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We assume gravity in ad-dimensional manifoldM and consider a splitting of the formM = Mp ×Mq, with d = p + q. The most general
two-block metric associated withMp andMq is used to derive the corresponding Einstein-Hilbert actionS. We focus on the special case
of two distinct conformal factorsψ andϕ (ψ for the metric inMp andϕ for the metric inMq), and we write the actionS in the form
S = Sp+Sq, whereSp andSq are actions associated withMp andMq, respectively. We show that a simplified action is obtained precisely
whenψ = ϕ−1. In this case, we find that under the duality transformationϕ ↔ ϕ−1, the actionSp for theMp-space or the actionSq for the
Mq-space remain invariant, but not both. This result establishes an analogy between Farkas property in oriented matroid theory and duality
in general relativity. Furthermore, we argue that our approach can be used in several physical scenarios such as 2t physics and cosmology.
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Duality has been an important concept in several physical
scenarios, including string theory [1],M -theory [2], Ma-
troid theory [3], MacDowell-Mansouri gravity (see Refs. 4
to 5 and references therein) and cosmological models [6,7].
Here, we explore the possible relevance of duality in higher
dimensional gravity. We first consider general relativity in
a d−dimensional manifoldM with arbitrary space-time sig-
nature. We then proceed to split such manifold in the form
M = Mp × Mq, with p + q = d, assuming a two-block
diagonal metric. Considering such splitting, we obtain the
Einstein-Hilbert actionS. For the special case in which the
two metrics associated withMp and Mq are expressed in
terms of the conformal factorsψ andϕ, respectively, we show
that the actionS can be written asS = Sp+Sq, whereSp and
Sq are actions associated withMp andMq, respectively. Tak-
ing ψ = ϕ−1, the reduced action is analysed. The key idea
is to consider the invariance of such reduced action under the
duality transformationϕ ↔ ϕ−1. In this context, we find
that the invariance ofS does not follow, but rather we dis-
cover that, under this duality transformation, the actionSp is
invariant, providedp À q + 2, while Sq is not. And con-
versely, the actionSq is invariant, providedp À q− 2, while
Sp is not. We argue that this result establishes an analogy
between Farkas property in oriented matroid theory [8] and
duality in higher dimensional gravity. It is worth mention-
ing that the Farkas property has been used as an alternative to
define the concept of oriented matroid [9]. In turn, oriented
matroid theory has been proposed [10-11] as the appropriate
mathematical framework for considering duality in several
physical scenarios, including p-branes and M-theory. There-
fore, our work may be useful in the analysis of some aspects
of duality in p-branes and M-theory. Furthermore, we argue
that our approach can also be relevant in the context of 2t
physics and cosmology [12-18].

We start the analysis with a metricγAB in a
d−dimensional manifoldM , which will be splitted into a

two-blocks metric corresponding toM = Mp × Mq. The
first block metric, of dimensionp, will be denoted bygµν ,
and the second of dimensionq = d − p, will be denoted by
gij , where Greek indices (α, β, ...) run from1 to p, lower-
case Latin indices (i, j, . . .) from p+1 to d, and capital Latin
indices (A,B, . . .) from 1 to d. With this prescription, we
have [12-14]:

γAB =
(

gµν(x, y) 0
0 gij(x, y)

)
, (1)

where for consistency, the upper zero0 corresponds to ap×q-
matrix and the lower zero0 corresponds to aq × p-matrix.
Here,x refers to coordinates inMp, while y refers to coordi-
nates inMq.

As usual, the Riemann tensor is defined in terms of the
Christoffel symbols as

RA
BCD=∂CΓA

DB−∂DΓA
CB+ΓA

CF ΓF
DB−ΓA

DF ΓF
CB , (2)

where in turn, the Christoffel symbols are

ΓA
BC =

1
2
gAF (gBF,C + gCF,B − gBC,F ). (3)

From (3), using the distinction of the indicesµ, ν, ...etc. and
i, j, ...etc., we find that the Christoffel symbols can be split-
ted in six classes:

Γµ
αβ =

{
µ
αβ

}
, Γµ

αi =
1
2
gµλgαλ,i ,

Γµ
ij = −1

2
gµλgij,λ, Γi

jk =
{

i
jk

}

Γi
jα =

1
2
gilgjl,α , Γi

αβ = −1
2
gilgαβ,l. (4)

Here,
{

µ
αβ

}
and

{
i
jk

}
refer to Christoffel symbols in terms

of the metricgαβ andgij , respectively.
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Now, the components of the Riemann tensor can also be
splitted in similar classes. For example:

Rµ
ναβ = Rµ

ναβ + Γµ
αkΓk

βν − Γµ
βkΓk

αν , (5)

where

Rµ
ναβ = ∂αΓµ

βν − ∂βΓµ
αν + Γµ

αλΓλ
βν − Γµ

βλΓλ
αν . (6)

Using (4), the relation (5) becomes

Rµ
ναβ = Rµ

ναβ

+
1
4
(gµλgklgβλ,kgαν,l − gµλgklgαλ,kgβν,l). (7)

Similarly, we get the component of the Riemann tensor with
Latin indices:

Ri
jkl = Ri

jkl

+
1
4
(gλτgimglm,λgkj,τ − gλτgimgkm,λglj,τ ). (8)

We also have

Rµ
iνj = ∂νΓµ

ji − ∂jΓ
µ
νi

+ Γµ
νλΓλ

ji − Γµ
jλΓλ

νi + Γµ
νkΓk

ji − Γµ
jkΓk

νi. (9)

Defining the covariant derivativesDνΓµ
ij = ∂νΓµ

ij + Γµ
νλΓλ

ji

andDjΓ
µ
νi = ∂jΓ

µ
νi − Γµ

νkΓk
ji, the expression (9) is reduced

to

Rµ
iνj = DνΓµ

ji −DjΓ
µ
νi − Γµ

jλΓλ
νi − Γµ

jkΓk
νi. (10)

Thus, by using (4), we find

Rµ
iνj = −1

2
Dνg ,µ

ij − 1
2
Dj(gµλgλν,i)

− 1
4
gµλgασgλα,jgσν,i +

1
4
gklg ,µ

kj gli,ν . (11)

With a similar calculation, we obtain

Ri
µjν = −1

2
Djg

,i
µν − 1

2
Dν(gilglj,µ)

− 1
4
gilgkmglk,νgmj,µ +

1
4
gαλg ,i

αν gλµ,j . (12)

From the Ricci tensor

RAB = RK
AKB , (13)

we can construct the curvature scalarR:

R = gµνRµν + gijRij . (14)

We can explicitly rewrite (14) as follows:

R = gµν(Rα
µαν +Rk

µkν) + gij(Rα
iαj +Rk

ikj). (15)

Using the symmetric propertygijRα
iαj=gµνRk

µkν , (15) can
be simplified to

R = gµνRα
µαν + gijRk

ikj + 2gµνgijRµiνj . (16)

Considering (7), (8), (11) and (12), and writing as
1R=gµνRα

µαν and2R = gijRk
ikj the Ricci scalar inp and

q dimensions, respectively, (16) leads to

R = 1R + 2R

− 1
4
gµνgαβgijgµν,igαβ,j +

1
4
gµνgαβgijgµα,igνβ,j

− 1
4
gµνgijgklgij,µgkl,ν +

1
4
gµνgijgklgik,µgjl,ν

− 1
2
gijDµg ,µ

ij − 1
2
Di(gµνg ,i

µν )

− 1
4
gµνgαβgijgµα,igνβ,j +

1
4
gµνgijgklgik,µgjl,ν

− 1
2
gµνDig

,i
µν − 1

2
Dµ(gijg ,µ

ij )

− 1
4
gµνgijgklgik,µgjl,ν +

1
4
gµνgαβgijgµα,igνβ,j . (17)

This expression can be simplified to

R = 1R + 2R−Dµ(gijg ,µ
ij )−Di(gµνg ,i

µν )

− 1
4
gµνgαβgijgµν,igαβ,j − 1

4
gµνgαβgijgµα,igνβ,j

− 1
4
gµνgijgklgij,µgkl,ν − 1

4
gµνgijgklgik,µgjl,ν . (18)

Therefore, we obtain the action

S =
∫

M

√
1g

√
2gR =

∫

M

[
√

1g
√

2g 1R +
√

1g
√

2g 2R

−
√

1gDµ(
√

2ggijg ,µ
ij )−

√
2gDi(

√
1ggµνg ,i

µν )

+
1
4

√
1g

√
2g(gµνgαβgijgµν,igαβ,j

− gµνgαβgijgµα,igνβ,j

+ gµνgijgklgij,µgkl,ν − gµνgijgklgik,µgjl,ν)]. (19)

The third and fourth terms into the integral are regarded as
boundary terms that won’t take a role in our analysis,i.e. we
assume that ∫

M

√
1gDµ(

√
2ggijg ,µ

ij ) = 0

and
∫

M

√
2gDi(

√
1ggµνg ,i

µν ) = 0.

In fact, the vanishing of these total divergences can be justi-
fied by choosing proper boundary conditions. However, in
general these total divergences terms could be considered.
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This is, of course, still more importat at the quantum level,
where the boundary terms of an action may have nonvanish-
ing contribution. Therefore (19) can be simplified as follows
see Ref. 17 and references therein

S =
∫

M

√
1g

√
2gR =

∫

M

√
1g

√
2g [1R +2 R

+
1
4
gµνgαβgij(gµν,igαβ,j − gµα,igνβ,j)

+
1
4
gµνgijgkl(gij,µgkl,ν − gik,µgjl,ν)]. (20)

Thus, we have achieved our first goal of splitting the action
in terms of theMp andMq spaces. However, observe that
the last two terms in (20) are interacting terms between the
two metric fieldsgij andgαβ .

As an application of (20), we shall now discuss several
examples. First, one may assume thatgµν = gµν(x) and
gij = gij(y). In this caseS is reduced to

S =
∫

M

√
1g

√
2g (1R +2 R), (21)

which is a well known result.
More interesting cases may arise if we assume that

gµν=ψ2(x, y)g̃µν(x) and gij=ϕ2(x, y)g̃ij(y). Let us first
substitute this assumption in the last two terms of (20):

S =
∫

M

√
1g

√
2g [1R +2 R

+ p(p− 1)ψ−2ϕ−2g̃ijψ,iψ,j

+ q(q − 1)ψ−2ϕ−2g̃µνϕ,µϕ,ν ]. (22)

Since the Ricci scalars1R and2R become

1R = ψ−2[1R̃− (p− 1)(p− 4)ψ−2ψ,λψ,λ

− 2(p− 1)ψ−1∇λψ,λ] (23)

and

2R = ϕ−2[2R̃− (q − 1)(q − 4)ϕ−2ϕ,iϕ
,i

− 2(q − 1)ϕ−1∇iϕ
,i] (24)

respectively, after some rearrangements, we obtain

S=
∫

M

√
1g̃

√
2g̃[ψp−2ϕq 1R̃ + ψpϕq−2 2R̃

− (p− 1)(p− 4)ψp−4ϕqψ,λψ,λ

−2(p− 1)ψp−3ϕq∇λψ,λ+p(p− 1)ψp−2ϕq−2ψ,iψ
,i}

−(q − 1)(q − 4)ψpϕq−4ϕ,iϕ
,i−2(q − 1)ψpϕq−3∇iϕ

,i

+q(q − 1)ψp−2ϕq−2ϕ,λϕ,λ}]. (25)

Integrating by parts, (25) yields

S =
∫

M

√
1g̃

√
2g̃[(ψp−2ϕq) 1R̃ + (ψpϕq−2) 2R̃

+ (p− 1)(p− 2)ψp−4ϕqψ,λψ,λ

+ 2q(p− 1)ψp−3ϕq−1ϕ,λψ,λ

+ p(p− 1)ψp−2ϕq−2ψ,iψ
,i

+ (q − 1)(q − 2)ψpϕq−4ϕ,iϕ
,i

+ 2p(q − 1)ψp−1ϕq−3ϕ,iψ
,i

+ q(q − 1)ψp−2ϕq−2ϕ,λϕ,λ]. (26)

Here, we are interested in exploring a possible duality
symmetry in (26). For this purpose, let us consider the spe-
cial caseψ = ϕ−1. We have

S =
∫

M

√
1g̃

√
2g̃[(ϕq−p+2) 1R̃ + (ϕq−p−2) 2R̃

+ (p−1)(p−2)ϕq−pϕ,λϕ,λ + 2q(p−1)ϕq−pϕ,λϕ,λ

+ p(p−1)ϕq−p−4ϕ,iϕ
,i + (q−1)(q−2)ϕq−p−4ϕ,iϕ

,i

+ 2p(q−1)ϕq−p−4ϕ,iϕ
,i + q(q−1)ϕq−pϕ,λϕ,λ], (27)

which can also be rewritten as

S =
∫

M

√
1g̃

√
2g̃[(ϕq−p+2) 1R̃ + (ϕq−p−2) 2R̃

+ [(p−1)(p−2) + 2q(p−1)

+ q(q−1)]ϕq−pϕ,λϕ,λ + [(q−1)(q−2)

+ 2p(q−1) + p(p−1)]ϕq−p−4ϕ,iϕ
,i]. (28)

Since

(p− 1)(p− 2) + 2q(p− 1) + q(q − 1)

= (p + q − 1)(p + q − 2) (29)

and

(q − 1)(q − 2) + 2p(q − 1) + p(p− 1)

= (p + q − 1)(p + q − 2), (30)

we can further simplify (28) to

S = Sp + Sq, (31)

where

Sp =
∫

M

√
1g̃

√
2g̃[(ϕq−p+2) 1R̃

+ (p + q − 1)(p + q − 2)ϕq−pϕ,λϕ,λ] (32)
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and

Sq =
∫

M

√
1g̃

√
2g̃[(ϕq−p−2) 2R̃

+ (p + q − 1)(p + q − 2)ϕq−p−4ϕ,iϕ
,i]. (33)

We are interested in the possible invariance of the action (31)
under the duality transformationϕ → ϕ−1. Applying this
transformation to (31), we obtain

Sp →
∫

M

√
1g̃

√
2g̃[ϕp−q−2 1R̃

+ (p + q − 1)(p + q − 2)ϕp−q−4ϕ,λϕ,λ], (34)

while

Sq →
∫

M

√
1g̃

√
2g̃[ϕp−q+2 2R̃

+ (p + q − 1)(p + q − 2)ϕp−qϕ,iϕ
,i]. (35)

Therefore we observe that ifp → q + 2 andq → p− 2, then
Sp remains invariant, but

Sq =
∫

M

√
1g̃

√
2g̃[ϕp−q+6 2R̃

+ (p + q − 1)(p + q − 2)ϕp−q+4ϕ,iϕ
,i]; (36)

that is,Sq is not invariant. Conversely, ifp → q − 2 and
q → p + 2, thenSq is invariant, whileSp becomes

Sp =
∫

M

√
1g̃

√
2g̃[ϕp−q−6 1R̃

+ (p + q − 1)(p + q − 2)ϕp−q−4ϕ,λϕ,λ], (37)

which means thatSp is not invariant. Therefore, we have
the peculiar situation that under the duality transformation
ϕ → ϕ−1, Sp or Sq remains invariant, but not both, depend-
ing on havingp → q + 2 andq → p− 2, (that isp À q + 2),
or p → q− 2 andq → p+2 ( p À q− 2) , respectively. This
in turn implies that, in order to preserve the symmetry, the to-
tal dimensiond should be even. It is important to emphazise
that one should start fixingd = p+ q, and then to explore for
which values ofp andq the actionsSp or Sq are invariants.
For intance assumed = 6 then the only possibility forSp to
be invariant is withp = 4 andq = 2. But for this valuesSq is
not invariant. Now assumed = 10 in this case one can make
Sq invariant by takingp = 4 andq = 6, but in these values
Sp is not invariant.

This duality property for the action (31) resembles the
Farkas property in oriented matroid theory [8]. In order to
fully appreciate this comment, let us explain briefly what the
Farkas property means. First, let us consider a total tangent
bundleT = (H, V ) associated withM , whereH and V

denote the horizontal and vertical parts ofT . Assume that
L ⊆ M corresponds toH and that the orthogonal comple-
mentL⊥ corresponds toV . Now, just as(H, V ) determine
the structure ofT , the dual pair(L,L⊥) determines the struc-
ture of the total spaceM . It turns out that one can introduce
the concept of an oriented matroid in terms of the structure
(L, L⊥), rather than only in terms of the subspaceL. (For
details in oriented matroids, see Ref. 8 and 9.) One can prove
that a transition of the form

(L,L⊥) → (H, V ), (38)

ensures a duality symmetry, which is one of the main sub-
jects of oriented matroid theory. In fact, there exist a formal
definition of an oriented matroid in terms of the analogue of
(L, L⊥). Such a definition uses the concept of Farkas prop-
erty, which we shall now proceed to discuss briefly (see Ref. 5
for details).

Let us first describe the sign vector concept. LetE 6= ∅
be a finite set. An elementX ∈ {+,−, 0}E is called a sign
vector. The positive, negative and zero parts ofX are de-
noted byX+, X− andX0 respectively. Further, we define
suppX ≡ X+ ∪X−. Consider two setsS andS′ of signed
vectors. The pair(S, S′) is said to have the Farkas property,
if ∀e ∈ E either

(Fa)∃X ∈ S, e ∈ suppX andX ≥ 0

or

(Fb)∃Y ∈ S′, e ∈ suppY andY ≥ 0,

but not both. Here,X ≥ 0 means thatX has a positive (+) or
a zero (0) entry in every coordinate. Observe that(S, S′) has
the Farkas property if and only if(S′, S) has it. LetS be a
set of signed vectors, and letI andJ denote disjoint subsets
of E. Then

S\I/J ={X̃|∃X ∈ S,

XI = 0, XJ = ∗, X = X̃ onE\(I ∪ J)}, (39)

is called a minor ofS (obtained by deletingI and contracting
J). Here, the symbol ”∗” denotes and arbitrary value. IfS
andS′ are sets of sign vectors onE, then(S\I/J, S′\J/I)
is called minor of(S, S′). Similarly,

IS = {X̃|∃X ∈ S, XI = −X̃I , XE\I = X̃E\I} (40)

is called the reorientation ofS on I. Further,(IS,I S′) is the
reorientation of(S, S′) on I. Moreover,S is symmetric if
S = −S, where−S is the set of signed vectors which are
opposite to the signed vectors ofS.

We can now give a definition of oriented matroids in
terms of the Farkas property. LetE 6= ∅ be a finite set and let
S andS′ two sets of sign vectors. The pair(S, S′) is called
an oriented matroid onE, if
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(O1)S andS′ are symmetric, and

(O2) every reorientation of every minor of(S, S′) has
the Farkas property.

From this definition it follows that(S′, S) is also an ori-
ented matroid as it is every reorientation and every minor
of (S, S′).

Two sign vectorsX andY are orthogonal if

(X+ ∩ Y +) ∪ (X− ∩ Y −)

6= ∅⇔ (X+ ∩ Y −) ∪ (X− ∩ Y +) 6= ∅. (41)

Accordingly, we denote the orthogonal complement ofS by
S⊥, and it is defined by

S⊥ = {Y |Y ⊥ X for all X ∈ S}. (42)

If S′ ⊆ S⊥, thenS andS′ can be considered as orthogonal.
Coming back to our problem at hand we have that, due to

the form of the metric (1),Sp andSq can be associated with
the two orthogonal subspacesMp andMq of M , respectively.
This suggests to introduce the analogue of the Farkas prop-
erty for the action (31): For every transformationϕ → ϕ−1,

(Ha)∃p for Mp, such thatSp is invariant

or

(Hb) ∃q for Mq, such thatSq is invariant,

but not both.
It is interesting to write (31) in the alternative form

S =
∫

M

√
1g̃

√
2g̃[ϕq−p(γµνR̃µν + γijR̃ij)

+(d−1)(d−2)ϕq−p−2(γλσϕ,λϕ,σ+γijϕ,iϕ,j)]. (43)

Here, we considered the fact that1R̃=g̃µνR̃µν , 2R̃=g̃ijR̃ij ,
γµν=ϕ2(x, y)g̃µν(x) and γij=ϕ−2(x, y)g̃ij(x). This ex-
pression can be written in the more compact form

S =
∫

M

√
1g̃

√
2g̃ϕq−p[γABR̃AB

+ (d− 1)(d− 2)ϕ−2γABϕ,Aϕ,B ]. (44)

Let us make some final comments. Usually, one is inter-
ested in the invariance of an actionS under certain infinites-
imal transformations. Here we have shown that, if an action
can be divided in two complementary “orthogonal” actions
Sp andSq, then the invariance of the total actionS = Sp+Sq

under duality transformations is not what really matters, but
rather whetherSp or Sq are invariant, but not both, as the
analogue of the Farkas property should require. Since the
results obtained above are valid for various higher dimen-
sions (with evend) -albeit the conditions imposed for the
metric-, they can be of interest for cosmology with extra di-
mensions, in particular when those extra dimensions are non-
compact [15-17]. Also, sincea priori it has been not chosen
any signature for the metricγAB , our analysis may give some
insight in 2t physics [18].

It may be interesting if we also comment about a possi-
ble generalization of the action (31) in terms of its associ-
ated effective action. In the case of QED and QCD the ef-
fective action arises when one considers radiative non linear
corrections to the original action [19-21]. Thinking from this
perspective it is expected that in the case of the action (31)
one may obtain a non linear interacting potential associated
to bothSp andSq. In this case one may expect that the ac-
tion (31) no longer remains invariant under the interchange
ϕ ↔ ϕ−1. This resembles the gravitational anomalies that
arises in several gravitational theories. In turn it is known
that gravitational anomalies are related to several topological
invariants such the Euler characteristic or Pontrjagin topolog-
ical invariant (see for instance [22] and references therein). In
this way, our approach may lead to interesting topological in-
variants when taking into account quantum corrections, but
this goes beyond the aims of the present work.
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