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The case of the hermeticity of the operators representing the physical observable has received considerable attention in recent years. In this
paper we work with a method developed by Morsy and Ata [1] for obtaining Hermitian differential operators independently of the values of
the boundary conditions on wave functions. Once obtained these operators, called intrinsically Hermitic operators, we build the Hamiltonian
for the harmonic oscillator, hydrogen atom and the potential well of infinite walls. In the first two cases we use the factorization method of
ladder operators (also intrinsically Hermitic) and show that results obtained with conventional operators, based on the annulation of the wave
functions on the boundaries, are preserved. For the infinite well we show that the version of the Hamiltonian intrinsically Hermitic provides

a solution to a paradox that appears in a particular wave function.

Keywords: Boundary conditions; Dirac delta function.

El caso de la hermiticidad de los operadores que representan a los observables ha recibido Gnaaresidérable en lagdtimos dios. En

este trabajo tratamos con uretndo desarrollado por Morsy y Ata [1] para obtener operadores diferenciales hermiticos independientemente
de los valores en la frontera que se impongan sobre las funciones de onda. Una vez obtenidos estos operadores, linsemdoseinte
herniticos, construimos hamiltonianos para el oscilador@rito, elatomo de hidbgeno y el pozo de potencial de paredes infinitas. En

los dos primeros casos utilizamos ettmdo de factorizabn con operadores de escalera (tégnbntinsecamente heiiticos) y mostramos

que se preservan los resultados obtenidos con los operadores convencionales que se basan eorlalanataftinciones de onda en las
fronteras. En el caso del pozo infinito mostramos que la@giisitinsecamente heiitica del hamiltoniano proporciona una sofutia una
paradoja que se presenta en una fonae onda particular.

Descriptores: Condiciones de frontera no nulas.

PACS: 03.65.-w; 02.30.Hq

1. Introduction is Hermitian. Inconsistencies found in that paper are re-
lated to(E) and( E?) whereE represents the energy, which
The question of the nature of the eigenvalues of operatorarise precisely of the behavior of certain solutions of the
in guantum mechanics is fundamental for the correct interSchiddinger equationH¥ = EW¥ on the boundaries of the
pretation of the Sclidinger equation, which along with the infinite well.
boundary conditions, provides all the information we can get
about a quantum system. Hermitian operators are tradition-  Jjust to highlight the interest that exists on the topic of
ally used because their eigenvalues are real numbers whighermiticity, we should mention that in the literature are other
are associated with the values that physical variables takgpproaches. For example, Ref. 3 treat with respect the Her-
because have been postulated that these quantities appeakiftian quantum mechanics in the traditional foiire,, usual
the naturej.e., they can be measured. For this reason, thejefinition of the Hermitian operator and the scalar product in
physical variables must be associated to operators with suiterms of an integral whose limits are the physical boundaries
able properties, but it is important to note that eigenvaluesf the system (as we shall see in the next section) is used.
and eigenfunctions depend also of the boundary condition$he authors propose to eliminate both notions and develop a
and for that reason these boundary conditions must be treategethod that respects the following conditions: the real eigen-
with the same care. For differential operators, as the momenalues of an operator representing an observable, the unitarity
tum and kinetic energy, this is done in a special way. In factof the temporal evolution and the correct probabilistic inter-
in order to the differential operators satisfy the hemiticity no-pretation. These three conditions are essential [4]. They in-
tion in the algebraic sense, which is the more accepted, thgoduce a new notion of Hermiticity based &1 symmetry,
wave functions must be null on the boundary. For exampleparity and temporal inversion and considering the three fun-
bound systems satisfy this almost automatically. Howevergamental conditions. This line of research has generated a
as in [2] has been indicated for the potential well of infinite considerable production, and some researchers believe that
walls, some inconsistencies appear from de question if thehis approach is equivalent to ordinary quantum mechanics

Hamiltonian of the free particle but based on a different scalar product [5], while others con-
sider it as an extension of quantum theory [6]. Another inter-
b 1 d? esting way to treat the mathematical nature of the Hamilto-

C2da? nian is a variant of the previous approach, presented in Ref. 7.
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A third approach that receives constant attention in theoperator, its adjointﬁT (if there exists) is defined in the fol-
literature is the Dirac algebraic factorization [8] of the Hamil- lowing form:
tonian operator for certain systems like the harmonic os- N N
cillator, which has been extended to families of potentials (f|Alg) = (g| AT |f)* (2.1)
with algebras based on Ricatti’s parameters that lead to the
same energy spectrum of the harmonic oscillator [9]. Ver- If
sions of these families for supersymmetric quantum mechan- N N
ics [10] has been developed. Factorization may have aspects AT =A (2.2)
which have not been explored extensively. Some mathemat-
ical foundations are found in references [11,12] and in the-e. if forall |f) we have
extension to supersymmetric quantum mechanics with Ric- R R
cati's parameters in Ref. 13. AT[f) = Al f)
In this paper we keep the scheme with respect to the N
Hermitian Dirac operator, i.e, A = Af, with the ordi- thenA is called Hermitian or self-adjoint operator. In this
nary scalar product, but with the novelty that it is not nec-case Equation (2.1) is now
essary that wave functions be null on the boundaries. This

scheme was introduced by Morsy and Ata (MA) in Ref. 1 (flAlg) = (gl Alf)" (2.3)
and is based on the terms with the boundary conditions are
absorbed in a new operatArwhich is intrinsically Hermitic, Note that the Hermiticity condition (2.2) is independent

i.e, A = At independently of the values of the wave func- of the vector space considered, the basis used and therefore
tions on the boundaries. This new operator must satisfiegny particular representation. Taking into account and in ac-
of course, the three basic postulated. In this paper a ger¢ordance with Morsy and Ata, the condition (2.2) expresses
eralization of the MA method is presented which is basedhe named intrinsic Hermiticity of the operatdrwhich, in
on factorization of the intrinsically Hermitic operatbk and  terms of the scalar product, is given by (2.3). We apply this
showing that the sets of eigenvalues and eigenfunctiok of to the Hilbert space of solutions of the Sotinger equation.
are exactly the same as the conventional opeddttor well- ~ With the scalar product defined in the usual way
known cases of the harmonic oscillator and hydrogen atom.
Also give an adequate solution to the paradoxes [2] presented —~ 7 —~
in the well of infinite walls. (flAlg) = / [ () Ag () dx

This paper is organized as follows: In Sec. 2, Hermi- 1
tian operators of momentum and kinetic energy in the con-
ventional form and its dependence on boundary conditionEq
are presented along with the concept of intrinsic Hermiticity
according to the MA method. In Sec. 3 the new Hamilto- X -~ . n
nian for the harmonic oscillator is constructed and factored /f (x) Ag (@) dr = /g (z) Af (@) da
into the ladder operators for showing that the energy spec- *: 1

trum and the set of wave functions are not altered. In Sec. ﬁ/hich is the definition of Hermitian operator in quantum me-

we do the same for the hydrogen atom with ladder 0peratoréhanics [4]. As is well-known, it is necessary to impose an

that change the angulgr momentum for each energy level 'Bxtra condition wher! is the differential operator
the same way that traditional operators, and also construct the
d

corresponding set of solutions. In Sec. 5 we discuss the con- —
sequences that occur in the particular case of a wave function D= dr
for the potential well of infinite walls that does not vanish at
these walls. Section 6 presents the conclusions and finallyr a polynomial function ofD (the arrow on the letterD
in Appendix we developed a formal concept of the Dirac’sacquires a precise meaning later.) In effect:
delta, which justifies the generalization of the MA method to
the case where the boundaries go to infinity and the question d o d
of the normalization of wave functions. o lg) = /f* (z) o9 () dz
1

. (2.3) is now

z2 z2 *

(2.4)

2. Intrinsic Hermiticity — P @) g (@) — <g|di|f>* 2.5)
1 T

2.1. Definition

The extra condition consider that the functions must be
Let| f) and| g) vectors of a vector space with arbitrary scalarnull on the boundaries. However this is not enough; even in
product. The above are, in general terms, vectors that are sthis case, the derivative operator is not Hermitieg, does
perposition of the elements of some basis.Alfs a linear  not satisfy (2.4), due to the sign of the second term of (2.5).
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For the second derivative we have two extra terms becauseith which we can write a function evaluated in the points

we have two integrations andz, in the form
H-Lle) = 1@ Ly )| i
2 ) = ) = 2
Y aw? )| F(@)[7 = F (23) — F (1) = /F(x)d(:c—xg)dx
d . T2 d2 . 1
—9() @] el 510 (@26) - v
o — / F(z)d(x—x1)dx = /F (z) ddxz (2.10)
In the simplest quantum case we have the momentum op- K J
erator p ! '
p=—i— Using (2.10) we can write the boundary terms of (2.5) in
dz the form
for which

T2

£ @@Lz = [ 1 @) 5= (oI5|

T

(f1Plg) = / F* (2) Py () de
— i @@+ Pl @)

— ~ — ~ @ —
Unless the wave functions be null on the boundarigs  (f| D lg) = (g0 |f)" — (9| D |f)" = (9] (5 - D) |f)"
and z,, the momentum operator is not intrinsically Hermitic .
in the sense of Eq. (2.2) or (2.3) for differential operators.  Then we can write the adjoint dP as [1]
For the kinetic energy operator

-~ 1 d?
T=—>—
2 da? For the second derivative we obtain from (2.6)

and substituting in (2.5) we find

DI =5-D (2.11)
h ’ di . — —~ ~ —
we have, according to (2.6) (F1 B2 ) = (gl D) — (9| 5D )" + (gl B2If)"

(FIT1g) = —5 f* (@) g (a) ~ (gl (D558 + B?) Iry

T2

R . 2t _PF 5T T2
+(g|T|f) (2.8) D DS—0D+ D (2.12)

1 d ..
tae@ Gl @]
o where the following symbology has been introduced
As a consequence of (2.8) the Hamiltonian of the quan-
«—

tum system is considered only Hermitic when the wave func- N d - d
tions and/or its derivatives are null on the boundaries. For DIf) = - f(z), (fID—fl2)
bound systems this happens almost always, but other type

of problems, for example, dispersion problems, the function$© continue using the Dirac notation in a coherent way.

are not null on the boundary. As a curious note, in Ref. 2 the  With the mechanism of the extended Dirac delta the ex-
authors discuss some paradoxes about the Hermiticity of thression (2.5), along with the facteri used for the moment
Hamiltonian relative to the values that certain wave functionoperator, takes the form:

of a particle in an infinite potential well takes, and then pro- ~

vide an explanation. As mentioned, the method presented in (f1plg) = (4l (i5 —13) 1) (2.13)

this paper provides a natural solution to this situation. ) . ] o
Using (2.13) and (2.1), which defines the adjoint opera-

2.2, Method of hermitization tor, we obtain the adjoint of the momentum operator
Here we present the mechan_ism o_leveloped in Ref. 1 by Pt = ig_ii =i +p (2.14)
Morsy and Ata (MA method) in which the boundary con- dx

ditions are not used in the conventional role. In this mecha-  \aking the same with the operator of kinetic energy we
nism the boundary terms of (2.7) and (2.8) are absorbed intgptain

new operators of momentum and kinetic energy and the same Tt = _‘551 + 153 +7T (2.15)
technique is used for any linear combination of differential 2 2
operators. The MA method take the individual operators that appear in
We introduce the extended Dirac delta the adjoint and make a linear combination of them with co-
~ efficients chosen adequately in order to obtain hermiticity of
6 =0 (z,m1,22) =0 (v —w2) = 6 (& — 1) (29)  that linear combination which is called associate differential
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operator (ADO). For derivative operator (2.11) the ADO is boundary as part of the adjoint and identifying the individ-
given by ual operators involved as a basis; b) define the ADOAof
D= agd + alﬁ) by a linear combination of this basis, with complex coeffi-
cients, c) determine the adjout\tT of the ADO and d) match

which must be equal to its adjoint: the two operatorsA A for obtaining a set of algebraic

Df = %5 I alDT equa_tlc_)ns for the coefﬂme_nts. Taking into ac_co_unt that some
coefficients are undetermined, we have an infinite set of in-
= aid +at (g_ l—j) = (at +a")s—a*D trinsically Hermitic versions oAA. Additional information is
required from each quantum system to determine in unique
from wherea; = —a}, ap = aj + af. From these rela- form all coefficients.
tions we obtaim; = i and ag — afy = —i = 2Im ay, i.e, In the Appendix is demonstrated another contribution to
ap = a—1i/2, whereda is areal number. Then the intrinsically the MA method which is the extension to the case of the hy-
Hermitic derivative operator is: drogen atom and harmonic oscillator when the boundaries ex-

tend to infinity.
— —
D= D+(a—2)(5—zD—c( )=—-p—c(z) (2.16)

2.3. Commutation Relationship betweerp and x

where )
_ T\
c(z) = <—Oé + 2> 4 (2.17)  We start from the conventional commutator
Taking into account the operators appearing in (2.12), the A [~ R
ADO of the second derivative is: [, 7] [I’ ZD} - (2.24)

— =~ ~ — . P P
D2 =byD6+b,6D + by D? (2.18)  to evaluate the conmutator of the intrinsically Hermitic mo-
mentum operatop and the position operatar.
which must be equal to its adjoint. From thig = b} + b3

andb, = b5 = 1 and thushy or b, are indeterminate. If we SO PO ) il T\ [ 5
chooseh, = (3 thenb; = * — 1 and the operator for the [@,p]= 7.~ (a~ 3 =[z.p] — (o~ ) {x’ }

second derivative is:

Using expression (2.9) for the extended Dirac delta, we
find that {E, 5} = 0, since
Using (2.16) and (2.19) we can write the momentum and

— — —~ ~
D?=D*+ D6+ (B —1)6D (2.19)

kinetic energy operators intrinsically Hermitic in the follow- B T2 N

ing form 1 [2.8)19) = [ 1 @) 359 (a) da
p=-D=p+c(a) (2.20)
T = —%5’2 —% D2+ Dof+ (8" — 1)3’3} (2.21) - /f* () 629 (z) dz =

The HamiltonianH of a quantum system that is subject o )
to a potential’ (z), is which is independent of the values of the functigh&r) and

g () onthe boundaryx; y z,. Then

H=T+V(z)= v (z) (2.22)
2 [,p] = [7,p] =i
and also is intrinsically Hermitic. In the case of the fourth
derivative, which we will use in Sec. 5 for the infinite well, This result is very important because it shows that the in-
we obtain: trinsically Hermitic momentum operator satisfies the Heisen-

B CO<535~+ 6152&_}) berg’s uncertainty principle.
> ~ —
+¢D6D? + ¢36D? + ¢4 D* (2.23) ) .
3. Harmonic oscillator

where the coefficients satisfy = 1, co+c3=v,c1+c2 =1,

with « andn real numbers. In this section intrinsecally Hermitic differential operators
We summarize the mechanism of the MA method fordeveloped in the previous section are tested in the known

any linear differential operatod as follows: a) evaluate the case of the harmonic oscillator by the factorization method

adjoint of A using integration by parts taking terms of the of Dirac [13].
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3.1. Conventional treatment solution of this differential equation 8 (z) = e=*"/2, Ap-

) ) ) ) ) plying the Hamiltonian in the form (3.5) tg, we find the
The harmonic oscillator is one of the most interesting ofyinimum energyf, = 1/2. Finally, the state energy

guantum mechanics which can be solved exactly. The con-

ventional Hamiltonian is given by E,=n+ % (3.12)
H= 1]32 + 1@2 (3.1) is obtained applyingn times the operatob to the ground
2 2 state: .
L ~ o~ T/2
where 5 = —i D. First, we briefly review the algebraic fac- Yn ~ 0o ~ e Hy (z) (3.13)

torization procedure of the Hamiltonian (3.1). With the oper-whereH,, (z) the Hermite polynomial of degree. The ex-
ators pressions (3.12) and (3.13) are the solution for the quantum

harmonic oscillator with the conventional Hamiltonian (3.1).

) 1
a=—F72p+ —==2 3.2
NG (3.2)
~ ) 1
b=——p+ z 3.3 3.2. The intrinsically Hermitian version
NG (3.3) y
the Hamiltonian can be write We v_viII now use the intrir_1$ically Hermitic version_ of th_e
Hamiltonian operator applied to the same harmonic oscilla-
H=3ab— 1 (3.4)  tor. We make no assumptions about the behavior of the wave
2 functions at the boundaries although is well-known that such
% —36+1 (3.5) functions are null on those boundaries. Our purpose here
o ' is to demonstrate that the intrinsic Hermitic Hamiltonién
It is easy to find the commutation relation between oper-Eq'. (2'2§)i g|://\(/as thlf sr;meHres_LIJIts as t_he r(ior;ventlonal Hamil-
ators (3.2) and (3.3): tonian (3.1). We take t e1 amltolnlan in the form
~ H=_p2+-32 3.14
[a.0] =1 (3.6) P Tt (3.14)
The Schédinger equation is
and the Schidinger equation .
Hyp, = Epty, (3-7)  in which the energy&, is the same as in the conventional

treatment, but the solution is denoted py (z). Below we

can be write in the form will establish the relationship betweer (x) andé,, (x) and

=~ [ 1 show that physics is the same for both solutions. We propose
Hpn = (ab N 2) Un (3.8) a factorization based in the operators
. ~ ! . ~ T 1
Applying the operatob to (3.8) we find the following re- a= 5P + N (3.16)
sult ) _ .
Ba+>3 = (B + 1) b, 3.9 b=——p+——7 3.17
(8a-+ 3 ) o= (B0 +1) 39) 5P+ s 317)

This last expression is equivalent to (3.7). In effect, com-where p is the intrinsically Hermitic momentum opera-
paring (3.7) and (3.9) we can see that, is also a eigenfunc-  tor (2.20), which also appears in the Hamiltonian (3.14). The

tion of the Hamiltonian with eigenvalug,, + 1, that is, new operators have the same functional form as ordinary op-
PN ~ erators (3.2) and (3.3) and their algebraic properties are the
Hbpn = (Ep +1) by, same, for example
SO we can say that, except for a proportionality consﬁam, ab = 7}§2 + sz i 0 B,7] = o 1
represents the state of quantum number 1: 2 2 2 2
R Then we have that the equation (3.15) can be written in
bn ~ Pnt1 (3.10) the following forms
Thereforeb is called raising operator. In the same way (QB — ;) ©on = Enpp (3.18)
awn ~ wnfl (311) ~ 1
<b§ + > ©n = Enpn (3.19)
from wherea is a lowering operator. The chain is broken 2

down because the energy can not be negative. ylgethe

W > ab BA) = 2B, on 2
minimum energy state or ground state; thafy, = 0. The (a thaje ¢ (3.20)
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with the commutator the invariability of the oscillator problem: the energy spec-
~ trum (3.12) and the collection of wave functions (3.24) with
{57 b} =1 (3.21)  allits properties. Finally, we can say that the intrinsic her-
, . mitization of the operators (3.16) and (3.17) according to the
The commutation relation (3.21) shows that the algebrga method, describes in correct form the harmonic oscil-

of intrinsically Hermitian operators andb is exactly the  |544r since their algebra is exactly the same as conventional
same as that of the operat@rsandb, and from this the en- operators (3.2) and (3.3).

ergy spectrum is the same as the conventional oscillator, as

mentioned before. Now we will generate the wave functions.

If o represents the ground state, then the condéipn=0 4. The hydrogen atom
allows us find it. In effect, using (2.20) express the operator

ain the form (in the coordinate representation): 4.1. Conventional factorization

We consider the radial part of the Sodinger equation, in
which the Coulomb potentidl’ (r) = —Ze?/r and the en-
ergy E,, are. The conventional Hamiltonian

a:% [jx—ﬁ—ic(x)—kx}

from where we find the differential equation

PN 1 d? 1(1+1) Ze?
d . H=-——— - = 4.1
—dio + [ic (x) + x] o = 0 ! o dr? 22 r 1)
whose solution is such that[?an,l = E, R, for the principal quantum num-

ber n and the quantum number of angular momentum
To simplify the notation usually the dimensionless variable
p = Zér, the constant = 2E/Z%¢* and the change
R, = pyn, are introduced. The expression for the Hamil-

©o (CE) ~ e—x2/26—if c(x)dx

~ H, (l‘) e—a;Z/Qe—if c(x)dx (322)

Now, the raising operator tonian is now
. 2 1l+1) 2
=~ 1 d . - _z
b= VARTE ic(z)+z (3.23) H dp? 2 P (4.2)
generate the first excited state and the Scladinger equation is now written as

b 2 ; Hiy 1=Ep1y,. The ladder operators are [11]
¥1 (1’) ~ bQDO ~ Hy (1') e T /26*’Lf c(x)dx

a; = ip+ t! (4.3)
whereH (z) = 2x. In general, if W=, '
—x —i [ e(x)dx -~ i~ l 1
Pn—1 (JJ) ~ Hn—l (Z‘) € 2/26 j (@)d bl = —1ip =+ ; — 7 (44)
we get with the properties
() ~ b1 (x) ~ [20H, 1 () o it
H],_,(@)] "2 s st e
~ o~ 1
and using the recurrence relation between Hermite polyno- biag = Hy + 2 (4.6)
mialsH, _, = 2zH,_, — H, we find the expression for the i .
wave function of thei-th excited state and as a consequence of (4.5) and (4.6) we find the relations
on () ~ Hy (z) e~ /2e~ ] cla)dz Hy 1o, = G H o = Entn, (4.7)
~ 1y, (z) et cl@)de (3.24) ﬁl+1gl+11/}n,l = gl+lﬁlwn,l = En/b\H»l'l/}n,l (4.8)

Finally, as shown in Appendix, we have in the physical in-We have that the functiong;, ; and@lﬂz/)n,l are eigen-
terval of the oscillatorj.e, —oc0 < z < oo, the additional  functions of the Hamiltonian for the valués- 1 and! + 1 of
factore=#/ <@z = ¢, which contribute to the normalization the angular moment, respectively, with the same enéigy
constant. We have shown that the ladder operators intrinsand [11]

cally Hermitica and b generate the same set of eigenfunc-

tions as the conventional operatarand b.1n summary, the AQthn, ~ Yni—1 (4.9
factorization of the intrinsically Hermitic Hamiltonian (3.14) ~
is the same as the standard Hamiltonian (3.1), maintaining bit1¥ni ~ Pni41 (4.10)
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These expressions are analogous to (3.10) and (3.11) &ffe can prove that equivalent relations (4.9) and (4.10) are
the harmonic oscillator. Algebraic properties (4.5) and (4.6)satisfied for the intrinsically Hermitic operators:
of ladder operatorg;, b; determine the structure of angular R
momentum states. For example, if the quantum nunhlier APnl ™~ Pni-1
defined by the eigenvalue equati®fy,,; = 1 (I + 1) ¥y,
with L2 the square of angular momentum, which is a positive
definite operator, theh(/ + 1) > 0. One consequence is that Particularly, according to (4.11) the solution of the differ-
1 =0,1,2,...,n — 1. The raising operatds, according to ential equation R
the property (4.10), annihilates the statg_;: b1 =0 (4.22)

is given by

(4.20)

Bl+1‘70n,l ~ Onl+1 (4.21)

bihii—1 =0 (4.11) 4
i1~ plePme e (4.23)
which is a first order differential equation whose solution is , .
the wave function with the highest value of angular momen- The wave function corresponding to enedgy are gen-
tum{ with energyF,,. The result is erated using (4.21) and (4.23):
bt ~ g/ 4.12) Pui ™ gua (p) ple /M <O (4.24)
In (4.24) the factoe—#/ <(P)d» — ¢ appears but it has not
Thus the wave functions for a givenand for all allowed consequence (as the harmonic oscillator case). Finally, we

values ofl are found [14]: concluded the factorization method of the hamiltonian (4.14)
by the operators (4.17) and (4.18), all of them intrinsically
Y ~ gna (p) ple™/m (4.13)  Hermitic, keep the results on of the conventional handle for

hydrogen atom.
4.2. The hydrogen atom with intrinsically Hermitic op-

erators 5. The infinite well of potential

In this section we solve the same problem of the hydrog 1 conventional handle

gen atom considering intrinsically Hermitic operators. We

develop the hamiltonian using the kinetic energy and thedn this section we consider the case of the well of potential
Coulomb potential. Taking into account (4.2) we propose defined in the following form:

1i+1) 2 V(x):{ 0 —-L<zc<

o (4.14) (5.1)

H = -p*+

Using the commutation relations whose wave functions are of two kinds: the odd

8] =[5 = [ 5] = - N - I

and the ladder operators whose energy spectrum is given by

I Y LAY (5.3)
a=ip+_—7 (4.15) n=3\ 1 :
P
R L1 and the even ones
by =—ip+-— = (4.16) B
Pl U, (z) = \/zcos ((Qn i3 D) ﬂx) (5.4)
we obtain the following factorization relations of the Hamil-
tonian : with | en—1)m)?
o £=5 () 55)
ab =H; 1 + (4.17) 2 L
! Consider the wave function [2]
-~ ~ 1
ba, =H; + - (4.18) /30 2\ L L
2 — (2o = fd
¥ (@) 75 (m 4) s <e<y (56
If v, is solution of the Sclirdinger equation, with the . i i o )
Hamiltonian (4.16) that is, if This wave function which satisfies the boundary condi-
' tions
~ L L
Hioni = Enpn, (4.19) (g (—2) = (2) =0 (5.7)
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has a series expansion of the complete basis (5.4) of eigen- In fact

2
functions of the Hamiltonian 2 1 =4
E* = (-2 D
onen (5= (-3) WD)
H=--D? (5.8) )
’ (-] DD + . D3D?
as follows 2 (vl {Cl te } )
= Z bW (2) (5.9) Calculating directly we find
n= L/2
Direct calculation gives us the shape of the coefficidnts <E2> _ 1 (43(;) / widr — 37(3177
S5 (1) A g
5.10 B
= (W, ) = Qn_ws (5.10)

This result is correct ify = 1. This is according to com-
Using (2.6) we find that hamiltonian of the free particle: ment given at the end of the Sec. 2.2 about the coefficients of
the associate differential operator, which is fundamental for

2
(| — ‘LQ [v) = —* () iy, (z) \f/f/g hermitization process of the differential operators.

d 2. :
— 9 () 47 (2) |22 + (] — =) (26 6. Conclusions

However, according to [2] appears an unexpected factin this work the MA mechanism of the intrinsic hermitiza-

From (5.10) we find tion has been presented. It produce Hermitic differential op-
o erators without the restriction that wave functions be null on
<E2> - Z b, ] (E;Lf _30 (5.11) the boundaries of the physical system because the boundary

Lt terms are absorbed by a new version of the differential op-

] erator. This method was originally developed for studying
On the other hand: L)2 collision problems and has been applied to problems of the

9 =9 mathematical physics. But, in our opinion, the MA method

< > {¥] H V) = / v (@) H () d has not explored enough.

—L/2 The MA method in particular, was applied in two prob-

L/2 lem which has exact solution: the harmonic oscillator and the

~ hydrogen atom. In both cases the results given by the conven-
- / V' (@) H | Hy (x)] dv =0 (5.12) tional hamiltonian are preserved when the intrinsically Her-
—-L/2 mitic Hamiltonian was applied, which is a necessary test: the
physics of the boundary conditions. Another application of
the MA process, exposed in this work, correspond to the well
N 30 of infinite walls for calculating the expectation value of the
Hiy(x) = f (5 13) square of the energy, obtaining appropriated results whereas

since Hy (z) is a constant:

o

this work we are interested in studying the intrinsic hermmc be obtained.

ity of this problem. We consider for MA method the case when the bound-
aries go to infinite in order to known if the method is valid in
5.2. Intrinsically Hermitic Hamiltonian this case. The answer is positive and it is shown in the Ap-

_ o _ . pendix. Our final conclusion is: in quantum mechanics there
The MA method is used in this section for studying the sameare interesting points which must be manipulated carefully
problem of the expectation valugs?). We consider the for obtaining correct physical interpretations. We think that

Hamiltonian of the free particle, that is (2.21), MA method can give good results in other applications.
- -lp2 ,
2 Appendix

In order to f|nd<E2> we need the fourth intrinsically Her-

mitic derivativeD*, Eq. (2.22): A. The extension to infinite

The Dirac delta functioi (x) can be consider as the limit of

34 =¢ D?’g—&—c DD +c DSBQ+C ;5334—0 34
0 ! 2 3 4 bilinear forms,, (z)

It is clear that(y)| H?2 ) # 0 becauseD* has other :
) = lim d, A.l
terms different tharD* and D?, which eliminated to (5.13). (z) ab (z) (A1)
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FIGURE 1. Graphics of the bell functions.

Graphics of the semi bell functions
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FIGURE 2. Graphics of the semi-bell functions for definiﬁg

defined by bell functions centered:at= 0:
b () = (| ga(2) ) : D (p) x D (p) = C

x2

(floalg) = [ 1 @ galalg@)de (A2)
where |
go () = 1T/ W) (A3)
_f v (z/a) dz
0t >1
40 ={ exp () < 1 (AL4))

and D (p) will be determine below taking into account
that (2.5) must be finite. In the Fig. 1 graphics of the bell
functions are shown for different values ®f

. TENIZA-TETLALMATZI, AND J. VARGAS-UBERA

can define the extended Dirac deftm the sense of (A.2), by
semi-bell functions on the boundary pointsandz, (fig. 2)
from which we obtaird = § (x — z3) — 0 (z — x1).

At this point we ask what is the result of taking the limits
x1 — —oo andz, — oo in the relationship

(159 = (1 (~i6 = 5") lo) (213)

From Holder’s inequality we have

72f* (z) pg () dz

- / I (2) By (2)] du

< / @) de / 1Py ()| de

from where we conclude that limitg; — —oo, 25 — 00,
existif f € L? (R) andpg (z) € L? (R). Considering now

Z2

[o@pr* (@) da

x1

we find thatg (z) € L?(R) andpf* (z) € L*(R), from
which it follows that f, g and their derivatives must belong
to L? (R). ThereforeD (p) = C* (R) N L? (R). From this
and (2.13) we find that

must exists. In summary, we found two important facts:

a) f,g € D(p)-

b) Thelimits lim f (z1)g(z1)

and lim f(z2)g(x2)
) xrp——0Q T — 00
exist.

From the condition a) the following limit

(f1Dlg) + (g 1Pl £)°

exists. From condition b) and (2.13) this limit is equal to

[f (x2) g (v2) — f (21) g (21)]

The limits of the condition b) have to be zero, since other-
wise f y g will not satisfy condition a) because the integrals
are not finite. Finally, we have thdtc (p) dp = e because a
primitive of thed () is the Heaviside step function. Foits
primitive is given byH () = H,,(xz) — H,, (z) where

{1

1
0

T > T
r < T

Through translations of the bell functions to an arbitrary

pointx the bilinear formy (z — x¢) is defined. Similarly we

fork =1,2.
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