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This paper shows the development of a optimal stochastic estimator for a black-box system in am-dimensional space, observing noise with
an unknown dynamics model. The results are based in state space, described by a discrete stochastic estimator and noise characterization.
The proposed result gives an algorithm to construct diagonal form for the state space system. It is a new technique for a instrumental variable
tool, and a diagonalization process avoiding the calculation of pseudo-inverse matrices is presented with a linear computational complexity
O(j) andj as the diagonal matrix dimension. The results show that it is possible to reconstruct the observable signal with a probability
approximation.
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Este art́ıculo muestra el desarrollo de un estimador estocásticoóptimo para un modelo de sistemas tipo caja negra con ruido en un espacio
m-dimensional. Se propone un algoritmo para evaluar y construir la forma diagonal del sistema en espacio de estados para estimar las
ganancias internas. El algoritmo permite eliminar el cálculo de matrices pseudoinversas y tiene una complejidad computacional de orden
lineal O(j), dondej es la dimensíon de la matriz diagonal y que computacionalmente representa una menor complejidad que los métodos
utilizados tradicionalmente a través de la pseudoinversa. Los resultados muestran que es posible reconstruir la señal observable con una
buena aproximación en un sentido de probabilidad.
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1. Introduction

Often in the real world one expects is to find linear relation-
ships between variables. In stochastic processes the linear
description or linear fit , is a mathematical method consider-
ing Yk ∈ R[m×1] andYk−1 ∈ R[m×1] with a random term
Wk ∈ R[m×1], i.e., {Yk} ∝ {Wk} andk ∈ [1,m], m ∈ N
[3]. The linear model relates to the variables{Yk} and{Wk}
or any transformation thereof, which generates a hyperplane
Ak ∈ R[m×m] with unknown parameters.Wk is a random
disturbance which includes neither controllable nor observ-
able factors and therefore is associated with the randomness
giving it the stochastic character [3]. The values ofAk are
generated inside the system without knowing its gains. The
basic model has an ARMA(1, 1) form (1).

Yk = AkYk−1 + Wk (1)

The estimatorAk is linear unbiased, wherein the overall
concept is the instrumental variable selection [8,9]. Breaking
the temporal correlation between the regressors and distur-
bances, justifies the search for an alternative estimator [6].
The second moment applied in an estimator provides consis-

tency and is computationally viable considering the recursive
form [7,10].

The instrumental variable method is a procedure requir-
ing linear algebra calculus, determining the best fit line. A
careful proof analysis will show that the method has an ap-
plication in several dimensions. Instead of finding the best
fit line by a pseudo-inverse method, it is better to find that
given by any finite linear combination of specified functions
that allows minimizing the complexity. Therefore, the gen-
eral problem is given by the set functionsf1, . . . , fj , to find
the internal coefficient valueŝa1, . . . , âj such that the linear
combination knows the observable signal,y = a1f1 + · · ·+
ajfj , j ∈ N that is the best approximation [1,2]. The solu-
tions depend on the constraint functionsfj , j ∈ N. If there is
exactly one equation for each measurement, and the functions
fj have linear combinations with their elements, the solution
is discussed under linear regression.

For non-linear systems the number of unknown parame-
ters, could be described as instrumental variable applied it-
eratively to a linearized function form until convergence is
achieved in some sense. However, it is often possible to lin-
earize a non-linear function at the outset and still use linear
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methods determining fit parameters without resorting to iter-
ative procedures. This approach commonly violates the im-
plicit assumption that the errors distribution is normal, but of-
ten still gives acceptable results using normal equations with
pseudo-inverse techniques.

A common use of the Moore-Penrose method is to com-
pute a best fit solution to a linear equation system that lacks
a unique solution. Another use is to find the minimum Eu-
clidean norm solution [23]. The pseudo-inverse is defined
and unique for all matrices whose entries are real numbers.
It can be computed using singular value decomposition. In-
deed, the pseudo-inverse matrix with singular value decom-
position could be described asM=UPV ∗ is M+=V P+U∗

whereP+ is that formed by replacing every non zero diago-
nal entry by its reciprocal and then transposing the resulting
matrix. This method is one way to solve linear instrumen-
tal variable problems selecting eigenvalues and eigenvectors
without knowing the internal evolution system [24].

The singular decomposition matrix valueM [n×n], n ∈
N, is typically computed by a two-step procedure. In the
first step, the matrix is reduced to a bi-diagonal matrix, and
hasO(n3) floating-point operations (flops). The second step
is computed by singular decomposition matrix value. This
step can only be made by an iterative method. In practice
it suffices to compute the singular value decomposition up
to a certain precision. If the precision is considered con-
stant, then the second step takesO(n) iterations costingO(n)
flops [20,25]. Thus, the first step was more expensive, and the
overall costO(n3).

Traditional form considers Householder reflections with
a cost of4mn2 − 4n3/3 flops, m,n ∈ N, assuming that
only singular values and not singular vectors are needed [19].
If m À n then it is advantageous to first reduce the ma-
trix M to a triangular matrix with QR decomposition and
then use Householder reflections to further reduce the ma-
trix to bi-diagonal form; the combined cost was2mn2 + 2n3

flops [19,20,25]. The second step can be made by a variant
of the QR algorithm for eigenvalues description (Golub&
Kahan) [22,21].

To understand the dynamic system is a well known prob-
lem. In all cases, it is necessary to include some unknown
initial values to compute the first estimation. The second esti-
mation uses the old values to get the next best approximation.
The iteration continues until the diagonal matrix dimension.
It is expected that the estimator values are convenient to de-
fine best estimations. Therefore, it is necessary to compute
the eigenvalues and eigenvectors system, requiring an eval-
uation of some pseudo-inverse method that is expensive be-
cause of computational complexity. Thus, this procedure is
not suitable at all. To avoid this, a method for designing an
optimal stochastic estimator considering the observable sig-
nals given by the system is shown. There is a reduction in
the computational complexity, because there is no necessity
to implement any Penrose procedure. In order to get the best
stochastic estimator, Medelet al. have proposed some de-
scriptions [15-18].

The purpose of this paper is to show an inverse allowing
good estimators for a black-box system (1). A diagonal rep-
resentation, providing the best computational complexity al-
lows inverse matrix. It is structured in the following manner:
Section 2 describes the basic formalism of them-dimensional
stochastic estimator and Sec. 3 presents the implementation
results. Section 4 discusses these results. Section 5 deter-
mines the conclusions, and finally, Sec. 6 is the theorem’s
proof annex.

2. Main results

In (1), the vectorsYk,Wk ∈ R[m×1] are random variables
N(µ, σ2 < ∞) andYk,Wk ∈ R[n×(m×m)], n,m ∈ N with
all non-zero entries, respectively, corresponding to the diag-
onal matrices in a Jordan canonical form havingn blocks
with m × m entries each one [16]. The system gain ma-
trix Ak ∈ R[m×m] has the corresponding diagonal matrix
Ak ∈ R[n×(m×m)] with all non-zero entries. Any diag-
onal matrix is symmetric, triangular and normal if its en-
tries are in aR field. Let D = diag(di) ∈ R[n×(m×m)]

anddet(D) =
∏

i di with i ∈ [1, nm]. The diagonal ma-
trix is invertible if and only if everydi 6= 0, hence there
areYk

−1,Wk
−1 ∈ R[n×(m×m)] [14]. The system described

in (1), in diagonal form is given by (2).

Yk = AkYk−1 +Wk (2)

Let Yk andWk be vectors related to the state space and
ϑk ∈ R[n×(m×m)] be the instrumental variable. Therefore,
{Yk} ∝ {Wk} if and only if there exists an affine linear
spaceYk ∈ R[n×(m×m)] such thatAk, I ∈ R[n×(m×m)] are
constants, satisfying the linear combination (2) [12,13]. The
diagonal identification form is given by (3).

Ŷk = ÂkŶk−1 +Wk (3)

Thus, the relationship (3) defines the black-box system
identification whereÂk is unknown internal parameters and
it is described in Theorem 1 and the proof is in Sec. 6. Theo-
rem 2 describes the stochastic estimator (5) having an optimal
convergence region.

Theorem 1 Let Yk ∈ R[n×(m×m)] be bounded output with
N(µ, σ2 < ∞). There is a diagonal stochastic estimator
Âk ∈ R[n×(m×m)] given by (4).

Âk = E{XkM¦
k−1} (4)

Where the operatorE represents a mathematical ex-
pectation and is a linear operator on the state space,
Xk ∈ R[n×(m×m)] andM¦

k−1 ∈ R[n×(m×m)] are diago-
nals innovation process and correlation matrix, respectively.

Proof 1. See annex in Sec. 6.
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Theorem 2 The diagonal stochastic estimator (4) has an op-
timal convergence given by (5) in almost all points (a.a.p.).

Âk
−→

a.a.p. Ak ± ε (5)

Whereε ∈ R[n×(m×m)].

Proof 2. See annex in Section 6.

3. Simulation results

This section shows two examples withm = 2 andm = 3. In
both cases, the observable signals,yi1k, as random real num-

bers with a normal distribution functionN(0, 1) were pro-
posed. The noise,wi1k, is bounded by[0, 0.01], i ∈ [1,m].
The system form = 2 is given by (6) and form = 3 by
(8), respectively. Figure 1, shows a simulation form = 2
and Fig. 2, form = 3. The observable signals are in
blue and the estimated signals in red. The estimated signals
have good approximation in probability with{|aij |} ≤ 1 and
σ2{wij} < ∞.

The model (1) for the casem = 2 is written as (6), where
Yk, Yk−1,Wk ∈ R[2×1] andAk ∈ R[2×2].

[
y11k

y21k

]
=

[
a11k a12k

a21k a22k

] [
y11k−1

y21k−1

]
+

[
w11k

w21k

]
. (6)

The diagonal form for (6) is given by (7).



y11k − w11k 0 | 0 0
0 y21k − w21k | 0 0

−−− −−− − −−− −−−
0 0 | y21k − w21k 0
0 0 | 0 y11k − w11k




=




a11k 0 | 0 0
0 a22k | 0 0
−− −− − −− −−
0 0 | a12k 0
0 0 | 0 a21k







y2
11k−1 0 | 0 0
0 y2

21k−1 | 0 0
−− −− − −− −−
0 0 | y2

21k−1 0
0 0 | 0 y2

11k−1




. (7)

FIGURE 1. Case m=2. Observable signal and its identification components.a) First,y11k, ŷ11k, b) Second,y21k, ŷ21k, c) Estimated values
for Âk, d) Three-dimensional plot of a surface representingÂk.
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FIGURE 2. Case m=3. Observable signal and its identification components.a) First,y11k, ŷ11k, b) Second,y21k, ŷ21k, c) Third, y31k, ŷ31k,
d) Estimated values for̂Ak, e)Three-dimensional plot of a surface representingÂk.

The identification proposed by Medelet al. [16] considering (3) with respect to (7) is shown in Fig. 1.

For casem = 2, Fig. 1 separately shows each of the system components. Figure 1.a) shows in blue, the first observable,
y11k, and in red, the first identification,̂y11k. Figure 1.b) shows in blue, the second observable,y21k, and in red, the second
identification,ŷ21k. As shown, the estimator is very accurate, because it keeps the each change rate signal. Figure 1.c) shows
the estimated values for̂Ak. Finally, Fig. 1.d) shows the surfaces corresponding to each of the dataâ11k, â12k, â21k, â22k.

The model (1) for the casem = 3 is written as (8), whereYk, Yk−1, Wk ∈ R[3×1] andAk ∈ R[3×3].




y11k

y21k

y31k


 =




a11 a12 a13

a21 a22 a23

a31 a32 a33







y11k−1

y21k−1

y31k−1


 +




w11k

w21k

w31k


 . (8)

The diagonal form for (8) is given by (9).




y11k − w11k 0 0 0 0 0 0 0 0
0 y21k − w21k 0 0 0 0 0 0 0
0 0 y31k − w31k 0 0 0 0 0 0
0 0 0 y21k − w21k 0 0 0 0 0
0 0 0 0 y31k − w31k 0 0 0 0
0 0 0 0 0 y11k − w11k 0 0 0
0 0 0 0 0 0 y31k − w31k 0 0
0 0 0 0 0 0 0 y11k − w11k 0
0 0 0 0 0 0 0 0 y21k − w21k
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=




a11k 0 0 0 0 0 0 0 0
0 a22k 0 0 0 0 0 0 0
0 0 a33k 0 0 0 0 0 0
0 0 0 a12k 0 0 0 0 0
0 0 0 0 a23k 0 0 0 0
0 0 0 0 0 a31k 0 0 0
0 0 0 0 0 0 a13k 0 0
0 0 0 0 0 0 0 a21k 0
0 0 0 0 0 0 0 0 a32k







y2
11k−1 0 0 0 0 0 0 0 0
0 y2

21k−1 0 0 0 0 0 0 0
0 0 y2

31k−1 0 0 0 0 0 0
0 0 0 y2

21k−1 0 0 0 0 0
0 0 0 0 y2

31k−1 0 0 0 0
0 0 0 0 0 y2

11k−1 0 0 0
0 0 0 0 0 0 y2

31k−1 0 0
0 0 0 0 0 0 0 y2

11k−1 0
0 0 0 0 0 0 0 0 y2

21k−1




. (9)

The identification proposed by Medelet al. [16] considering (3) with respect to (9) is shown in Fig. 2.

For casem = 3, Fig. 2 separately shows each of the
system components. Figure 2.a) shows in blue, the first ob-
servable,y11k, and in red, the first identification,̂y11k. Fig-
ure 2.b) shows in blue, the second observable,y21k, and in
red, the second identification,̂y21k. Figure 2.c) shows in
blue, the third observable,y31k, and in red, the third iden-
tification, ŷ31k. Figure 2.d) shows the estimated values for
Âk. As in the casem = 2, the estimator is very accurate. Fi-
nally, Fig. 2.e) shows the surfaces corresponding to each of
the datâa11k, â12k, â13k, â21k, â22k, â23k, â31k, â32k, â33k.

4. Discussion

Them-dimensional state space representation forYk andWk,
is a linear combination of (1). The diagonal is defined us-
ing the Jordan canonical form [12,24]. Each diagonal en-
try hasYk = diag{Yki}nm

i=1, Wk = diag{Wki}nm
i=1 and

Ak = diag{Aki}nm
i=1 then the diagonal representation for the

state space is given by (3).

For this case, the instrumental variable was proposed as
ϑk = YT

k−1, that provides statistical properties for the esti-
mator (4), whereMk−1 = Yk−1ϑk is invertible,i.e.,M−1

k−1

exists. This representation reduced the computational com-
plexity, because to computeM−1

k−1 is simply to evaluate
1/(Yik−1ϑik) in diagonal structure and takesO(j), j ∈ N.

In the final procedure, computing the dot products, the
estimatorÂk is just to multiply each diagonal entry that is
O(1) by the total dimensionj havingO(j).

The computational cost for implementing the pseudo-
inverse in a traditional instrumental variable shown in
Fig. 3.a). For eachj in pseudo-inverse case element in the
observable signal increases in order ofj3 and compared with
the diagonalization proposed in this paper shows a linear de-
pendence with those elements, see Fig. 3.b), observing a
lower computational complexity. This has important impli-
cations for data storage and computing when evaluating very
large systems.

FIGURE 3. Computational complexity methods:a) Pseudo-inverse,b) Diagonal-inverse.
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5. Conclusions

This paper described an estimator for am-dimensional sys-
tem without using the pseudo-inverse traditional calculation.
The system was transformed in diagonal form, having an in-
vertible condition estimate the matrix parameters with lower
resources than traditional techniques. It is noteworthy that
the proposed method does not require calculating eigenval-
ues and eigenvectors which is the principal contribution of
this work. The theorems allow defining a stochsatic estima-

tor for black-box systems in am-dimensional state espace.
The estimator is optimal because there is a convergence re-
gion satisfying Theorem 2 and is very accurate because it
keeps the change rates of each signal, regardless of the orig-
inal signal length or the state space dimension. In order to
avoid the singularities in the system, necessary conditions
are given for the diagonalization process. The computational
complexity for this new calculation method isO(j), wherej
is the diagonal matrix dimension. The figures above show the
algorithm is consistent and easy to implement.

6. Annex

This section gives the proofs for Theorem1 and Theorem 2.

Proof 1 (Theorem 1).By induction on state space dimension.
Casen = 1. The system (1) in a canonical form is represented by (10) withi = 1.

yi1k = ai1kyi1k−1 + wi1k (10)

Let vi1k = yi1k − wi1k be the innovation process,a11k a constant and considering the second probability moment in (10)
with the intrumental variableϑk as a function ofy11k−1, having (11).

E{v11kϑk} = E{a11ky11k−1ϑk} (11)

Letx11k = v11kϑk.

E{x11k} = â11kE{y11k−1ϑk}
â11k = E{x11k}E{(y11k−1ϑk)−1}

Letm11k−1 = (y11k−1ϑk)−1, having (12).

â11k = E{x11k}E{m11k−1}
= E{x11km11k−1} (12)

Let
Xk=diag(Xnk), Ak=diag(Ank), M¦

k−1=diag(mnk−1)

with i = 1, having (13).

Âk = E{XkM¦
k−1} (13)

Casen = 2. The system (1) in an extended canonical form is represented by (14).
[

y11k

y21k

]
=

[
a11 a12

a21 a22

] [
y11k−1

y21k−1

]
+

[
w11k

w21k

]
(14)

Letvi1k = yi1k − wi1k be the innovation process withi ∈ [1, 2] andVk = AkYk−1 in a matricial form is given by (15).
[

v11k

v21k

]
=

[
a11 a12

a21 a22

] [
y11k−1

y21k−1

]
(15)

Let Ak a constant symmetric matrix and considering the second probability moment in (15) with the intrumental variable
ϑk as a function ofY T

k−1, having (16).
E{Vkϑk} = E{AkYk−1ϑk} (16)

Let (17) be the diagonal form for the system without losing its properties.

E








x11k 0 | 0 0
0 x22k | 0 0

−−− −−− − −−− −−−
0 0 | x12k 0
0 0 | 0 x21k
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=




a11k 0 | 0 0
0 a22k | 0 0
−− −− − −− −−
0 0 | a12k 0
0 0 | 0 a21k




E








y11k−1ϑ11k 0 | 0 0
0 y21k−1ϑ21k | 0 0
−− −− − −− −−
0 0 | y21k−1ϑ21k 0
0 0 | 0 y11k−1ϑ11k








(17)

Let (18) be the simplified form for (17), whereXk = diag(Xnk),Ak = diag(Ank),Yk−1 = diag(Ynk−1), with n = 1, 2.

E{Xk} = ÂkE{Yk−1ϑk}. (18)

SinceAk is constant anddet(Yk−1ϑk) 6= 0 thereforeYk−1ϑk is invertible, having (19).

Âk = E{Xk}E{(Yk−1ϑk)−1} (19)

LetM¦
k−1 = (Yk−1ϑk)−1, then from (19) results (20).

Âk = E{XkM¦
k−1} (20)

Casen = m. Let (21) be the extended canonical form for the system (1).



y11k

y21k

...
ym1k


 =




a11k a12k · · · a1mk

a21k a22k · · · a2mk

...
... · · · ...

am1k am2k · · · ammk







y11k−1

y21k−1

...
ym1k−1


 +




w11k

w21k

...
wm1k


 (21)

Letvi1k = yi1k − wi1k be the innovation process withi ∈ [1,m] andVk = AkYk−1 in a matricial form is given by (22).



v11k

v21k

...
vm1k


 =




a11k a12k · · · a1mk

a21k a22k · · · a2mk

...
... · · · ...

am1k am2k · · · ammk







y11k−1

y21k−1

...
ym1k−1


 (22)

Let Ak a constant symmetric matrix and considering the second probability moment in (22) with the intrumental variable
ϑk as a function ofY T

k−1, having (23).
E{Vkϑk} = E{AkYk−1ϑk} (23)

Then,det(Yk−1ϑk) 6= 0 ⇒ (Yk−1ϑk)−1 exists, therefore (19) and (20) holds forn = m.
Casen = m + 1. Let (24) be the extended canonical form for the system (1).




y11k

y21k

...
ym1k

y(m+1)1k




=




a11k a12k · · · a1mk

a21k a22k · · · a2mk

...
... · · · ...

am1k am2k · · · ammk

a(m+1)1k a(m+1)2k · · · a(m+1)(m+1)k







y11k−1

y21k−1

...
ym1k−1

y(m+1)1k−1




+




w11k

w21k

...
wm1k

w(m+1)1k




(24)

Letvi1k=yi1k−wi1k be the innovation process withi ∈ [1,m + 1] andVk=AkYk−1 in a matricial form is given by (25).



v11k

v21k

...
vm1k

v(m+1)1k




=




a11k a12k · · · a1mk

a21k a22k · · · a2mk

...
... · · · ...

am1k am2k · · · ammk

a(m+1)1k a(m+1)2k · · · a(m+1)(m+1)k







y11k−1

y21k−1

...
ym1k−1

y(m+1)1k−1




(25)

Let Ak a constant symmetric matrix and considering the second probability moment in (25) with the intrumental variable
ϑk as a function ofY T

k−1, having (26).
E{Vkϑk} = E{AkYk−1ϑk} (26)

As in casen = m, det(Yk−1ϑk) 6= 0 ⇒ (Yk−1ϑk)−1 exists, therefore (19) and (20) holds forn = m + 1.
System model (1) case, uses an estimated representation given by (4), then the diagonal estimatorÂk is defined by (27).

Âk = E{XkM¦
k−1} (27)

¥
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Proof 2 (Theorem 2). Let ek be the error defined byek = Yk − Ŷk, whereYk = AkYk−1 +Wk andŶk = ÂkŶk−1 +Wk.
Let Jk = E{ekeT

k } be the functional error, its gradient with respect tôAk is∇Âk
Jk and is needed to minimize it evaluating

∇Âk
Jk = 0.

0 = ∇Âk
Jk (28)

= ∇Âk
E{(AkYk−1 − ÂkŶk−1)2}

= 2ÂkŶ2
k−1 − 2Ŷk−1AkYk−1 − 2Ŷk−1Ŵ2

k

= ÂkŶ2
k−1 − Ŷk−1AkYk−1 − Ŷk−1Ŵ2

k

ÂkŶ2
k−1 = Ŷk−1AkYk−1 + Ŷk−1Ŵ2

k

Âk = Ŷk−1AkYk−1(Ŷ2
k−1)

−1 + Ŷk−1Ŵ2
k(Ŷ2

k−1)
−1 (29)

Âk ∼ AkY2
k−1(Ŷ2

k−1)
−1 + Ŵ2

k(Ŷk−1)−1

∼ Ak + Ŵ2
k Ŷ−1

k−1 (30)

In this case the estimation converges in almost all points (a. a. p.).

∴ Âk
−→

a.a.p. Ak ± ε; ε = Ŵ2
k Ŷ−1

k−1 (31)

¥
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