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This paper shows the development of a optimal stochastic estimator for a black-box systerwdimansional space, observing noise with

an unknown dynamics model. The results are based in state space, described by a discrete stochastic estimator and noise character
The proposed result gives an algorithm to construct diagonal form for the state space system. It is a new technique for a instrumental var
tool, and a diagonalization process avoiding the calculation of pseudo-inverse matrices is presented with a linear computational compls
O(j) andj as the diagonal matrix dimension. The results show that it is possible to reconstruct the observable signal with a probabi
approximation.
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Este articulo muestra el desarrollo de un estimador essticooptimo para un modelo de sistemas tipo caja negra con ruido en un espacio
m-dimensional. Se propone un algoritmo para evaluar y construir la forma diagonal del sistema en espacio de estados para estim
ganancias internas. El algoritmo permite eliminar&@tualo de matrices pseudoinversas y tiene una complejidad computacional de order
lineal O(5), donde;j es la dimengin de la matriz diagonal y que computacionalmente representa una menor complejidad ge@dusm
utilizados tradicionalmente a trag de la pseudoinversa. Los resultados muestran que es posible reconstiiad labservable con una
buena aproximabn en un sentido de probabilidad.

Descriptores: Algebra lineal; tedia de matrices; te@a de control; procesos eststicos.

PACS: 02.10.Ud; 02.10.Yn; 02.30.Yy; 02.50.Ey; 02.70.-c

1. Introduction tency and is computationally viable considering the recursive

form [7,10].
Often in the real world one expects is to find linear relation- The instrumental variable method is a brocedure reauir-
ships between variables. In stochastic processes the linear P q

description or linear fit , is a mathematical method consider:"9 linear algebra calculus, determining the best fit line. A

ing Vi € R™*1 andY;_; e RI™*1] with a random term C?ril.]cl) pr_ﬁofealéagllsclﬁn\:\gll S.ZOW tTatt:]: drgfet‘hr?;nha?hinbzpi
Wi € Rin<1 e, (Vi) o {W3} andk € [1,m], m € N Pication in several cimensions. ins inding S

[3]. The linear model relates to the variablgs. } and{17’,} fit line by a pseudo-inverse method, it is better to find that

or any transformation thereof, which generates a hyperplant I\;?gl?gv\?sn?n?r?ilrﬁzl:geatrhgogt)r:n?égtn Ol;_shﬁg'fgfg f;Jhnecuc;rr]]s_
A, € RIMmxm] with unknown parametersiVy, is a random 9 P Y. ! 9

disturbance which includes neither controllable nor observ—eral problem is given by the set functiofis ..., f;, to find

able factors and therefore is associated with the randomne%%en:B?ﬁ;?iilncssgxi%:s&?\;a't’)l'é ‘;JI SUCIB th‘ﬂ}t the linear
giving it the stochastic character [3]. The values&f are gnam= aji+ - F

generated inside the system without knowing its gains. Th?jfj’j € N that is the best approximation [1,2]. The solu-
basic model has an ARMA, 1) form (1) ions depend on the constraint functiof)sj € N. If there is
’ ' exactly one equation for each measurement, and the functions

Y. = ALY, 1 + Wa Q) _fj have linear comb!natlons with 'Fhelr elements, the solution
is discussed under linear regression.

The estimatorAy is linear unbiased, wherein the overall For non-linear systems the number of unknown parame-
concept is the instrumental variable selection [8,9]. Breakingers, could be described as instrumental variable applied it-
the temporal correlation between the regressors and distueratively to a linearized function form until convergence is
bances, justifies the search for an alternative estimator [6hchieved in some sense. However, it is often possible to lin-
The second moment applied in an estimator provides consigarize a non-linear function at the outset and still use linear
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methods determining fit parameters without resorting to iter-  The purpose of this paper is to show an inverse allowing
ative procedures. This approach commonly violates the imgood estimators for a black-box system (1). A diagonal rep-
plicit assumption that the errors distribution is normal, but of-resentation, providing the best computational complexity al-
ten still gives acceptable results using normal equations withows inverse matrix. It is structured in the following manner:
pseudo-inverse techniques. Section 2 describes the basic formalism ofith@imensional
A common use of the Moore-Penrose method is to comstochastic estimator and Sec. 3 presents the implementation
pute a best fit solution to a linear equation system that lacksesults. Section 4 discusses these results. Section 5 deter-
a unique solution. Another use is to find the minimum Eu-mines the conclusions, and finally, Sec. 6 is the theorem’s
clidean norm solution [23]. The pseudo-inverse is definedoroof annex.
and unique for all matrices whose entries are real numbers.
It can be computed using singular value decomposition. In-
deed, the pseudo-inverse matrix with singular value decom2. Main results
position could be described d6=UPV* is M=V PTU*
whereP* is that formed by replacing every non zero diago-In (1), the vectorsy;, W, € RI™*1 are random variables
nal entry by its reciprocal and then transposing the resultingV (;, 02 < oo) andYy, Wy, € R*mxm)l e N with
matrix. This method is one way to solve linear instrumen-all non-zero entries, respectively, corresponding to the diag-
tal variable problems selecting eigenvalues and eigenvectotnal matrices in a Jordan canonical form havindplocks
without knowing the internal evolution system [24]. with m x m entries each one [16]. The system gain ma-
The singular decomposition matrix valug!”*" n €  trix A, € RI™*™l has the corresponding diagonal matrix
N, is typically computed by a two-step procedure. In thed, € RI»*(mxm)I with all non-zero entries. Any diag-
first step, the matrix is reduced to a bi-diagonal matrix, ancbnal matrix is symmetric, triangular and normal if its en-
hasO(n?) floating-point operations (flops). The second steptries are in aR field. Let D = diag(d;) € R (mxm)l
is computed by singular decomposition matrix value. Thisanddet(D) = [], d; with i € [1,nm]. The diagonal ma-
step can only be made by an iterative method. In practicérix is invertible if and only if everyd;, # 0, hence there
it suffices to compute the singular value decomposition ugre);, !, W~ e RI»*(mxm)][14]. The system described
to a certain precision. If the precision is considered conin (1), in diagonal form is given by (2).
stant, then the second step takE®) iterations costing)(n)
flops [20,25]. Thus, the first step was more expensive, and the Vi = ApVk—1 + Wk (2)
overall costO(n?).
Traditional form considers Householder reflections with -8t Y& and W, be vectors related to the state space and
a cost ofdmn? — 4n®/3 flops, m,n € N, assuming that Uk € R[”X(T”X’m’.)] be the instrumental variable. Therefore,
only singular values and not singular vectors are needed [19]Yk} o {Wki} if and only if there exists an affine linear
If m > n then it is advantageous to first reduce the ma-SPac&Vx € R[n_x(n.sz)] such thatd;, T € R[nx(me)] are
trix M to a triangular matrix with QR decomposition and constants, satisfying the linear combination (2) [12,13]. The
then use Householder reflections to further reduce the méliagonal identification form is given by (3).
trix to bi-diagonal form; the combined cost wasn? + 2n3 ~ ~
flops [19,20,25]. The second step can be made by a variant Vi = Audi—1 + Wi ®)
of the QR algorithm for eigenvalues description (Goltsb
Kahan) [22,21]. Thus, the relationship (3) defines the black-box system
To understand the dynamic system is a well known probidentification whereA,, is unknown internal parameters and
lem. In all cases, it is necessary to include some unknowtf iS described in Theorem 1 and the proof is in Sec. 6. Theo-
initial values to compute the first estimation. The second estiféM 2 describes the stochastic estimator (5) having an optimal
mation uses the old values to get the next best approximatiofONVergence region.
The iteration continues ur_1t|I the diagonal matrix d".nenS'On'Theorem 1 LetY, € RIx(mxm) e bounded output with
It is expected that the estimator values are convenient to de: 5 . ; . .
fine best estimations. Therefore, it is necessary to comput (0% < 00). There 's a diagonal stochastic estimator
; . ’ Y P % e RI»*(mxm)] given by (4).
the eigenvalues and eigenvectors system, requiring an eval-*
uation of some psgudo—lnverse method that is expensive pe— A = E{XMS_ ) @)
cause of computational complexity. Thus, this procedure is

not suitable at all. To avoid this, a method for designing anyhere the operatorE represents a mathematical ex-
optimal stochastic estimator considering the observable Sigectation and is a linear operator on the state space
nals given by the system is shown. There is a reduction iny, ¢ Rinx(mxm)] gng MS_, € RIvx(mxm)] are diago-
the computational complexity, because there is no necessifya|s innovation process and correlation matrix, respectively.
to implement any Penrose procedure. In order to get the best

stochastic estimator, Medel al. have proposed some de-

scriptions [15-18]. Proof 1. See annex in Sec. 6.
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Theorem 2 The diagonal stochastic estimator (4) has an op-bers with a normal distribution functioV (0, 1) were pro-

timal convergence given by (5) in almost all points (a.a.p.). posed. The noisay;1, is bounded by0, 0.01], ¢ € [1,m].
The system form = 2 is given by (6) and forn = 3 by

() (8), respectively. Figure 1, shows a simulation for= 2
and Fig. 2, form = 3. The observable signals are in

blue and the estimated signals in red. The estimated signals
have good approximation in probability wiffa;;|} < 1 and
02{wij} < 0.

The model (1) for the case = 2 is written as (6), where

Ap o A + €

Wheree € RInx(mxm)]
Proof 2. See annex in Section 6.

3. Simulation results
Yi, Y1, Wi, € R2*1 and A;, e R2x2,
This section shows two examples with= 2 andm = 3. In
both cases, the observable signgls,, as random real num- Y1k a1k G192k Yilk—1 W11k
= + . (6)
Y21k a21k  Q22k Y21k—1 W21k
The diagonal form for (6) is given by (7).
Y11k — W11k 0 | 0 0
0 Yoik — W2k | 0 0
0 0 | Y21k — work 0
0 0 | 0 Y11k — Wik
a1k 0 | 0 0 y%1k71 0 ‘ 0 0
0 a9k | 0 0 0 y§1k71 ‘ 0 0
= - —-— - — - —— - = == —— @)
0 0 | a2 O 0 0 | Yk 0
0 0 | 0 au 0 0 \ 0 Yiik—1

s Yk
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FIGURE 1. Case m=2. Observable signal and its identification componaht&rst, y11x, y11x, b) Secondy1x, y21%, C) Estimated values

for Ay, d) Three-dimensional plot of a surface representihg
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FIGURE 2. Case m=3. Observable signal and its identification componahElrst Y11k, Y11k, B) Secondyaik, Yo1k, €) Third, ys1k, Ysik,
d) Estimated values fady, e) Three-dimensional plot of a surface represenmg

The identification proposed by Meded al. [16] considering (3) with respect to (7) is shown in Fig. 1.

For casen = 2, Fig. 1 separately shows each of the system components. Figure 1.a) shows in blue, the first observable,
Y11k, and in red, the first identification; 1. Figure 1.b) shows in blue, the second observaflg,, and in red, the second
identification,y»1%. As shown, the estimator is very accurate, because it keeps the each change rate signal. Figure 1.c) shows
the estimated values fof;.. Finally, Fig. 1.d) shows the surfaces corresponding to each of thédatar o, @21, @22k

The model (1) for the case = 3 is written as (8), wher&},, Yi._1, Wy, € RE*U and 4, € RE*3,

Y11k ay; Qa2 a3 Y11k—1 W11k
Y21k | = | Q21 Q22 Q@23 Y21k—1 | + | w1k | - 8)
Y31k azy az2 ass Y31k—1 W31k

The diagonal form for (8) is given by (9).

i1k — w1k O 0 0 0 0 0 0 0
0 Y21k — W21k 0 0 0 0 0 0 0
0 0 Y31k — W31k 0 0 0 0 0 0
0 0 0 Y21k — W21k 0 0 0 0 0
0 0 0 0 Y31k — W31k 0 0 0 0
0 0 0 0 0 Y11k — W1lk 0 0 0
0 0 0 0 0 0 Y31k — W31k 0 0
0 0 0 0 0 0 0 Y11k — W11k 0
L 0 0 0 0 0 0 0 0 Yo1k — ’wzlk_
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a0 0 0 0 0 0 0 0
0 a0k 0 0 0 0 0 0 0
0 0 assk 0 0 0 0 0 0
0 0 0 a2 O 0 0 0 0
= 0 0 0 0 a3 O 0 0 0
0 0 0 0 0 aszik 0 0 0
0 0 0 0 0 0 azx O 0
0 0 0 0 0 0 0 a1k 0
| O 0 0 0 0 0 0 0 asok
[y, 0 0 0 0 0 0 0 0 ]
0 Y1 0 0 0 0 0 0 0
0 0 Y1 0 0 0 0 0 0
0 0 0 Yok 1 0 0 0 0 0
0 0 0 0 y3,, O 0 0 0 )
0 0 0 0 0 ¢%,, O 0 0
0 0 0 0 0 0 43,, O 0
0 0 0 0 0 0 0 4%,, O
0 0 0 0 0 0 0 0 Y21 |

The identification proposed by Medet al.[16] considering (3) with respect to (9) is shown in Fig. 2.

For casem = 3, Fig. 2 separately shows each of the
system components. Figure 2.a) shows in blue, the first obFor this case, the instrumental variable was proposed as
servableyi1, and in red, the first identificatiomy . Fig- 9, = VI |, that provides statistical properties for the esti-
ure 2.b) shows in blue, the second observable,, and in  mator (4), whereM,,_; = Y19, is invertible,i.e., M,;_ll
red, the second identificationp1,. Figure 2.c) shows in exists. This representation reduced the computational com-
blue, the third observabless;, and in red, the third iden- plexity, because to computé/l;_l1 is simply to evaluate
tification, y31,. Figure 2.d) shows the estimated values for1/(Y;,_19;) in diagonal structure and také;), j € N.

Aj. As in the casen = 2, the estimator is very accurate. Fi- In the final procedure, computing the dot products, the
nally, Fig. 2.e) shows the surfaces corresponding to each @stimator.A4;, is just to multiply each diagonal entry that is
the dataw 14, @12k, G13k, B21k, 22k Q23K A31k; A32%k, A33%- O(1) by the total dimension havingO(5).

The computational cost for implementing the pseudo-
inverse in a traditional instrumental variable shown in
Fig. 3.a). For each in pseudo-inverse case element in the
Them-dimensional state space representatioryfoandWWy, observable signal increases in ordejdand compared with
is a linear combination of (1). The diagonal is defined us-the diagonalization proposed in this paper shows a linear de-
ing the Jordan canonical form [12,24]. Each diagonal enpendence with those elements, see Fig. 3.b), observing a
try has ), = diag{Y%, }M, Wi = diag{W;,}"™ and lower computational complexity. This has important impli-
Ay, = diag{ Ax, } ™ then the diagonal representation for the cations for data storage and computing when evaluating very
state space is given by (3). large systems.

4. Discussion
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FIGURE 3. Computational complexity methoda) Pseudo-inversdy) Diagonal-inverse.
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5. Conclusions tor for black-box systems in a-dimensional state espace.

The estimator is optimal because there is a convergence re-
This paper described an estimator fomadimensional sys- gion satisfying Theorem 2 and is very accurate because it
tem without using the pseudo-inverse traditional calculationkeeps the change rates of each signal, regardless of the orig-
The system was transformed in diagonal form, having an ingn| signal length or the state space dimension. In order to
vertible condition estimate the matrix parameters with lowergygid the singularities in the system, necessary conditions
resources than traditional techniques. It is noteworthy thage given for the diagonalization process. The computational
the proposed method does not require calculating Eigenva&omplexity for this new calculation method@¥ j), where;

ues and eigenvectors which is the principal contribution ofs the diagonal matrix dimension. The figures above show the
this work. The theorems allow defining a stochsatic estimag|gorithm is consistent and easy to implement.
|

6. Annex

This section gives the proofs for Theorem1 and Theorem 2.

Proof 1 (Theorem 1).By induction on state space dimension.
Casen = 1. The system (1) in a canonical form is represented by (10) anthl .

Yilk = Qi1kYilk—1 + Witk (10)

Letwv;1x = yi1x — wirx be the innovation process; 1, a constant and considering the second probability moment in (10)
with the intrumental variable),, as a function ofj;15_1, having (11).

E{vixdr} = E{anikyiie—19 } (11)
Letzi1x = v1150%.
E{zix} = aneE{yiix—19%}
a1k = E{z1n ) E{(y110—19%) "'}
Letmiip_1 = (y11r_19%) "', having (12).
ang = E{zng}E{miik—1}
= F{ziixmiie—1} (12)

Let
Xp=diag(X k), Ap=diag(A,x), M5 _,=diag(m,x—1)

with ¢ = 1, having (13).

Ay = B{X,M;_,} (13)
Casen = 2. The system (1) in an extended canonical form is represented by (14).
Yk | _ | @11 Q12 Y11k—1 + W11k (14)
Y21k az1 Q22 Y21k—1 W21k
Letv;1x = yi1r — wix be the innovation process withe [1,2] and V), = A, Y%_; in a matricial form is given by (15).
[ V11k ] _ { ail a2 } { Y11k—1 ] (15)
V21k Q21 Qa22 Y21k—1

Let A, a constant symmetric matrix and considering the second probability moment in (15) with the intrumental variable
Y}, as a function o, |, having (16).

E{VyVy} = E{ArYr_10:} (16)
Let (17) be the diagonal form for the system without losing its properties.
T11k 0 | 0 0
0 X222k | 0 0
E —— - -
0 0 | T12k 0
0 0 | 0 Z21k
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a0 | 0 0 Yitk—1%11k 0 | 0 0
0 axr | 0 0 0 Yo1k—1Y21% | 0 0
=| —— —— - — — |E — — - — — (17)
0 0 | ai2x O 0 0 | yare—1P21k 0
0 0 | 0 a2k 0 0 | 0 Y11k—1911k
Let (18) be the simplified form for (17), whetg = diag(X,.x), Ax = diag(Ank), Vi—1 = diag(Yai—1), withn = 1,2.
E{X},} = ALE{Yi_19:}. (18)
SinceAy, is constant andlet(Yy—19;) # 0 therefore), 119 is invertible, having (19).
A = B{X I B{(V—190) ™"} (19)
LetMS | = (Vk—19%) ", then from (19) results (20).
Ay, = BE{X,M;_,} (20)
Casen = m. Let (21) be the extended canonical form for the system (1).
Y11k aiik a2 A1mk Y11k—1 W11k
Y21k a1k azzk A2mk Y21k—1 W21k
- _ . . . + . (21)
Ymik Amlk Am2k - Ommk Ymik—1 Wm1ik

Letv;1x = yi1k — wy1x be the innovation process withe [1,m] andV,, = A;Y,.—; in a matricial form is given by (22).

V11k 11k @12k " Qimk Y11k—1
V21k a1k  A22k " A2mk Y21k—-1 (22)
Um1lk Am1k Am2k e Ammk Ymilk—1

Let A a constant symmetric matrix and considering the second probability moment in (22) with the intrumental variab
Y}, as a function ol ,, having (23).
E{Vkﬂk} = E{AkYk_l’lgk} (23)
Then,det(Vy_19%) # 0 = (Vrp_19;) ! exists, therefore (19) and (20) holds for= m.
Casen = m + 1. Let (24) be the extended canonical form for the system (1).

Y11k a11k a12k t A1mk Y11k—1 W11k
Y21k a21k a22k T A2mk Y21k—1 W21k
= : L : : + : (24)
Ymilk Am1k Am2k e Ammk Ymilk—1 Wm1k
Y(m+1)1k A(m4+1)1k  A(m+1)2k """ A(m+1)(m+1)k Ym+1)1k—1 W(m+1)1k

Letv;1x=yi1x—wi1x be the innovation process withe [1,m + 1] andV,=A, Y% _; in a matricial form is given by (25).

Vi1k ai1k a12k ce A1mk Yi1k—1
V21k a1k 22k cee A2mk Y21k—1
- : : o , : (25)
Um1k Am1k Am2k e Ammk Ymilk—1
V(m+1)1k A(m+1)1k  Am+1)2k " C(m+1)(m+1)k Ym+1)1k—1

Let A, a constant symmetric matrix and considering the second probability moment in (25) with the intrumental variab
Y}, as a function o, ,, having (26).
E{V;;¥,} = E{AxYr_19:} (26)

Asin caser = m, det(V,_19;) # 0 = (Vp_19;) ! exists, therefore (19) and (20) holds for=m + 1.
System model (1) case, uses an estimated representation given by (4), then the diagonal estimsatefined by (27).

Ay = BE{LGMS_,} 27)
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Proof 2 (Theorem 2). Letey, be the error defined by, = Y — Vi, wherey, = Ay Vi1 + Wy, and Yy = Ap Vi1 + Wi

LetJ, = E{exel} be the functional error, its gradient with respect.t, is V ., Ji and is needed to minimize it evaluating

Vs Ji =0.
Ay

0=Vgz Jk (28)
=V, E{(AVk—1 — AVi-1)?)
=24, V% | — 2Ve 1 ApD1 — 25%—117\7;3
= 4V~ Ve 1 A1 — Ve WV?
A V2 = Vet Aot + Vot W2
Ay = Vet AV (V) D W (V) (29)
A~ AR AR ) T A Wi D)™
~ A+ WV (30)
In this case the estimation converges in almost all points (a. a. p.).
- Ay Avte e=WiVL (31)
|
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