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We assume gravity in &dimensional manifold/ and consider a splitting of the fordd = M,, x M,, with d = p + ¢q. The most general
two-block metric associated with/,, and M, is used to derive the corresponding Einstein-Hilbert acSoriWe focus on the special case

of two distinct conformal factorg) and¢ (i for the metric inM,, andy for the metric inM,), and we write the actio& in the form

S = S,+8,, whereS, andS, are actions associated willf,, and M, respectively. We show that a simplified action is obtained precisely
wheny = ¢!, In this case, we find that under the duality transformagion- ¢!, the actionS,, for the M,,-space or the actio§, for the

M,-space remain invariant, but not both. This result establishes an analogy between Farkas property in oriented matroid theory and duality
in general relativity. Furthermore, we argue that our approach can be used in several physical scenarios such as 2t physics and cosmology.
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Duality has been an important concept in several physicaiwo-blocks metric corresponding t{ = M, x M,. The
scenarios, including string theory [1]\/-theory [2], Ma-  first block metric, of dimensiom, will be denoted byy,,.,
troid theory [3], MacDowell-Mansouri gravity (see Refs. 4 and the second of dimensign= d — p, will be denoted by
to 5 and references therein) and cosmological models [6,7};;, where Greek indicesy 3, ...) run from1 to p, lower-
Here, we explore the possible relevance of duality in highecase Latin indicesi(j, . ..) fromp + 1 to d, and capital Latin
dimensional gravity. We first consider general relativity inindices @, B, ...) from 1 to d. With this prescription, we
a d—dimensional manifold\/ with arbitrary space-time sig- have [12-14]:

nature. We then proceed to split such manifold in the form

M = M, x My, with p + ¢ = d, assuming a two-block Yap = ( Gy (%, Y) 0 ) (1)
diagonal metric. Considering such splitting, we obtain the 0 gij(x,y) )’
Einstein-Hilbert actionS. For the special case in which the
two metrics associated with/, and M, are expressed in
terms of the conformal factotsandy, respectively, we show
that the actior& can be written as = S,+S,, whereS, and
S, are actions associated witi, and/,, respectively. Tak-
ing v = ¢!, the reduced action is analysed. The key ideaCh
is to consider the invariance of such reduced action under thé
duality transformationp < ¢~!. In this context, we find
that the invariance of does not follow, but rather we dis-
cover that, under this duality transformation, the actigris
invariant, providedp = ¢ + 2, while S, is not. And con-
versely, the actioks,, is invariant, providegp = g — 2, while A 1 4r

S, is not. We argae that this result establishes an analogy Tpo =597 (9Bro +9crs = gpC,F). (3)
between Farkas property in oriented matroid theory [8] an
duality in higher dimensional gravity. It is worth mention-
ing that the Farkas property has been used as an alternative
define the concept of oriented matroid [9]. In turn, oriented

where for consistency, the upper zéroorresponds to ax g-
matrix and the lower zer6 corresponds to @ x p-matrix.
Here,z refers to coordinates i/, while y refers to coordi-
nates inM,.

As usual, the Riemann tensor is defined in terms of the
ristoffel symbols as

R5cp=0cTPp—0pTép+TerT b s—ThrlEp,  (2)

where in turn, the Christoffel symbols are

q:rom (3), using the distinction of the indicgsv, ...etc. and
%7’ ...etc., we find that the Christoffel symbols can be split-
ted in six classes:

matroid theory has been proposed [10-11] as the appropriate o fn i Loua }

mathematical framework for considering duality in several af {aﬁ}’ ai = 59 Jaris

physical scenarios, including p-branes and M-theory. There- 1 ‘ ,

fore, our work may be useful in the analysis of some aspects Iy = _§9W\gij,>\7 Ll = i}

of duality in p-branes and M-theory. Furthermore, we argue _ 1 _ 1

that our approach can also be relevant in the context of 2t [ = ig”gjl,a , Thp= fig”gam. 4)

physics and cosmology [12-18].

We start the analysis with a metrigap in a Here,{gﬁ} and {3kj refer to Christoffel symbols in terms
d—dimensional manifold}/, which will be splitted into a of the metricg,s andg;;, respectively.
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Now, the components of the Riemann tensor can also besing the symmetric properginO;aj:g“”Rkﬂk,,, (15) can
splitted in similar classes. For example: be simplified to
R“Vaﬁ = Ruuaﬁ + r’;kFEV - ngrfw, 5) R = ¢"" R o + 9" R + 26" 9" Ryi - (16)
where Considering (7), (8), __(11) and (12), and writing as
'R=¢""R%,,, and>R = ¢" R%, . the Ricci scalar ip and
R" = &xl“g _9pTh 4 r‘grg B FZAFA 6 ¢ dimensions, respectively, (16) leads to
Vo 14 v « v av’
R='R+ *R
Using (4), the relation (5) becomes
1 . 1 .
RN 5= R" ) - Zgwgaﬁgmgw,igaﬁ,j + Zguugaﬁg”g,ua,igvﬂ,j
ro ro
1 y 1 iy
1 ) _ M i kL Z g gt gkl .
+ Z( "2 4" gxkGavt — 9" 9" garkgsvl). (7) 19 979 Gijndkly + 49979 Jikwdjty
1, 1 L
Similarly, we get the component of the Riemann tensor with ~ — 59" Dyg;; i 5 Pild" 9 )
Latin indices:
1 . 1 |
i _ i = 59" 9°°9" guovigusj + 79" 979" gir i1
gkl = LUk
1 1 -
1 X . — ZgtvD. P _ 2D LIPS
+Z@”¢m%mWMx*9”¢mmmAmm- (8) 9 T Ty w(979:5 ")
1 . 1 .
We also have - Zgwgugklgik,ugjl,v + Zglwgaﬁg”g,ua,igvﬁ,j' (17)
RMM _ &/F}ﬁ- _ gt This expression can be simplified to
_ 1 2p L/ A ) W 24 Ji
+ DT, = DT + Th 05 =TT (9) R= "B+ "R=Du(g"9; ") = Pilg"™ 90"
1 . 1 y
_ Z gt gaB gij ) L My B il ) )
Defining the covariant derivativeB, I'; = 8, T, + '), '), 19997 9pvidasy = 39997 Guasius,j

andD;T; = 9,1, — FﬁkF§i1
to

RH

wj

4 L A k
=D,I; = DT, — T\ — T Ty,

Thus, by using (4), we find

1 1
Rliv; = =5DPvgy; " = 5Dilg" Agav.i)
1 1,
= 19"9° 90 9ov.i + 79" 945 " Gri

With a similar calculation, we obtain

@ 1 i1 il
RMJV = _ipjguf - §IDV(9 glj,u)

o lgilgkm

4 4

From the Ricci tensor
Rap = RIEXKB?
we can construct the curvature scaar
R =g"" Ry + 9" Rij.
We can explicitly rewrite (14) as follows:

R = g#U(Rau,au + Rkpkl/) + g”( o;oz] + Rklkj

1 .
Jik,vYmj,pu + *ga/\gau’ngmjo

).

the expression (9) is reduced

(10)

(11)

(12)

(13)

(14)

(15)

1 iy 1 -
- Zguugwgklgij,p,gkl,u - Zglﬂjgwgklgik,ugjl,u- (18)

Therefore, we obtain the action

= [ViVPar= [ V19V R+ V19V R
M M
—V9D,u(v?99" 9;; ") = V29Di(V 99" 9, 7")

1 3
+ V1V 29(9" 9°° 9" 9,190,

— 9" 9% 9 9pai9vs,

+ 9" 97 g gii narin — 9" 99 " gin g )] (19)

The third and fourth terms into the integral are regarded as
boundary terms that won't take a role in our analysés,we
assume that

/\/@D,L(\/%g”gij M) =0
M
and
/\/@Di(\/gg“”gw’i) =0.
M
In fact, the vanishing of these total divergences can be justi-

fied by choosing proper boundary conditions. However, in
general these total divergences terms could be considered.
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This is, of course, still more importat at the quantum level, Integrating by parts, (25) yields
where the boundary terms of an action may have nonvanish-
ing contribution. Therefore (19) can be simplified as follows /\/ 9V 25[(0P 201 'R+ (YPp?™ %) 2R
see Ref. 17 and references therein
S= / VIgV2gR = / V1929 'R+% R + (= 1)(p - 2)9" T a0
ir it +2q¢(p — DYP 2t st
1 v _af ij — — 7
+ Zgu g ﬁg ](g;tu,igaﬁ,j - gu(x,iguﬁ,j) +p(p - 1)1/11) 2<pq 21/),i¢)
1, + (g —1)(g — 2P *p 0"
+ ZQ” 97 9" (Gij Gkt — GikuGji)]- (20) s )
+2p(g — DYPP™ ™ 0!
Thus, we have achieved our first goal of splitting the action P2 g2 \
in terms of theM? and M/¢ spaces. However, observe that (g = DY e o a7 (26)

the last two terms in (20) are interacting terms between the Here, we are interested in exploring a possible duality

two metric fieldsg;; andgas. symmetry in (26). For this purpose, let us consider the spe-

cial cas —1. We have
As an application of (20), we shall now discuss several &=

examples. First, one may assume that = g,.(z) and S:/ To\/25[(00PH2) L 4 (00 P—2) 2
9ij = gi;(y). In this caseS is reduced to gvralle ) (v )

SZ/\/lg\/zg ('R+*R), (21) + (-1 (p-2)¢" Pe e + 24(p—1)p" P ™
+p(p—1)e" P 00" + (¢—1)(g-2)p" P g
which is a well known result. Cp_d ; _ A
. . . . 2p(q—1)p?™P ;0" —1)p?7P ' 27
More interesting cases may arise if we assume that +2p(g-1)¢ i +ale=Dy"Peae, (27)

9 =1%(x,y) G () and gij=¢*(x,y)gi;(y). Let us first  which can also be rewritten as
substitute this assumption in the last two terms of (20):

s= [ ViR +* R S= [ VIVl R+ (07 R
M M
+p(p— DY 2072599 15 + (=1 (p—2) +2q(p—1)
+q(g— DY 20725 0w ). (22) +q(g=D]e" Pe e + [(g—1)(¢—2)
Since the Ricci scalars? and?R become +2p(g—1) + p(p—1)]" "0 "] (28)
TR=y 2[R = (p—1)(p — )92 x0 Since
—2(p— D Vg (23) (p—Dp—-2)+2¢(p—1)+q(qg—1)

and =(p+q-1)p+q-2) (29)

- ) and
R=¢’PR—(¢—1)(g—4)p %p 0"

— (g — 1) Ve (24) (¢—1)(¢—2)+2p(¢—1)+p(p—1)

=(p+q-1)p+qg-2), (30)

we can further simplify (28) to

respectively, after some rearrangements, we obtain

S= [ VGVl e R it R
M

S=8,+8, (31)
— (= 1)(p— Pty here
—2(p — )PP 3V xp M p(p — )P =20 2) 117} S, = / V2l 1R
—(g—1)(g - )1/)” 10" =2(g — DYPeI V0"
+q(g — DY 20120 s} (25) +(p+q—1)p+q-2)¢" Pore (32
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and
Si= [ Vvl 2R
M

+(p+qg—1)(p+q—2)p" " 0. (33)

We are interested in the possible invariance of the action (3lé

under the duality transformatiop — ¢~!. Applying this
transformation to (31), we obtain

S, — [V Gler R
M

+(p+qg—1p+q—2)" TN,  (34)
while
e w—
M
+(p+q-1D(p+q—2)¢" %,0".  (35)

Therefore we observe thatjif— ¢ + 2 andg — p — 2, then
S, remains invariant, but

Si= [ Vvl
M

+(p+qg—1)(p+q—2)pP o i (36)

that is, S, is not invariant. Conversely, if — ¢ — 2 and
q — p + 2, thenS, is invariant, whileS, becomes

Sy = [ViEVle 0 R
M

+p+a-1)p+q—2)¢" oY, (37

which means thas5, is not invariant. Therefore, we have
the peculiar situation that under the duality transformation

denote the horizontal and vertical partsof Assume that
L C M corresponds tdf and that the orthogonal comple-
mentL corresponds t&. Now, just as(H, V') determine
the structure of’, the dual paifL, L, ) determines the struc-
ture of the total spacé/. It turns out that one can introduce
the concept of an oriented matroid in terms of the structure
L, L), rather than only in terms of the subspate (For
etails in oriented matroids, see Ref. 8 and 9.) One can prove
that a transition of the form

(LvLJ_) - (H7 V)a (38)
ensures a duality symmetry, which is one of the main sub-
jects of oriented matroid theory. In fact, there exist a formal
definition of an oriented matroid in terms of the analogue of
(L, L, ). Such a definition uses the concept of Farkas prop-
erty, which we shall now proceed to discuss briefly (see Ref. 5
for details).

Let us first describe the sign vector concept. Eet# @

be a finite set. An element € {+,—,0}¥ is called a sign
vector. The positive, negative and zero partsXofare de-
noted by X+, X~ and X" respectively. Further, we define
suppX = X+ U X~. Consider two set§ and.S’ of signed
vectors. The pai(S, S’) is said to have the Farkas property,
if Ve € E either

(FapX € S, e € suppX andX >0
or
(Fb)3Y € 5, ¢ € suppY andY > 0,

but not both. HereX > 0 means thaX has a positive (+) or
a zero (0) entry in every coordinate. Observe {atS’) has
the Farkas property if and only {{5’, S) has it. LetS be a
set of signed vectors, and |étand J denote disjoint subsets
of E. Then

S\I/J ={X|3X € S,
X;=0,X;=+X=XonE\(TUJ)}, (39)

o o SRR
¢ — ¢, 5y or S, remains invariant, but not both, depend- ig cjled a minor o5 (obtained by deleting and contracting

ing on havingy — ¢+ 2 andq — p — 2, (thatisp = ¢+ 2),

orp—gqg—2andqg — p+2(p = q—2), respectively. This

J). Here, the symbol#” denotes and arbitrary value. §
andS’ are sets of sign vectors df, then(S\I1/J, SI\J/I)

in turn implies that, in order to preserve the symmetry, the t0i5 ajled minor of(S, $'). Similarly.

tal dimensiond should be even. It is important to emphazise
that one should start fixing = p + ¢, and then to explore for
which values ofp andgq the actionsS, or S, are invariants.

For intance assumé = 6 then the only possibility fos5, to
be invariant is withp = 4 andg = 2. But for this valuesS, is

S={X]3X €8 X; = *XLXE\I = XE\I} (40)

is called the reorientation &f on I. Further,(;S,; S’) is the
reorientation of(S,.S’) on I. Moreover,S is symmetric if

not invariant. Now assume= 10 in this case one can make S = —S, where—S is the set of signed vectors which are
S, invariant by takingp = 4 andgq = 6, but in these values opposite to the signed vectors §f

S, is not invariant.

This duality property for the action (31) resembles the

We can now give a definition of oriented matroids in

Farkas property in oriented matroid theory [8]. In order toterms of the Farkas property. LEt# & be a finite set and let
fully appreciate this comment, let us explain briefly what theS and.S’ two sets of sign vectors. The pdif, S’) is called
Farkas property means. First, let us consider a total tange@ oriented matroid o#, if

bundleT = (H,V) associated with\/, where H and V/

Rev. Mex. Fis58(2012) 133-138
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(01) S andS’ are symmetric, and

(02) every reorientation of every minor 0§, .S’) has
the Farkas property.

From this definition it follows tha{s’, S) is also an ori-

137

Let us make some final comments. Usually, one is inter-
ested in the invariance of an actishunder certain infinites-
imal transformations. Here we have shown that, if an action
can be divided in two complementary “orthogonal” actions
S, andS,, then the invariance of the total action= S,+S,

ented matroid as it is every reorientation and every minowunder duality transformations is not what really matters, but

of (S, 5).
Two sign vectorsX andY are orthogonal if
(XTNnYyHuXny")
A0 (XTNnY ) ) uX nYH) #£2.  (41)

Accordingly, we denote the orthogonal complementdiy
S, and itis defined by

S, ={Y|y L X forall X € S}. (42)

If S C S, thenS andS’ can be considered as orthogonal.

rather whetheiS, or §, are invariant, but not both, as the
analogue of the Farkas property should require. Since the
results obtained above are valid for various higher dimen-
sions (with evend) -albeit the conditions imposed for the
metric-, they can be of interest for cosmology with extra di-
mensions, in particular when those extra dimensions are non-
compact [15-17]. Also, sinca priori it has been not chosen
any signature for the metrigs 5, our analysis may give some
insight in 2t physics [18].

It may be interesting if we also comment about a possi-
ble generalization of the action (31) in terms of its associ-

Coming back to our problem at hand we have that, due Qe effective action. In the case of QED and QCD the ef-
the form of the metric (1)5, andS, can be associated with  ative action arises when one considers radiative non linear

the two orthogonal subspacs, andM, of M, respectively.

corrections to the original action [19-21]. Thinking from this

This suggests to introduce the analogue of the Farkas propsrspective it is expected that in the case of the action (31)

erty for the action (31): For every transformatign— ¢!,
(Ha) 3p for M,, such thatS, is invariant

or
(Hb) 3¢ for M,, such thatS, is invariant,

but not both.
It is interesting to write (31) in the alternative form

§= / V13V25[07 P (7" Ry + 47 Rij)
M
+(d—1)(d=2)p" P2 (Vo ap o+ 00 5)]. (43)

Here, we considered the fact tHdt=g* R,,,,, 2R=3" R;;,
V= (2,y)g" (v) and 7= "*(z,y)g" (x). This ex-
pression can be written in the more compact form

S= / VIV P AP Rag
M

+ (d—1)(d - 2)*v*P o a0 B]. (44)

one may obtain a non linear interacting potential associated
to bothS, andS,. In this case one may expect that the ac-

tion (31) no longer remains invariant under the interchange
@ < L. This resembles the gravitational anomalies that

arises in several gravitational theories. In turn it is known

that gravitational anomalies are related to several topological
invariants such the Euler characteristic or Pontrjagin topolog-
ical invariant (see for instance [22] and references therein). In
this way, our approach may lead to interesting topological in-
variants when taking into account quantum corrections, but
this goes beyond the aims of the present work.
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