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Solutions of the Schr̈odinger equation given by solutions
of the Hamilton–Jacobi equation
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We find the form of the potential depending on the coordinates and the time such that a solution,S, of the Hamilton–Jacobi equation yields
an exact solution,exp(iS/~), of the corresponding Schrödinger equation.
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Hallamos la forma del potencial dependiente de las coordenadas y el tiempo tal que una solución, S, de la ecuacíon de Hamilton–Jacobi
produce una solución exacta,exp(iS/~), de la ecuacíon de Schr̈odinger correspondiente.
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1. Introduction

As is well known, the Hamilton–Jacobi (HJ) equation can
be regarded as an approximation to the Schrödinger equa-
tion. More precisely, these two equations are related in the
following way. If ψ = exp(iS/~) is substituted into the
Schr̈odinger equation for a particle of massm and electric
chargee, subject to a velocity-independent potentialV and a
magnetic field with vector potentialA,
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which is equivalent to (1). Then, if one looks for a solution
of this last equation of the form
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one finds thatS0 satisfies the HJ equation
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(see,e.g., Ref. [1], Sec. 2.8). However, Eq. (2) shows that
if S satisfies the Laplace equation,∇2S = 0, and the HJ
equation (3), thenψ = exp(iS/~) is anexactsolution of the
Schr̈odinger equation (1).

The aim of this paper is to give some explicit examples of
this relationship between solutions of the HJ equation and so-
lutions of the corresponding Schrödinger equation. In Sec. 2

we show that from each solution,S, of the Laplace equa-
tion, and any given magnetic field, one can define a poten-
tial, V , in such a way thatS is a solution of the HJ equation
andexp(iS/~) is a solution of the corresponding Schrödinger
equation. In Secs. 3–5 we present some examples, restricting
ourselves to problems without magnetic field. An example
of this class was given in Ref. [2], where the attention was
focused on the HJ equation.

2. Basic results

According to Eq. (2), assuming thatS is a solution of the
Laplace equation

∇2S = 0, (4)

S satisfies the HJ equation (3) if and only ifψ = exp(iS/~)
is a solution of the Schrödinger equation (1). Instead of spec-
ifying the potentialsV andA, and then try to find a simulta-
neous solution of the Laplace equation and the HJ equation, it
is simpler to start from a solution,S, of the Laplace equation
anddefinethe potentialV so thatS automatically satisfies the
HJ equation (3). That is, to take
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or, if the magnetic field is absent, choosingA = 0,

V = −∂S

∂t
− 1

2m
(∇S)2. (6)

Of course, the resulting potential may be of little interest, but
if one makes use of the general solution of the Laplace equa-
tion, one can find all the potentials for which a solutionS of
the HJ equation corresponds to a solutionexp(iS/~) of the
Schr̈odinger equation.
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As pointed out after Eq. (3), ifS is any solution of
the HJ equation (3) and, simultaneously, of the Laplace
equation, thenexp(iS/~) is a solution of the corresponding
Schr̈odinger equation. What would produce only a semiclas-
sical approximation leads, in fact, to an exact solution of the
Schr̈odinger equation. Since the modulus ofexp(iS/~) is
equal to 1, all these wavefunctions cannot be normalized;
however, just like the eigenfunctions of the linear momen-
tum, which are also non-normalizable, in some cases they
can be used to express any normalizable wavefunction (see
also the comment at the end of Sec. 3.1). In fact, if one finds
a complete solution of the HJ equation,S, thenexp(iS/~)
possesses the appropriate number of parameters to form a
complete set of functions in terms of which any wavefunc-
tion can be expanded (see the examples below). (It is in-
teresting to note that the word “complete” appears here with
two different, but related, meanings.) The solutions of the
Schr̈odinger equation obtained here differ from the solutions
usually found because the latter are commonly obtained by
separation of variables (for instance, the wavefunction (11)
is not separable and does not represent a state with a well-
defined energy).

In the following sections we give some explicit examples,
without magnetic field, starting from the highly illustrative
one-dimensional case.

3. Examples in one dimension

In the one-dimensional case, the general solution of Eq. (4)
is a linear function of the Cartesian coordinatex

S(x, t) = α(t)x + β(t), (7)

whereα(t) andβ(t) are real-valued functions oft only. Sub-
stituting (7) into (6) we get

V = −α′(t)x− β′(t)− 1
2m

α2(t), (8)

which corresponds to a possibly time-dependent uniform
field of force. Apart from the trivial case of a free par-
ticle, two specific examples contained in (8) are a time-
independent uniform field, and a uniform field with an in-
tensity that changes linearly with time.

3.1. Constant uniform field

From Eq. (8) we see that in order to have a potential

V = −Fx, (9)

where F is a constant, corresponding to a constant uni-
form force of magnitudeF , α′(t) must be equal toF and
β′(t) = −α2(t)/2m, hence

α(t) = Ft + P, β(t) = − (Ft + P )3

6mF
,

whereP is an arbitrary constant. Thus, substituting these
expressions into (7), we obtain

S(x, t) = (Ft + P )x− (Ft + P )3

6mF
. (10)

The solution (10) of the HJ equation corresponding to the
potential (9) is complete (by virtue of the presence of the ar-
bitrary parameterP ) and it is not separable (because of the
termFtx) and, for each value ofP , the wavefunction

ψ(x, t) = exp
i
~

[
(Ft + P ) x− (Ft + P )3

6mF

]
(11)

is a solution of the Schrödinger equation with the poten-
tial (9), which is not (multiplicatively) separable (and is
not a stationary state). The wavefunctions (11) are non-
normalizable, just as the “plane waves”exp(iPx/~), and, as
the latter, for each value oft, form a complete set, in terms
of which any wavefunction can be expanded (by means of an
integral on the parameterP ). In fact, in the same manner as
the plane waves are eigenfunctions of the momentum oper-
ator, the wavefunctions (11) are eigenfunctions of the (time-
dependent) operatorp− Ft (which is a conserved quantity),
with eigenvalueP [3].

3.2. Field with constant growth

We now consider the time-dependent potential

V (x) = −ktx, (12)

wherek is a constant. This potential coincides with (8) if
α′(t) = kt andβ′(t) = −α2(t)/2m, hence
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whereP is an arbitrary constant. Thus,
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is a complete solution of the HJ equation with potential (12)
and

ψ(x, t) = exp
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is a solution of the corresponding Schrödinger equation.
The (non-normalizable) wavefunctions (14) form a com-

plete set. In fact, (14) is eigenfunction of the conserved oper-
atorp− (1/2)kt2, with eigenvalueP .
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4. Examples in two dimensions

The solutions of the Laplace equation in two dimensions are
the form

S(x, y, t) = Re[f(z, t)], (15)

wherez ≡ x + iy, andf(z, t) is an analytic function ofz
that may also depend ont and on other parameters. Substi-
tuting (15) into Eq. (6) we obtain the expression for the po-
tential

V = −1
2

∂(f + f)
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− 1
2m

∣∣∣∣
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∂z

∣∣∣∣
2

. (16)

In the following subsections we give two explicit exam-
ples corresponding to specific choices off .

4.1. The repulsive isotropic harmonic oscillator

The function

f(z, t) =
mω

2
z2 + (P1e−ωt − iP2eωt) z

+
1

4mω
(P1e−ωt − iP2eωt)2,

wherem, ω, P1, andP2 are constants, is an analytic function
of z and, from Eq. (16), we obtain the potential

V = −mω2

2
(x2 + y2), (17)

which corresponds to a “repulsive harmonic oscillator” (see,
e.g., Ref. 4). Then, making use of Eq. (15), we have the com-
plete solution of the HJ equation

S(x, y, t) =
mω

2
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+
1

4mω
(P1
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and the solutions of the Schrödinger equation
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i
~

[
mω

2
(x2 − y2) + P1 e−ωtx + P2 eωty

+
1

4mω
(P1

2 e−2ωt − P2
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Each wavefunction (19) is a common eigenfunction of the
conserved operatorseωt(px − mωx) ande−ωt(py + mωy)
with eigenvaluesP1 andP2, respectively.

4.2. The central potentialV = −k/r2

The function
f(z, t) =

√
2mk ln z,

wherek is a constant, is an analytic function ofz (except at
z = 0) and leads to the central potential

V (x, y) = − k

x2 + y2
. (20)

Thus,

S =

√
mk

2
ln(x2 + y2)

is a solution of the HJ equation with the potential (20). By
contrast with the previous examples, this solution does not
contain arbitrary parameters and does not depend on the time.

5. Examples in higher dimensions

Apart from the potentials that can be defined directly with the
aid of Eq. (6), making use of a solution of the Laplace equa-
tion, as in the foregoing sections, we can also combine the
potentials already obtained in low dimensions to construct
potentials in two or more dimensions. For instance, from
Eqs. (10) and (18) we can form the function

S(x, y, z, t) =
mω

2
(x2 − y2) + P1 e−ωtx + P2 eωty

+
1

4mω
(P1

2 e−2ωt − P2
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+ (Ft + P3) z − (Ft + P3)3

6mF

which satisfies the Laplace equation in three dimensions and
leads to the potential [cf. Eqs. (9) and (17)]

V (x, y, z) = −mω2

2
(x2 + y2)− Fz

and, therefore,exp(iS/~) is a solution of the Schrödinger
equation with this last potential, which contains three quan-
tum numbersP1, P2, andP3.

6. Concluding remarks

It may be remarked that, for a given potential, the existence
of a solution of the HJ equation that also satisfies the Laplace
equation, does not imply that all solutions of this HJ equation
will satisfy the Laplace equation. In the examples of Section
3, the principal functions (10) and (13) (which contain an ar-
bitrary parameter,P ) are, up to an additive constant, theonly
common solutions of the corresponding HJ equation and the
Laplace equation.

One open question is what are the physical or geometri-
cal properties of a potential such that the corresponding HJ
equation admits solutions that also satisfy the Laplace equa-
tion. Another question is the meaning of the quantum states
obtained in this manner.

The eikonal equation of geometrical optics can be re-
garded as an approximation to the scalar Helmholtz equation,
in a similar manner as the HJ equation is an approximation
to the Schr̈odinger equation and, therefore, one can expect
that, in some cases, a solution of the eikonal equation would
produce an exact solution of the Helmholtz equation. This
connection is currently under investigation [5].
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