coordinate transformation
The consequence of restriction (A6) on thie can be found  |eaves invariant Lagrange’s equations. Thus, variablaasd
by deriving it byt (and taking into account th@t= 0L/dq): 4 are well suited for building the equations of motion (la-
grangian (A9)) ag:; andy; .
mglsing = py = Fylcosd + (F, +mg)lsind On the other side, the functiaH, that does not contain
(A7) the dependent momentuysy is, taking into account Eq. (A6),

are not independent, but satisfy the relation

Dz lcosV + py lsind — py = 0. (A6)

+ 19 (—pg sind + p, cos V),

2 2
where F,, and F,, are the components of the net force of  H, = Pz ¥ Py +V(z,y) +mg(lcosd +y), (Al2)
the springs. Substituting now hege and p, as given by 2m
Egs. (A5), one gets and so, the complete hamiltonian is given by (Eq. (3))
. . 2 2
" COS ' y — . +
F, cos¥ + (Fy +mg)sind = mgsind, H:L;mpy+V(g:,y)+mg(lcos¢9+y)
thatis E, + v (pg L cosV + py lsind — py). (A13)
tand = ~ (A8)
] ] v - . Thus, specially, the velocities are
and it fully agrees with the equilibrium condition (A2). Since
=— == =—v. (Al4
V() V() &= +lvcosf g - +lvsing, 9 v. (Al4)
Fx - T T 8. Fy - T T a5
ox y

The one-dimensional version of the system shown in
are certain functions ofz, ), expression (A8) is a relation Fig- 1 is a horizontal spring of length and constank; in
betweenz, y and, so that alone two of the three coordi- S€ries with another of length and constanks, with a mass
nates are independent. Our system has only (obviously) tw attached at its end. The mass has the coordinatela-
degrees of freedom. In other words, the existence of a relatiofive t0 the joint of the springs, which has the coordinate

of p's in the present case implies the presence of a restrictioWith respect to the fixed end of the first spring. Thus, the la-

in the coordinates. grangian is given by
Of course, because the system has only two degrees of . o
freedom, we might as well have used the two obvious coor- L=gm(dn +id2)” = V(z1,22), (A15)

dinatesr; andy; for characterizing the position of the mass

pointm. The potential energy (z, y) depends on the point Where the potential energy is expressed as

(z,y) and needs to be expressed in termsagf, y; ) by the 1 , 1 )
relations (see Flg 1) V(Q?l,xg) = 5 k1 (33‘1 — l1) + 5 ko (33‘2 — ZQ) . (A16)

21 =+ [sinv, y1 =y + lcos?, (A9) (A15) is singular (because the additional condition at the

union point), with the relation between the momenta
whered is a given function of x, y) (Eq. A2), what can be

done by inverting the relation (A9). Perhaps it is simpler to ¢ =p2—p1=0. (A17)

i. For lagrangian (521 = ¢1 + g2, Qs = gq3,Q = q2, whereas iii. Generally, parameters are not observable quantities, so that one
for lagrangian (721 = q1 g2, Q = g2. prefers parameter independent theories. However, there are in-
teresting procedures in mechanics, which contain unobservable
variables, for example, Lagrange’s treatment of a constrained
system through.agrange multipliersthat are not observable,

it. As seen in the Appendix, for lagrangian (4) this is really the
case, for (5), (6) and (7) we cannot assure that, because we do
not know the physical system, they refer to.
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