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Solutions of the Schiddinger equation given by solutions
of the Hamilton—Jacobi equation
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We find the form of the potential depending on the coordinates and the time such that a sélutibthe Hamilton—Jacobi equation yields
an exact solutiongxp(iS/h), of the corresponding Sabdinger equation.
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Hallamos la forma del potencial dependiente de las coordenadas y el tiempo tal que urtmsSlude la ecuadin de Hamilton—-Jacobi
produce una soludn exactaexp(iS/k), de la ecuadin de Schiddinger correspondiente.

Descriptores: Ecuacon de Schidinger; ecuaéin de Hamilton—-Jacobi.
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1. Introduction we show that from each solutiot$, of the Laplace equa-
tion, and any given magnetic field, one can define a poten-

As is well known, the Hamilton-Jacobi (HJ) equation cantja|, v, in such a way tha$ is a solution of the HJ equation

be regarded as an approximation to the 8dimger equa-  andexp(i5/h) is a solution of the corresponding Setinger

tion. More precisely, these two equations are related in th@quation. In Secs. 3-5 we present some examples, restricting

following way. If ) = exp(iS/h) is substituted into the oyrselves to problems without magnetic field. An example

Schibdinger equation for a particle of mass and electric  of this class was given in Ref. [2], where the attention was
chargee, subject to a velocity-independent potentiabnd a  focused on the HJ equation.

magnetic field with vector potentia\,

B2 : 2 ’ 2. Basicresults
— (v;_fA> ¢+v¢:ih%/’, 1)
m ¢ t According to Eq. (2), assuming thatis a solution of the
imposing the conditioV - A = 0, one obtains Laplace equation
VS =0, (4)
1 e N2 as  ih _, - . . . .
— (VS — 7A) +V+——=_—V5 (2) S satisfies the HJ equation (3) if and only/if= exp(iS/h)
2m c gt 2m

is a solution of the Sclkdinger equation (1). Instead of spec-
which is equivalent to (1). Then, if one looks for a solution ifying the potentiald” and A, and then try to find a simulta-

of this last equation of the form neous solution of the Laplace equation and the HJ equation, it
is simpler to start from a solutiot$;, of the Laplace equation
anddefinethe potential’ so thatS automatically satisfies the

h n\?
§=S+ 75+ (1) Sat-es HJ equation (3). That s, to take

one finds thaiS, satisfies the HJ equation v — o5 1 (VS B EA)Z )
ot  2m c

L (VS - EA)2 +V+ 9% _ 0 (3) o, if the magnetic field is absent, choosiAg= 0

2m 07 ¢ ot ' 9 ’ Ag=0,
(see,e.g, Ref. [1], Sec. 2.8). However, Eg. (2) shows that V= _95 _ i(vs)? (6)
if S satisfies the Laplace equatioW?S = 0, and the HJ ot 2m
equation (3), them = exp(iS/h) is anexactsolution of the  Of course, the resulting potential may be of little interest, but
Schiddinger equation (1). if one makes use of the general solution of the Laplace equa-

The aim of this paper is to give some explicit examples oftion, one can find all the potentials for which a soluti®mof
this relationship between solutions of the HJ equation and sahe HJ equation corresponds to a solutisp(iS/h) of the
lutions of the corresponding Sdidinger equation. In Sec. 2 Schibdinger equation.



SOLUTIONS OF THE SCHBDINGER EQUATION GIVEN BY SOLUTIONS OF THE HAMILTON-JACOBI EQUATION 535

As pointed out after Eq. (3), i is any solution of where P is an arbitrary constant. Thus, substituting these
the HJ equation (3) and, simultaneously, of the Laplaceexpressions into (7), we obtain
equation, therxp(iS/#) is a solution of the corresponding
Schibdinger equation. What would produce only a semiclas-
sical approximation leads, in fact, to an exact solution of the
Schidinger equation. Since the modulusesfp(iS/#) is ] ) ]
equal to 1, all these wavefunctions cannot be normalized; The solution (10) of the HJ equation corresponding to the
however, just like the eigenfunctions of the linear momen-Potential (9) is complete (by virtue of the presence of the ar-
tum, which are also non-normalizable, in some cases the§itrary paramete’) and it is not separable (because of the
can be used to express any normalizable wavefunction (sé8'M£tx) and, for each value aP, the wavefunction
also the comment at the end of Sec. 3.1). In fact, if one finds . Fi 1 Py
a complete solution of the HJ equatia$i, thenexp(iS/#) U(x,t) = exp h (Ft+ P)x — (Ft+P)*
possesses the appropriate number of parameters to form a h 6m I
complete set of functions in terms of which any wavefunc-. . - . .
tion can be expanded (see the examples below). (It is in> @ S°'““°T‘ Of. the Scbdm_ge_r equaﬂon with the poten_-
teresting to note that the word “complete” appears here WitﬁIal (9), which is not (multiplicatively) separable (and is

two different, but related, meanings.) The solutions of the'Ot @ stationary state).  The wavefunctions (11) are non-

Schibdinger equation obtained here differ from the solutionsnormahzable’ just as the “plane wavesp(iPz/h), "’.‘”d' as
e latter, for each value @f form a complete set, in terms

usually found because the latter are commonly obtained b f which funci b ded (b f
separation of variables (for instance, the wavefunction (11 tW ICI an%/hwave unc:é)?n clanf ete_xp{a:]n ed (by means of an
is not separable and does not represent a state with a we E egral on the paramet )- In acl, In the same manner as
' the plane waves are eigenfunctions of the momentum oper-
defined energy). . . . )
ator, the wavefunctions (11) are eigenfunctions of the (time-

In the following sections we give some explicit examples, L .
without magnetic field, starting from the highly illustrative d(_apen_dent) operatgr— 't (which is a conserved quantity),
with eigenvalueP [3].

one-dimensional case.

(Ft+ P)?

S(z,t)=(Ft+ P)x — P

(10)

(11)

. . . 3.2. Field with constant growth
3. Examples in one dimension

. . , We now consider the time-dependent potential
In the one-dimensional case, the general solution of Eq. (4)
is a linear function of the Cartesian coordinate V(e) = —ktx, (12)
Sz, t) = alt) + B(¢), 0 wherek is a constant. This potential coincides with (8) if

— _ 2
wherea(t) andj(t) are real-valued functions ofonly. Sub- o/(t) = kt andf'(t) = —a*(t)/2m, hence

stituting (7) into (6) we get

2 245 3
) a(t) = %+P, B(t) = —% (gé + M;t +P2t) :
V=-=ad{t)e—0) - %az(t), (8)
whereP is an arbitrary constant. Thus,
which corresponds to a possibly time-dependent uniform
field of force. Apart from the trivial case of a free par- kt? 1 /k2#5 kPt )
ticle, two specific examples contained in (8) are a time- (z, )= (2+P) T om <20+ 3 +P t) (13)
independent uniform field, and a uniform field with an in-
tensity that changes linearly with time. is a complete solution of the HJ equation with potential (12)
and
3.1. Constant uniform field
i| [kt
From Eq. (8) we see that in order to have a potential (1) = exp [ (2 + P) r
V =-Fuz, ©) 1 (k¥ kP,
2m<20 + 3 +Pt> (14)

where F' is a constant, corresponding to a constant uni-
form force of magnitude, o/(t) must be equal td” and

3() 2(+)/2m, hence is a solution of the corresponding Soldinger equation.
= —a“(t)/2m,

The (non-normalizable) wavefunctions (14) form a com-
(Ft + P)3 plete set. In fact, (14) is eigenfunction of the conserved oper-

at)=Ft+ P, B(t) = TTemE atorp — (1/2)kt?, with eigenvalueP.
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4. Examples in two dimensions Thus,
k
The solutions of the Laplace equation in two dimensions are S =4/ mT In(z? + y?)
the form
S(z,y,t) = Re[f(z )], (15) is a solution of the HJ equation with the potential (20). By

contrast with the previous examples, this solution does not

wherez = z + iy, and f(z,¢) is an analytic function of ¢, hiain arbitrary parameters and does not depend on the time.

that may also depend anand on other parameters. Substi-
tuting (15) into Eq. (6) we obtain the expression for the po-

tential _ ) 5. Examples in higher dimensions
V= _1oth+f) 1 |of (16)
2 Ot 2m | 0z Apart from the potentials that can be defined directly with the
In the following subsections we give two explicit exam- aid of Eq. (6), making use of a solution of the Laplace equa-
ples corresponding to specific choicesfof tion, as in the foregoing sections, we can also combine the
potentials already obtained in low dimensions to construct
4.1. The repulsive isotropic harmonic oscillator potentials in two or more dimensions. For instance, from

Egs. (10) and (18) we can form the function
The function

S(x,y,2,t) = %(arz — )+ Pre ¥+ Pyely

fz,t) = %22 + (Pret —iPye*t) 2 2
1
1 P2 —2wt_P2 2wt
+ (Pt — iPye*")?, o e 2me )
dmw )
. . . (Ft+ P3)3
wherem, w, P;, and P, are constants, is an analytic function + (Ft+ Ps3)z— Y
m

of z and, from Eg. (16), we obtain the potential
? which satisfies the Laplace equation in three dimensions and

V= —T(xQ +2), (17) leads to the potentiatf. Egs. (9) and (17)]
which corresponds to a “repulsive harmonic oscillator” (see,
e.g, Ref. 4). Then, making use of Eq. (15), we have the com-
plete solution of the HJ equation

2
V(w,y2) = =" (a? +y°) - Fz
and, thereforeexp(iS/h) is a solution of the Sckidinger
Sz, y,t) = (22 — ) + Pre %t + Pyely equation with this last potential, which contains three quan-
2 tum numbers?;, P,, andP;.
1

+ yT (P12 efmut _ P22 e2wt) (18)

6. Concluding remarks
and the solutions of the Sdbtinger equation 9

It may be remarked that, for a given potential, the existence
@(ﬁ —y?) + Pre “tx + Pyely of a solution of the HJ equation that also satisfies the Laplace
2 equation, does not imply that all solutions of this HJ equation
will satisfy the Laplace equation. In the examples of Section
+ i(pf e 2wt _ p,2 e2wt)1 ) (19) 3, the principal functions (10) and (13) (which contain an ar-
dmw bitrary parameterP) are, up to an additive constant, thely

i
t) = _
w(l‘,% ) C€Xp 7

Each wavefunction (19) is a common eigenfunction of theCommon solut!ons of the corresponding HJ equation and the
Laplace equation.

conserved operatoks’t (p, — ande ! L . .
con eigenval%es? and(]g reg?)uéit)ively e (py + mwy) One open question is what are the physical or geometri-
! . ' cal properties of a potential such that the corresponding HJ

4.2. The central potentialV = —Fk /r? equation admits solutions that also satisfy the Laplace equa-
tion. Another question is the meaning of the quantum states
The function obtained in this manner.
f(z,t) = vV2mk ln z, The eikonal equation of geometrical optics can be re-

garded as an approximation to the scalar Helmholtz equation,
in a similar manner as the HJ equation is an approximation
to the Schadinger equation and, therefore, one can expect
Kk (20) that, in some cases, a solution of the eikonal equation would

x2 492 produce an exact solution of the Helmholtz equation. This
connection is currently under investigation [5].

wherek is a constant, is an analytic function of{except at
z = 0) and leads to the central potential

Viz,y) =
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