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We show some instances of singular lagrangians from the classical mechanics of particles and apply Dirac’s method for building the canonical
equations. We find then the reason for the singularity, and therefore, we get the Hamilton equations with the familiar procedure, that is without
the need of Dirac’s procedure. Known cases of singular lagrangians in special relativity are also presented, and their non-singular alternatives.
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Se presentan algunos lagrangianos singulares delámbito de la mećanica cĺasica de partı́culas, y se les aplica el ḿetodo de Dirac para
construir las ecuaciones canónicas. Se halla la razón de la singularidad, y, con ello, se obtienen las ecuaciones de Hamilton por el camino
acostumbrado, esto es, sin necesidad del método de Dirac. Se presentan también casos conocidos de lagrangianos singulares en la relatividad
especial y sus alternativas no singulares.
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1. Introduction

The transition from the lagrangian to the hamiltonian formal-
ism is carried out by expressing the generalized velocitiesq̇i

(i=1, . . . , n) in terms of the momentapj(q, q̇, t)=∂L/∂q̇j ,
and eliminating them in the functionH =

∑
p q̇−L. This is

possible if the mathematical condition
∥∥∥∥

∂pi

∂q̇j

∥∥∥∥ =
∥∥∥∥

∂2L

∂q̇i∂q̇j

∥∥∥∥ 6= 0, (1)

is satisfied. This signifies that they build a set of independent
variables. But if the determinant vanishes there exists one or
more relations between thep’s:

φk(p, q, t) = 0, k = 1, . . . , α, (2)

wheren − α is the rank of the matrix(∂2L/∂q̇i∂q̇j). Thus
not allp’s are independent. In such situation one says that the
lagrangian is degenerated or singular, and the Hamilton equa-
tions of motion cannot be obtained by the familiar procedure.
In an attempt to generalize the hamiltonian dynamics, Dirac
[1-3] developed a method for building the canonical equa-
tions starting from the complete hamiltonian

H = H0 +
∑

vkφk, (3)

whereH0 =
∑

q̇lpl − L depends on the coordinates and the
independentp’s, andvk are new independent variables. This
comes from taking a virtual variation ofH0 ([7]):

δH0=
∑ (

q̇iδpi− ∂L

∂qi
δqi

)
=

∑
(q̇iδpi−ṗi δqi) , (3a)

or

∑(
q̇i − ∂H0

∂pi

)
δpi −

(
ṗi +

∂H0

∂qi

)
δqi = 0, (3b)

for all δpi, δqi, consistent with the restrictions:

n∑

i=1

(
∂φk

∂qi
δqi +

∂φk

∂pi
δpi

)
= 0, k = 1, . . . , α, (3c)

that is,α δ’s of all δpi, δqi depend on the remaining ones.
Eliminating them from Eq. (3b) by the well-known multi-
plier’s procedure, one has

q̇i =
∂H0

∂pi
+

∑
vk

∂φk

∂pi
,

ṗi = −∂H0

∂qi
−

∑
vk

∂φk

∂qi
, i = 1, . . . , n, (3d)

or briefly

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, . . . , n, (3e)

with
H = H0 +

∑
vk φk.

Dirac then imposes to theprimary restrictionsφk the con-
sistency conditionṡφk = 0, from which one can obtain ad-
ditional restrictions. Some of these can be identities (0 = 0),
others of the formfm(q, p) = 0 (like functions (2)), and oth-
ers of typegl(q, p) + vlhl(p, q) = 0, that can be used to fix
some of the unknown variablesvk. The second possibility is
treated in a similar way as conditionsφk = 0.

2. Cases of singular lagrangians

It is remarkable that most classical mechanics textbooks do
not treat the topic on singular lagrangians, or if they do they
lack on a discussion of some specific cases (not even ‘ar-
tificial examples’), although the aim of generally building
the appropriate canonical equations have had a considerable
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development, since the beginning of the way initiated by
Dirac [1]. But self in specialized papers one seldom finds ex-
amples of systems with such behavior.

Here, we write down a set of particular lagrangians of a
special type:

L=
1
2
m

(
q̇2
1 + q̇2

2 + l2q̇3
2 + 2 l q̇1 q̇3 cos q3

+ 2 l q̇2 q̇3 sin q3

)
+ V (q1, q2, q3), (4)

wherel andm are constants, the Mittelstaedt’s lagrangian [4]

L =
1

2 m
(q̇1 + q̇2)2 +

1
2 µ

q̇2
3 + V (q1, q2, q3), (5)

that of Cawley ([5])

L = q̇1 q̇2 + V (q1, q2, q3)
(

V =
1
2

q2 q2
3

)
, (6)

the lagrangian of Deriglazov [6]

L = q2
2 q̇2

1 + q2
1 q̇2

2 + 2 q1 q2 q̇1 q̇2 + V (q1, q2) (7)

(V = q2
1 + q2

2). They all have in common that the potential
energyV depends only on the coordinates of the system, and
that they are singular. Certainly, it is not difficult to see that
there existsonerelation between thep’s in each instance:

φ1 = p3 − l p1 cos q3 − l p2 sin q3 = 0, (4a)

φ1 = p2 − p1 = 0, (5a)

φ1 = p3 = 0, (6a)

φ1 = q1 p1 − q2 p2 = 0. (7a)

Thus in these cases one cannot arrive at the canonical equa-
tions of motion using the well-known procedure, and we are
forced to use Dirac’s method (see however, Sec. 4).

3. Dirac’s method for lagrangians (5) and (7)

Actually, we will only give the details for lagrangian (5) be-
cause the results for the other are found in the reference [6].

We start obtaining the momenta of the system, using
Eq. (5):

p1 =
1
m

(q̇1 + q̇2), p2 =
1
m

(q̇1 + q̇2), p3 =
1
µ

q̇3, (8)

so,p2 depends onp1 and onlyp1 (or p2) andp3 are indepen-
dent. The primary restriction is then Eq. (5a)p2 − p1 = 0.
For gettingH0 (Eq. (3)), we eliminate the velocities from∑

q̇i pi − L in favor of the independentp’s, resulting

H0 =
m

2
p2
1 +

µ

2
p2
3 − V. (9)

The complete hamiltonian is then

H =
m

2
p2
1 +

µ

2
p2
3 − V + v (p2 − p1). (10)

The consistency conditioṅφ1 = ṗ2 − ṗ1 = 0 leads to the
secondary restriction

φ2 =
∂V

∂q1
− ∂V

∂q2
= 0. (11)

This is a relation betweenq1, q2 andq3 which we briefly write
as

φ2 = q2 − F (q1, q3) = 0. (12)

We then build the consistency conditionφ̇2 = 0, or

φ̇2 = [φ2,H] = 0,

from which we find

v (1 + F,1)−mp1 F,1 − µ p3 F,3 = 0
(

F,i ≡ ∂F

∂qi

)
. (13)

[φ2,H] is the Poisson bracket ofφ2 andH. Eq. (13) allows
fixing variablev:

v =
mp1 F,1 + µ p3 F,3

1 + F,1
. (14)

With the additional relations (12) and (14), we can now write
the canonical equations of motion:

q̇1 = mp1 − v, q̇2 = v, q̇3 = µp3,

ṗ1 = V,1, ṗ2 = V,2, ṗ3 = V,3, (15)

with

q2 = F (q1, q3), v =
mp1 F,1 + µ p3 F,3

1 + F,1
.

Thus, the independent equations of motion are

q̇1 =
mp1 − µ p3 F,3

1 + F,1
, q̇3 = µp3,

ṗ1 = (V,1)q2=F , ṗ3 = (V,3)q2=F . (16)

Eqs. (16) can easily be written in newtonian form:

1 + F,1q̈1 + F,3 q̈3 + F,11 q̇2
1

+ 2 F,13 q̇1 q̇3 + F,33 q̇2
3 = m (V,1)q2=F , (17)

q̈3 = µ (V,3)q2=F . (18)

On the other hand, for Deriglazov’s lagrangian (7) it is
found that

H =
p2
1

4 q2
2

− V (q1, q2) + v (q1 p1 − q2 p2), (19)

and

φ2 = q1 V,1 − q2 V,2 = 0, or φ2 = q2 − F (q1) = 0,

v = − p1

2F 2 (F + q1 F,1)
F,1.
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Therefore, the independent canonical equations are

q̇1 =
p1

2F 2 + 2 q1 F F,1
,

ṗ1 =
p2
1

2F 2 (F + q1 F,1)
F,1 + (V,1)q2=F (q1)

, (20)

and from here one also gets the Newton’s equation of motion
(Deriglazov usesV (x, y) = x2 + y2 andF (x) = ±x)

2F (F + q1F,1) q̈1 + 2F (2F,1 + q1F,11)q̇2
1

− (V,1)q2=F (q1)
= 0, (21)

4. An alternative procedure to arrive to the
equations of motion

The particular cases here considered, imply the relations
φ1 = 0 (4a) to (7a) between the momenta. Without regarding
the hamiltonian formalism, we can deduce the consequence
of such relations.

For lagrangian (4) thep’s are given by

p1 = m q̇1 + ml q̇3 cos q3,

p2 = m q̇2 + ml q̇3 sin q3, (22)

p3 = ml2q̇3 + ml (q̇1 cos q3 + q̇2 sin q3),

from which, we know, follows Eq. (4a). If we now take the
time derivative of Eq. (4a), substitute therep1 andp2 from
Eqs. (22) and take into account Lagrange’s equations, we
write

V,1 l cos q3 + V,2 l sin q3 − V,3 = 0. (23a)

In a similar way, the implication ofφ1 = 0 for the remaining
cases is

V,1 = V,2 or q2 = F (q1, q3), (23b)

V,2 = 0, (23c)

q1 V,1 = q2 V,2 or q2 = F (q1), (23d)

Equations (23a)-(23d) are relations between the coordinates
of each system, thus one coordinate cannot be independent.
In these cases, the reason for the lagrangian to be singular is
that the coordinates are not independent (see Appendix), and
so the canonical equations cannot be obtained by the famil-
iar procedure, in which it is necessary that the coordinates be
generalized (independent). Therefore, eliminating one of the
coordinates from the corresponding lagrangian, it would be
possible to build straightforwardly the Hamilton’s equations.
Let us do it for lagrangians (5) and (7).

Substituting Eq. (23b) into (5) we get

L =
1

2 m
(1 + F,1)

2
q̇2
1 +

1
2

(
1
m

F,3 +
1
µ

)
q̇2
3

+
1
m

(1 + F,1)F,3 q̇1q̇3 + V ′, (24)

with

V ′(q1, q3) = V
(
q1, F (q1, q3), q3

)
.

Likewise, the substitution of Eq. (23d) into (7) leads to

L = (q1 F,1 + F )2 q̇2
1 + V ′(q1),

V ′(q1) = V (q1, F (q1)),

H =
p1

2

4 (F + q1 F,1)
2 − V ′(q1). (25)

Let us write the equation of motion for Deriglazov’s la-
grangian (25),dp1/dt = ∂L/∂q1:

2 (F + q1 F,1)
2
q̈1

+ 2 (F + q1 F,1) (2 F,1 + q1 F,11)q̇2
1 − V ′

,1 = 0. (26)

This equation is exactly the same as Eq. (21). This can be
seen from Eq. (23d) that we write atq2 = F (q1):

q1 (V,1)q2=F (q1)
= (q2 V,2)q2=F (q1)

, (27)

so that

(V,1)q2=F (q1)
=

1
q1

F (V,2)q2=F (q1)
, (28)

V ′
,1 =

1
q1

(F + q1 F,1) (V,2)q2=F (q1)
, (29)

and thus factorF cancels out from Eq. (21), andF + q1 F,1

from Eq. (26).
Regarding (5) we get, after substituting (23b) into (5),

L =
1

2 m
A2q̇2

1+
(

B2

2m
+

1
2µ

)
q̇2
3+

A B

m
q̇1q̇3+V ′, (30)

where we have done the abbreviations

A = 1 + F,1, B = F,3,

V ′(q1, q3) = V
(
q1, q2 = F (q1, q3), q3

)
. (31)

The two momenta and the generalized velocities are then
given by

p1=
∂L

∂q̇1
=

A2

m
q̇1 +

AB

m
q̇3,

p3=
A B

m
q̇1 +

(
B2

m
+

1
µ

)
q̇3, (32)

q̇1=
m + µB2

A2
p1 − µB

A
p3, q̇3=− µ B

A
p1+µ p3. (33)

Thus the hamiltonian is

H =
m

2 A2
p1 +

µ

2 A2
(B p1 −A p3)2 − V ′(q1, q3). (34)
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We can now easily write the canonical equations of motion:

q̇1 =
m + µB2

A2
p1 − µB

A
p3, q̇3 = −µB

A
p1 + µ p3,

ṗ1 = V ′
,1 +

m

A3
A,1 p1

− µ

A2
(B p1 −Ap3)

(
B,1 p1 − B

A
A,1 p3

)
, (35)

ṗ3 = V ′
,3 +

m

A3
A,3 p1

− µ

A2
(B p1 −Ap3)

(
B,3 p1 − B

A
A,3 p3

)
.

From here we come to the equations of motion forq1 and
q3 by eliminatingp1 andp3 in the two last equations (35).
For this purpose, we derive Eqs. (32) with respect tot and
substitute the result in (35). We get, after solving forq̈1 and
q̈3 and taking into account that

A,3 = B,1 = F,13, (36)

the equations

A q̈1 + A,1 q̇2
1 + B,3 q̇2

3 + 2A,3 q̇1q̇3

+ µB V ′
,3 −

m + µB2

A
V ′

,1 = 0, (37)

q̈3 − µV ′
,3 + µ

B

A
V ′

,1 = 0. (38)

By Eq. (23b), regarding that

(V,1)q2=F = (V,2)q2=F ,

we can see that Eqs. (37) and (38) are fully equivalent to
Eqs. (17) and (18).

For the cases presented here we then see that even though
there exists a relation between the momenta, it is not nec-
essary to apply Dirac’s method for building the canonical
equations. We can continue using the conventional proce-
dure, without the need of invoking any generalization of the
dynamics.

These lagrangians are of the typei

L = L0(Qm, Q̇m) + V (Q,Qm)

which is known to be singular. Of course, this does not
change the fact that they are so because one uses more coordi-
nates than there are degrees of freedom.Loweringthe number
of coordinates accordingly, the problems reduce to ordinary
ones (see Appendix). Moreover, restrictions (23b) and (23d)
are not set ‘on the fly’, rather they are a consequence of the
way we build the lagrangian.

We can summarize the results in other terms. If we inter-
pret the velocity dependent part of (4) to (7) as the kinetic
energy of the systemii,

T =
1
2

m

(
ds
dt

)2

=
1
2

mgij q̇i q̇j ,

wheregij are the components of the metric tensor, and sum
over repeated indices is understood, then the volume element
in the space of the system can be written as

dτ =
√
‖gmn‖ dq1 dq2 dq3, (39)

where‖gmn‖ is the determinant of the metric tensor. But if,
as it is here the case, Eq. (1) is violated, then the volume ele-
ment vanishes, and thus the system is restricted to a space of
lower dimension (e.g.a surface).

5. Relativistic lagrangians

There are several possibilities to build the free particle rela-
tivistic lagrangian that reduce to the classical expression in
the limit c →∞. For instance,

L = −m c
√

c2 − q̇2, (40)

for the one dimensional motion is

L ≈ −m c2 +
1
2

m q̇2

when the velocity of the particle is much smaller thanc. The
corresponding hamiltonian is, therefore

H = p q̇ − L = c
p2 + m2c2

√
p2 + m2c2

= c
√

p2 + m2c2, (41)

where

p =
m c q̇√
c2 − q̇2

, q̇ =
c p√

p2 + m2c2
.

One tries to come in another way to the hamiltonian by
using the proper timeτ of the particle:

c2dτ2 = c2 dt2 − dq2, (42)

instead of the coordinate timet. q andt are then functions of
the parameterτ : q(τ), t(τ), so that the lagrangian now is

L = −m c
√

c2 t′ 2 − q′ 2, (43)

where

t′ =
dt

dτ
, q′ =

dq

dτ
.

For the lagrangian (43) we can construct two momentap0

andp, given by

p0 =
∂L

∂t′
= − mc3 t′√

c2 t′ 2 − q′ 2
,

p =
∂L

∂q′
=

m c q′√
c2 t′ 2 − q′ 2

. (44)

It is not difficult to see that there exists a relation between
them:

p2
0 = c2 p2 + m2 c4, (45)
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so that (43) is singular. This lagrangian is peculiar in a certain
sense. For all lagrangians of the form

L(t′, q′) = F (c2 t′ 2 − q′ 2), (46)

whereF is an arbitrary function of the invariantc2 t′ 2 − q′ 2,
the only functionF that violates Eq. (1) is just the square
root. Indeed, the determinant (1) for the function (46) is

∥∥∥∥
∂2L

∂q̇i∂q̇j

∥∥∥∥ = −4c2F ′
(
F ′ + 2

(
c2 t′ 2 − q′ 2

)
F ′′

)
, (47)

whereF ′ is the derivative ofF with respect of its argument,
so that the determinant is zero for a functionF satisfying the
equation

F ′ + 2
(
c2 t′ 2 − q′ 2

)
F ′′ = 0, (48)

that is
F (x) = a

√
x + b, (49)

wherea andb are constants.
(43) is in this sense the ‘worst’ choice one can take, much

in the same manner as the construction of lagrangian (A3) in
the Appendix. If one should have started with the relativistic
covariant Newton’s second law

m
d2qi

dτ2
= m

dq′ i

dτ
= 0, (50)

whereq0 = c t, q1 = q, and the line element is given by
ds = (dq0, dq), and the metric tensorgij has components

g00 = 1, g11 = −1, g10 = g01 = 0, (51)

one would have arrived at

L =
1
2

m (c2 t′ 2 − q′ 2), (52)

that is certainly not singular. With lagrangian (52) one can
directly get the hamiltonian by the familiar procedure:

H =
p2
0

2 mc2
− p2

2 m
. (54a)

The equations of motion are according to (43)

c3mq′ (q′ t′′ − t′ q′′)

(c2t′ 2 − q′ 2)3/2
= 0, (53)

c3mt′ (q′ t′′ − t′ q′′)

(c2t′ 2 − q′ 2)3/2
= 0, (54)

and they clearly reduce to only one equation, from which it
follows

q = c1 t + c2, (55)

a relation betweenq andt. On the contrary, from (52) one get
the equations

t′′ = 0, q′′ = 0, (56)

or
t = a1 τ + b1, q = a2 τ + b2. (57)

Lagrangian (40) describes a relativistic particle if we de-
mand it to be real, so thatv < c. In the case represented by
Eq. (54), one can add the conditionv < c for completeness,
or demand that the proper timeτ (appearing in Eq. (59), for
example) must be real.

We are not diminishing the interesting properties
of lagrangian (43), like invariance, parametrization
independenceiii, rather we are only showing here the con-
sequences for the existence of a relation between momenta,
and how can one overcome it without the necessity of gener-
alize the classical dynamics.

There is another example of a (relativistic) singular la-
grangian, namely ([6], we write it here for a ‘one’ dimen-
sional motion)

L =
1
2 q

(q̇2
0 − q̇2

1) +
1
2

m2q, (58)

whereq0 = q0(τ), q1 = q1(τ), q = q(τ) are the unknowns
andm is a constant.L is singular because

∂L

∂q̇
= 0, or p = 0 (59)

and this is a relation betweenp’s.
On the other hand, the equations of motion are

d

dτ

(
q̇0

q

)
= 0,

d

dτ

(
q̇1

q

)
= 0,

1
q2

(q̇2
0 − q̇2

1)−m2 = 0, (60)

from which the third, that is a consequence of Eq. (59), can
be solved forq(τ):

q = ± 1
m

√
q̇2
0 − q̇2

1 . (61)

The first two Eqs. (60) can thus be expressed in the form

d

dτ

(
q̇0√

q̇2
0 − q̇2

1

)
= 0,

d

dτ

(
q̇1√

q̇2
0 − q̇2

1

)
= 0, (62)

and they are equivalent to the equations of motion resulting
from (43).

According to Deriglazov, Dirac’s method applied to (60),
leads to the hamiltonian

H =
q

2
(p2

0 − p2
1 −m2) + v p, (63)

and hence the canonical equations are

q̇i = q pi, ṗi = 0, q̇ = v, ṗ = 0, i = 0, 1, (64)

with the conditions (primary and secondary)

p = 0, p2
0 − p2

1 −m2 = 0. (65)

The secondary condition is similar to the primary one (45)
for lagrangian (43).
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The canonical equations of motion (64) contain an unde-
termined variablev, that equalsq̇. One can intend to fix it
employing the Eqs. (64). From Eqs. (64) one sees thatp0 and
p1 are constant, so that

q̇1 =
p1

p0
q̇0 = A q̇0, A = constant, (66)

or

q1 = Aq0 + B, (67)

whereB is an arbitrary constant. On the other side, variable
q can be written as

q2 =
1−A2

m2
q̇2
0 , (68)

from which it follows

q̇ = ±
√

1−A2

m2
q̈0, (69)

and hence

v = ±
√

1−A2

m2
q̈0, (70)

Of course, from the canonical equations of motionq0 andq1

cannot be determined as functions ofτ , so thatv, like q, re-
mains undetermined.

For lagrangians (43) and (58), one cannot avoid the use
of Dirac’s method for constructing the hamiltonian, not even
by employing the restrictions as was done in Sec. 4. In the
case of (43) the alternative is to take a different lagrangian,
for instance that given by Eq. (52).

6. Conclusions

In the classical mechanics of particles, there is no case re-
ported of a singular lagrangian for a real system; all instances
that we know are of artificially built systems. Even that of the
system described in the Appendix is really not singular. Thus,
it seems that the lagrangians of classical mechanics are basi-
cally non degenerate.

Singularities appears first when we treat to generalize to
cases where there is not a previously given rule for build-
ing L, like in the special relativity. There one has the free-
dom to choose the lagrangian among several possibilities,
some of which are regular and others singular. One does not
care too much about this because one have a method, Dirac’s
method, for working out the problem, even at the expense of
frequently introducing undetermined variables like thev’s.

Perhaps it would be more natural to set the condition on
new lagrangians to be regular. One can argue against this that
the additional variablesv that appear in the theory can re-
veal symmetries of the system, like gauges. However, if two
lagrangians, one regular and the other singular, lead to the
same set of equations (for example, field equations), they
must share comparable symmetries.

FIGURE 1. Two ends of the springs are fixed atx = −l1 and
x = l2. The other ends are joined at a point, whose coordinates
are(x, y) at timet. The pendulum is inclinedϑ at this time. The
position of the mass is given by(x1, y1).

Appendix

A. Singular lagrangian of a physical system

The system in the plane shown in Fig. 1 consists of two mass-
less springs of lengthsl1 andl2 and constantsk1 andk2 with
ends fixed atx = −l1, y = 0 andx = l2, y = 0, the other
ends being joined at the free point(x, y) where a pendulum
of lengthl and massm hangs.

In setting the newtonian equations of motion for the mass
m one takes into account that at the point(x, y)

F1 + F2 + τ = 0, (A1)

whereF1 andF2 are the forces exerted by each spring and
τ is the tension of the string. This implies that the resultant
of F1 andF2 must have the same inclinationϑ as the string,
that is

tan ϑ = −Fx

Fy
, (A2)

whereFx = F1x + F2x andFy = F1y + F2y.
The equilibrium condition (A2) can also be deduced di-

rectly from the Lagrange’s equations of motion, for which the
lagrangian is given by

L =
1
2
m

(
ẋ2 + ẏ2 + l2ϑ̇2 + 2 l ẋ ϑ̇ cosϑ + 2 l ẏ ϑ̇ sinϑ

)

− V (x, y)−mg (l cos ϑ + y). (A3)

V (x, y) stands for the potential energy of both springs:

V (x, y) =
1
2

k1 (r1 − l1)2 +
1
2

k2 (r2 − l2)2, (A4)

r1 =
√

(l1 + x)2 + y2, r2 =
√

(l2 − x)2 + y2.
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It is not difficult to show that the momenta

px = m ẋ + ml ϑ̇ cosϑ,

py = m ẏ + ml ϑ̇ sin ϑ, (A5)

pϑ = ml2ϑ̇ + ml (ẋ cosϑ + ẏ sin ϑ),

are not independent, but satisfy the relation

px l cosϑ + py l sin ϑ− pϑ = 0. (A6)

The consequence of restriction (A6) on thep’s can be found
by deriving it byt (and taking into account thatṗ = ∂L/∂q):

mg l sin ϑ = ṗϑ = Fx l cos ϑ + (Fy + mg) l sin ϑ

+ l ϑ̇ (−px sin ϑ + py cos ϑ), (A7)

whereFx and Fy are the components of the net force of
the springs. Substituting now herepx and py as given by
Eqs. (A5), one gets

Fx cos ϑ + (Fy + mg) sin ϑ = mg sin ϑ,

that is

tan ϑ = −Fx

Fy
, (A8)

and it fully agrees with the equilibrium condition (A2). Since

Fx = −∂V (x, y)
∂x

, Fy = −∂V (x, y)
∂y

,

are certain functions of(x, y), expression (A8) is a relation
betweenx, y andϑ, so that alone two of the three coordi-
nates are independent. Our system has only (obviously) two
degrees of freedom. In other words, the existence of a relation
of p’s in the present case implies the presence of a restriction
in the coordinates.

Of course, because the system has only two degrees of
freedom, we might as well have used the two obvious coor-
dinatesx1 andy1 for characterizing the position of the mass
point m. The potential energyV (x, y) depends on the point
(x, y) and needs to be expressed in terms of(x1, y1) by the
relations (see Fig. 1)

x1 = x + l sinϑ, y1 = y + l cos ϑ, (A9)

whereϑ is a given function of(x, y) (Eq. A2), what can be
done by inverting the relation (A9). Perhaps it is simpler to

takex andy as independent variables andx1 andy1 depend-
ing on them trough Eqs. (A9). Then, lagrangian

L1 = L1(x1, y1, ẋ1, ẏ1), (A10)

is transformed into

L(x, y, ẋ, ẏ) = L1

(
x1(x, y), y1(x, y),

ẋ1((x, y, ẋ, ẏ)), ẏ1(x, y, ẋ, ẏ)
)
. (A11)

By the well-known property, the coordinate transformation
leaves invariant Lagrange’s equations. Thus, variablesx and
y are well suited for building the equations of motion (la-
grangian (A9)) asx1 andy1.

On the other side, the functionH0 that does not contain
the dependent momentumpϑ is, taking into account Eq. (A6),

H0 =
p2

x + p2
y

2 m
+ V (x, y) + m g (l cosϑ + y), (A12)

and so, the complete hamiltonian is given by (Eq. (3))

H =
p2

x + p2
y

2 m
+ V (x, y) + mg (l cos ϑ + y)

+ v (px l cos ϑ + py l sinϑ− pϑ). (A13)

Thus, specially, the velocities are

ẋ =
px

m
+ lv cos θ ẏ =

py

m
+ lv sin θ, ϑ̇ = −v. (A14)

The one-dimensional version of the system shown in
Fig. 1 is a horizontal spring of lengthl1 and constantk1 in
series with another of lengthl2 and constantk2, with a mass
m attached at its end. The mass has the coordinatex2 rela-
tive to the joint of the springs, which has the coordinatex1

with respect to the fixed end of the first spring. Thus, the la-
grangian is given by

L =
1
2

m (ẋ1 + ẋ2)
2 − V (x1, x2), (A15)

where the potential energyV is expressed as

V (x1, x2) =
1
2

k1 (x1 − l1)
2 +

1
2

k2 (x2 − l2)
2
. (A16)

(A15) is singular (because the additional condition at the
union point), with the relation between the momenta

φ = p2 − p1 = 0. (A17)

i. For lagrangian (5)Q1 = q1 + q2, Q3 = q3, Q = q2, whereas
for lagrangian (7)Q1 = q1 q2, Q = q2.

ii. As seen in the Appendix, for lagrangian (4) this is really the
case, for (5), (6) and (7) we cannot assure that, because we do
not know the physical system, they refer to.

iii. Generally, parameters are not observable quantities, so that one
prefers parameter independent theories. However, there are in-
teresting procedures in mechanics, which contain unobservable
variables, for example, Lagrange’s treatment of a constrained
system throughLagrange multipliers, that are not observable,
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the mechanics of Hertz, the Kaluza-Klein theory; even Dirac’s
method introduces variablesv (Eq. (3)) that are not observable.
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