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Considering that physical processes work as a group, a whole gauge procedure becomes necessary. In a previous work, we have developed
this new approach for a classical non-linear abelian gauge model. At this work, one intends to understand the corresponding quantum
extension through its renormalizability. For this, one studies Feynman graphs, quantum action principle, power counting procedure, Ward
identities and primitively divergent graphs. Under this renormalization procedure one computes a non-linear whole abelian gauge model.
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Considerando que los procesé@sidos adian en grupo, un procedimiento de calibre de totalidad resulta necesario. En un trabajo anterior,
hemos desarrollado este nuevo enfoque para um modelo abeliano no lageb.clEn este trabajo intentamos comprender la extensi
cuantica correspondiente mediante su renormalizabilidad. Para esto, estudiama$i¢os de Feynman, principio de aggiclantica, pro-
cedimiento de contaje de potencias, identidades de Wardficgs primitivamente divergentes. Bajo este procedimiento de renormatizaci
hacemos los&@culos para un modelo de calibre abeliano no-lineal.

Descriptores: Simetria de calibre de totalidad; renormalizabilidad; contaje de potencif&ay primitivamente divergentes; identidades
de Ward.

PACS: 1.10.Gh; 11.15.Bt; 12.90.+b

1. Introduction where the primitively divergent diagrams of our model are

depicted.
Modern physics considers that the phenomena comprehen-

sion must be stipulated through the combination between ? Whole lagranaian
given concept supported by a determined symmetry. Under” grang
this context, this work is motivated to study the whole meany, 5 previous work, one has established a non-linear abelian

ing through gauge invariance. It yields the so-called ‘Non-g5,96 invariant Lagrangian [2]. It is based on the Eq. (1)
linear abelian gauge model’ which says that instead |°°k'”%pplication for the abelian case. It brings the presence of

physics through ultimate eIements_one should systematize t_rﬁ-potential fieldsA,,; transforming under a common simple
phenomena under whole connections. Introduce through |tg(1) group, wherd means a flavour index. Physically, pro-

field§ netvyork the interdependence meaning on the physicljes the antireductionism principle that says that nature acts
relationships. together as a sdt4,,;}. It also enlarges the gauge transfor-

Different origins based on Kaluza-Klein, supersymmetry, ation for polynomial expressiong; (a) on the gauge pa-
fibre bundle,o-model formulations were studied for consid- (gmeter 3,4],

ering that such whole primordial notion can be configured

through gauge theory [1]. As result, they are propitiating to Aur — ALI = Aur + Pio,a. &)
introduce a fields sefA,r}, transforming under a common Notice that Eq. (2) considers that each field transforms differ-
gauge parameter ently. However, simplicity leads us to study this whole gauge

. renormalizability by taking the cag®/(«) = 1. Thus we are
Aur(z) — A;ﬂ(x) = UAMU‘1 + faﬂU .U~', (1) going to consider from Eq. (2) two types of basis fields sets.
9 They are called the so-called constructor basiy,, X/ }
wherel = 1,..., N. where2 < i < N, and the physical bas{g7,,; } [5].
The constructor basis advantage is that it allows a more

The general organization of our article is: in Sec. 2, . o~ ) . k
direct vision on gauge invariance. It redefines

we present the general construction of our whole action; th
Feynman rules are d_erived_ i_n S_ec. 3;_ the an_alysis of t_he D, = Z Aur, ©)
propagators and the field mixing is carried out in Sec. 4; in T

Sec. 5, we investigate the power-counting renormalizability g g

the Ward identities are worked out in Sec. 6 and, finally,

Sec. 7 is devoted to our conclusions. An Appendix follows, Xin=Au—=Apz, Xyv-n=Am—Aun, (4)
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where, one gets the following transformation law with
D}L - D:L = D;L + 6u «, Xui - X;” = X;Li7 (5) G#VI = GHGVI—BVGHI7 SHVI = au(;y[ + 3,,G,LI,

that shows the presence of Maxwell plus Proca fields. The = z(,,; = vy 1G. G, 24wy = Y4 Gu' G
correspondent gauge invariant Lagrangian is

1 . .
L= Z#VZMV + imin#lXp«j’

w(lw) ZT(IJ)G#IGVJ. (10)

Notice that coefficient$;, 5; and so on are derived from

with original ones at Eq. (6). o
‘ Thus, in order to study the model renormalizability, we
Zyy =dDyy + o, X" should rewrite Eq. (9) a8 = Lx + Lin:, Where

+ 85 + pig et + 1 X X Li=a(1y) (0, Gu") (9" G™7) +b1s) (9, G (97 GM)

where + ey (0, G (8, G*7) — mi Gug GM, (11)
D/w = 8/LD1/ - auD;m with

X = 0u X" = 00 X" aryy =2brby+201 85, by =—2brbs+2061 57,

Zhr = Ou X+ X, () cayy =4Prps+485p1 +16p1py, (12)

Considering that the physical masses are the poles of tWQng
point Green functions there is a physical basis which diago-

nalizes the transverse sector. For this, one has to introduce a Lint = Ei(rf’t) + ﬁi(ft), (13)
matrix 2 [6] from where the physical basig=;} is defined
as where
Gur = Ql_llDH + Ql_iler (7 Ei(r?t) = a1k (au GVI) GrrGre
Notice that the2 matrix just depends on free parameters. The + bk (0. G') G, GVE, (14)
Q matrix rotates the fields in order to obtain the propagators
in terms of their physical poles. Now, writing the gauge trans- r® _ ag k) G Lo G K grr
formation in terms of physical fields, one gets int !
B +b GG, g gt (15)
G (@) = Gp(2) = Gur(@) + O dua(z), () Herih =
L ) ith

where every physical field being transformed becomes spec\:l\-/I
ified by a \{veigth;1 factor. Given that the model gauge arsx =4br k) + 481 VK
invariance is naturally obtained through the constructor basis
{D,,, X,.;}, its transition to the physical bas{&7,,;} is ob- brisry = 41 7r) +4prrr) + 16 p1 (),

tained from the2 matrix invertible conditiorﬂ;KQ,}b:éU.
Notice then, that the physical field,,; is that one associated
to a particle with mass? = m3,, its corresponding propa- b(I(JK)L> = YuJ) VKL T YII) VKL)- (16)
gator has the expression

a(ryy(kL) = 271 T(kL) + 4710 TKL),

1 3. Feynman rules

(Gur Guy)r = m&m

_ _ Expanding in powers af,;, one gets for the effective action
In this way, one says that the transvetgg field correspond  of the classical physical fielf(G). Physical interpretations

to a particle with mass:; [7]. are in general more explicit in momentum space. It yields,
Equation (8) yields the following transverse diagonalized - . .
gauge invariant Lagrangian - i [ dTRy k1 gy
o rG =3 — / Gt amt L (k)
L(G) = Zyy 2V + Z () 20 — 3 G GH n=1
y y Gr(=k1)...Gn(—kyp), 17
+&17(9,G6M) (0, G"7), ) x Gi(=k1)...Gn(—kn) 17)

wherek, + ko + -+ -+ k, = 0.

where the corresponding field strengths are written as ' . .
P g g An advantage of this formalism, written through the ef-

Z) = b1 GW’ + 2 fective actionl’, relies on the fact that it allows an expansion
s ol o) in terms of the number of loops. This serie is written in terms
Z(uvy = Br Su” + p1 9w Sa™ + 2wy + G W™, of powers of the Planck constant,
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GJ<_p2) GK(—pg) 4. Propagators
We should not prepare any interaction without first verifying
\ about propagators. They represent the first contact between
a field theory model and physics. Through then one reads
\ F(”) (pb L. 7pn) off the external and internal quantum numbers carried by a
/ given model. Their poles and residues inform about condi-

tions for the model physicity, on the involved degrees of free-

7 dom, and on properties as the decay rate width. However the
most crucial information is about the precondition for the as-
G](—pl) GN ( —pN) sociated physical entities be calculable: the renormalizability.
o Therefore for a given model not be rejected on its first stage it
FIGURE 1. The convention to compute the effective action. will need a health propagator. After this, when interaction be
switched on, it should contain dimensionless coupling con-
stants.
r— i R, (18) In ordgr to take the BRST renormalization programme tp
et (L) systematize the model we have to check the behavior of its

corresponding propagators. They should be characterized in
The conventions for the momentum flows are indicatecthe form (V(p)/p* — m?), whereN (p) is a Lorentz covari-

in Fig. 1. Equations (11) and (13) show that propagators angnt polynomial. This ensures a well defined perturbation the-

vertices can be read off as coefficients of Fourier transformyry in the sense that the Quantum Action Principle holds [8].

of the fields. This useful derivation of the Feynman rules iS‘rhen’ as an immediate consequence, the counterterms are lo-

because at tree levél(G) means the classical action plus the cal and the model can be discussed to all orders of perturba-

external source terms. So, by taking the action, tion theory by means of Ward identities.

Three new aspects are developed by such non-linear
abelian gauge model on propagator structure. They are an
i i i expression which contains various poles, the presence of
a?gumz%kmg its Fourier transform, we can read off ;i ing hropagators between fields, and an associated trans-
Dk (i "y ky) by adjusting the factorzsa}nd t/nl). . formation formula between propagators under a given field
. The quaqlratlt_: part .Of the Lagrangian Conta'h'basis change. For showing such new aspects consider the
I{?f—évps?;?;??sl fields written in the constructor basis gcir{l;g’;igir}] constructor basis. Analyzin_g _the transvgrsg

. ple, one gets following matricial expression:

5(G) = / d*zL[G1,0G],

1 174 17
Lx=35Vi [(KD+M2)P¥ +(BO + M?) P} ]Vy. (19) _cof 0 - K7'M?) oy

<TVH(x)VV(y)>T - de'(l:l _ K_lMQ) uvo

(22)
Propagators are obtained from the block matrix inverse

of the kinetic part. Writing in terms of the transverse andwhere the numerator and denominator expressions are writ-

longitudinal projection operators ten as:
-1
. 1 k. k, n—1
VurVos)r =i [w} . <77W - 22 ) (20 N = Z b2 P~V f2n=p=1) (23)
1 p=0
1 T kuk
ViV =i rY. 21 n
(VarVesie Z[Bk:?M?]U k2 (21) D:Z%M?pk%n—p). (24)
Observe thaf(, M?, B areN x N real and symmetric ma- p=0

trices. Each matrix can be individually diagonalized by an

orthogonal transformation. However, the diagonalization isr inNo]t\lfceo?ssevi(\e/ rgn pgoﬁﬁga;(jezé?mlizr?ént(zﬁhgastrk:)év:Z (t:ser\-t
not in general simultaneous. ying ;¥ p 9 y '

For the vertices, the correspondence between the inteP—as such extended gauge model the correspondence between

. ) . é)ropagators and poles is not necessarily univocal. An-
acting terms that appear in the Lagrangian and the Feynm r1her fact showed is the presence of mixed propagators as
vertices is not one-to-one. The introduction of more potentiaP
ields i ibiliti ina L Du () Xoi(y)) and (T X () X, (y))-
fields in the same group enlarges the possibilities for playin ; i :
with the Lorentz indices and also appear different possibili-  NOW taking the basis transformatiof, = QG,, one
ties for distributing the flavour indices. Thus it appears a kindl€rives the following propagators covariance law [5]
of topology of gauge invariance where a determined graph in- .
corporates different contributions from the Lagrangian terms. (T(VuW)) = UGG, (25)
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which shows a rotation where poles are presergedhgtrix ~ Equation (31) is showing the propagator as a meromorphic
does not depend on momenta). However it also splits numefunction made of by isolated singularities which are eigenval-
ators with an expression depending on the parametrizationes ofK —' A/2 matrix and by analytic functionss. One pole
basis. Consequently the respective residual matrix will transwill be necessarily zero, the parametgrs . ., t,, are dimen-

form as: sionless and depending on theory free coefficients and mass
) ) . ) 1t parameters. Observe that a given pole can be repeated in this
Roa(k* =m”) = Q7 Ryy (k" =m”)Q" " (26)  expression since associated to a differént The relevance

An important consequence from (26) is about the residué)f this fact is on the existence of equal masses associated to

sian undef transformation. Consider first the diagonal case distinct residues and avoiding the undesired presence of dou-
9 ' 9 ‘ble pole. Concluding either through Eq. (24) or by Eq. (31)

Given we notice the desired propagator shapgx)/p*> — m?) for
RYY (K2 =m?) = 6, (27) the BRST systematic be followed. However it is crucial to
' avoid the presence of double pole. Observe that it allows the
the residue sign is preserved as existence of equal masses but since they appear in Eq. (31)
. ) e decomposition associated to distinct residues.
R (k" =m”) = Z(Qu‘ )" >0. (28) Another instruction contained in propagator is related to

! the BPHZL renormalization procedure where the infrared
However this positivity invariance is not clear when field dimension must be bigger or equal to the ultraviolet field

mixed propagator are considered. It gives an expression: dimension. We should emphasize that the importance of this
method is due its validity for massless, massive and mixed

RIC(K* =m?) = ZQi_lle_ll’ (29) cases. Then, considering that this non-linear abelian gauge
l model is the mixed case, it yields different ultraviolet and in-
a’ared dimensions for the involved fields. For UV case, one

with an undetermined sign. A more general case analyzin v : : :
getsdy, = 2 — r wherer is the ultraviolet asymptotic be-

about the residue sign through field transformations is whe

; v :
the initial field basis also contains non-diagonal propagatord1@vior. For IR cased;, = 1,2 for massless and massive

Then, Eq. (26) informs that given a determined residue macases: respectively. Consequently,ifor 1 the existence of

trix the sign of its diagonal elements will not be necessarilyG"€eN’s functions for the counterterms, is guaranteed by

preserved. We should notice that only the determinant Sigllrowensteln condition. Observe that this condition must be
of this residue matrix is invariant under thtransformation.  analyzed here for every propagator, separately.

A correct power counting for Feynman integrals is a nec-
essary ingredient for the perturbation theory be implemented. ) )
Thus we should initially study on the Eq. (22) asymptotic be-2- POWer counting analysis
havior. Considering the property where the parameters which o ) ]
build up the propagators coefficients can take any value withA first aspect on fche renormall_zablllty program is to consider
out violating gauge invariance, it yields the general limit & POwer counting. By a mixture of topology and power
(1/(k2)") which verifies the expected res{y/ A72] from di- counting one can undergtand where thg Q|vergences are [9].
mensional analysis. The coefficienould work as akind of  Basically the Feynman diagrams superficial degree of diver-
power of circumstances. This because it represents one tyJ§Nce is the difference between the power momentum
of choice on the model parameters values. For example, ui'® numerator and denominator
der certain circumstances of the theory parameters generate

the following expression for Eq. (22): §=dL—> aals+ Vs, (32)
A
b(lu2>r71
(T(Vu(2)Vo(y))) ~ ao(B2)" + - + ank?’ (30)  whereL means independent loop integrations, each provid-

ing in d dimensionsgd powers of momental 4 means internal
where the UV and IR limits arel ((k%)") and (1 /k?) respec- momenta, with lines
tively. Thus, in principle, Eq. (24) reserve the possibility of
containing good ultraviolet and infrared limits (ghosts are not (Gor Guy) & /ddk 1
relevant here). (k2)p1s
As a particular case expression (22) can be rewritten

through fraction parts decomposition. It gives: and )
t tr () = /ddkE,
<TVM($)VV(Q)>T = 52— m2 + 52— m2
! ! which means for the vector fields propagators = 2p;;
+ _tr 4t I (31) andforthe Dirac fieldvy = 1. V3 means a vertex with 3 legs
k2 —mj k? —mg (one derivative).
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The number of loops expressed in terms of vertices andfor the N-vector fields, one gets
internal lines is given by
21,6, + Y le,a, + Ea, = 4Vig,

L= I,-V+L1 (33) 7
A

1
+3(Z‘/3G1GJ+‘/BGI>+ Z gVGI,GJ,GK,GL
J ’

. . . J,K,L
Now, one should investigate on vertices. There are two

types. A first one called’s which involves one derivative +22

and second on¥&, without derivative. Considerin§s there

are three typeslVsq, with three lines coming out from the

same fieldG,r, Vac, ¢, with two lines from the same field { <
' . X X + Ve +Ve,+ Vi

G, and another one from a different field ah, ¢, ¢ ZJ: Gr3G, TG ; Gr2G.Gx

where the three fields are different. Thus, ’

1
‘/QG[,QGJ+‘/2G[,GJ + 5 Z‘/QGI,GJ,GK>
J K

1 +21'VGI,GJ,GK) }+VG,W- (38)

Var=Vac, + Y Vacra, + ) 51 V61.G G (34) '
I JK Putting Egs. (36), (37) and (38) together, one obtains for the

model superficial degree of divergence:

ConsideringV; one gets the following types of vertices:

‘/40]1 V3G1,GJ1 ‘/QGI,QGJy ‘/QG],GJ,le VG[,GJ,GK,GLv 5:47§E1/172EG1
Vi 5, Itgives 2 i
_ + Z 2(1 —pr1)la,a; + Z(l —pri)lc,c,- (39)
Vi =Vag, + Vg, gy T =
+ Z Vacr.c, + Vacr2a, + Ve, 3G,) Equation (39) shows that even containing massive vector
7 ' ’ Y field the model preserves a health power counting without
1 requiring coupling conserved currents as in the usual Proca
+ Z (TVQGIVGVJ,GK + VGLQGLGK) case [10]. Then, notice that for the usual cases whgre1,
JK N7 we find
1 3
+ Z QVGI,GJyGK,GL' (35) 0=4-— §E'¢/) _ZEG“ (40)
J,K,L I

where Eqg. (40) proves the existence of a finite number of
brimitively divergent graphs. It yields a finite humber of
counterterms. Thus, for a given number of external lines,
no matter to what order of perturbation theory we go, the su-
6=4-— 2(4 —2pr))lc, a, + 3Lz, —3 Z {V3GI perficial degree of divergence remains the same. In a more
I,J I rigorous treatment we have to worry about the momenta in

Substituting above expressions in (32), one obtains fo
four dimensions

some subdiagram going to infinity with other momenta held

1 . . . .
+ Z Voc.ay + Z Z'VGIGJGK} -4 Z {V4G1 fixed. At Appendix, we list for one loop the corresponding
J JLK 7 I primitively divergent graphs.

+Vo g0t Va + V; + Vi . -
G110y z}: ( e S R Gf’?’GJ) 6. Ward identities

1 Another important aspect in order to analyse the renormaliz-
+ =V + Vq e , )

g1 PG G G T GG G ability is on the Ward identity [11]. In the usual electrody-

1 namics its importance is to show that the scalar component

+ Z §VG1,G.7,GK,GL } (36)  ofthe photon field does not receive radiative correction. This

LKL means that the spin-zero part remains frozen. Our objective

here will be to derive the Ward identities for this non-linear
A next step is to consider the topological relationships.abelian model and to take similar consideration.
For the spinorial field, it gives Considering thé/(1)-gauge transformations in the set of
fieldS{G/LI,dJ,E},

2, + By =2y Vg = (37) _
v z,: G 0Gur = Q70,0 0 =ianh, 00 = —iarp, (A1)
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and the corresponding Green’s functions funcional generatdre frozen.

211,68 = / DG, DYDFe, (42)
where

S= / d'z [ (010,G* )2+ 0, GM +Ep+E| . (43)

One derives the following expressions in termszof;, ¢, €],

W(Jr,€, €] andT(Gpr, ¢, ):

i )
LYUIUJQHQLCUH,J
-Q 8J+<£5 §5>]Z—0 (44)
I1 g (55 (Sf — Y
i 1)
LVUIUJQHD&L(?JN
: Borz—1 - _
+iQn0,JN 2 +g(§55 565)} =0, (45
|:;O'[O'JQ[18#GNI
or or
Q = _ 4
~in0 g9 (V- v ) | 0. e

Remember the relationshiyy = —iIn Z and

(Goro 0, T) = W — / (TGP 4 B+ TE).

Deriving the last equation with respectab,; and taking
fields equal zero, and the relationshipg);; = 1, it results
the following system of equations

QllaMFuV,IJ = AVJ; (47)
where
52F agr
Twig=————, A,r=—0,0xz—vy). 48
uv,IJ 5G,u 3G, I o 0,0(x —y) (48)

Before solving for the physical basjs/,,; }, we are going
to study first for the constructor bagi®),,, X,.;}. It yields

a 62F _ 62FF7‘E€
"6D,(z)0D,(y)  "6D,(x)6D,(y)’
5T 3T pree
= 49
8“5DH(33)5XW'(y) "6D, ()6 X,i(y)’ (49)

where the above equations are showing that’2hdield lon-

157

In order to proof such assumption, let us recon-
sider Eq. (48)

F,uz/,[K = TAD Kfixed, 1<I< N, (50)

K1

and the ansatz

Gur = Qg10k1Dy + Q7 X (51)

Considering the corresponding effective action
' 1
FFree:/ d4I§G#1 [(AD + D)yt + BIJaHaV} Gur,

where A, B (kinetic matrices) andD (mass matrix) are
N x N matrices determined from Eqgs. (19) and (7). It yields

Ol trears = {(A + B)1s0, + DU&,} Oz —y).

Taking the identity2;,1d; ; = 0, one gets

= [Z Qn(a+ b)IJ]
7

X |:Z Qllaﬂrllg;ee,IJ] .
7

In order to understand this equation, let us study it for
N = 2. Substituting Eq. (52) in Eq. (48),

-1

(52)

—1
M1 = %111 [(a +b)i1 + (a+ b)lz}
<0t [Lizs 4 T,
Bs -
0T pvi2 = a0 [(a +0)11+ (a+ b)12}

“w Free Free
X 0 |:F/Ly 11 + F,uu 12:|

Thus the generalization forV-fields is immediate.
Choosing a fields,x depending onD,, field as Eq. (51)
shows, one derives

auFuV,IK:

e [;[m s
x [Zaurfjf,@].

J

(53)

Equations (53) are establishing that thepropagators in-
volving the fieldG, x are linear combinations on the effec-

gitudinal part does not receive quantic corrections. Givertive free action. This result guarantees that the longitudinal
such information one can study it for the physical basispart of the propagato€,x do not suffer radiative correc-
{G.r}. It says that the longitudinal part of just one field cantions.
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7. Conclusion

A first step for a model consistency is on its renormalizability.
This works shows that such non-linear abelian gauge model is
compatible with the Quantum Action Principle, power count-
ing, finite number of counterterms and provided with a Ward
identity that freezes the longitudinal part from one of flie
involved fields. Ward identity guarantees that even for such
abelian generalization a massless photon is preserved whe

it interacts with electron and positron and also with another
vector fields. In a forthcoming work we are going to derive ) O=T-2X -2 -2Z =poaxey (c) 8=1
relationships between Coun_terte_rms [12]. FIGURE 4. Vectorial fields annihilation.
The proposal conveyed in this paper opens up a hew pos-
sible venue to approach gravity in its quantum version. Mas-
sive gravitons, which show up whenever higher curvature
powers, dynamical torsion or a cosmological constant are
added up to the Einstein-Hilbert action, usually appear with
a Planckean mass. More recently, we have understood tha
guantum gravity effects and possibly new massive gravitons
may emerge at a much lower energy scale, at the TeV order.
Our approach, based upon the introduction of new fami-
lies of gauge potentials, may be extended to the non-abeliar
case [13]. Adopting the viewpoint that gravity admits an
Yang-Mills formulation associated to the Lorentz group, we
are able to improve the ultraviolet behaviour of the graviton
propagator along with the appearance of massive gravitons a (a) 6=2—2X (b) 6=4—2X —2V
a desirable scale (TeV for example), which may be fixed by
the free parameters we are able to bring into the action byicure 5. Fermion-antifermion pair annihilation.
means of the extra families of gauge potentials, according to
what is presented in Secs. 2 and 3.

Appendix

Primitively divergent graphs

We list for one loop the corresponding superficial degree
of divergencey for each primitively divergent graph. Vari-
ables X, Y, etc. correspond to propagators powers as

<Gu1 G/JJ> =

(k2 _ mQ)X'
a) 6 =8-2X-2Y 27 2W (b) =0
X
§=3-2X

FIGURE 2. Fermion self-energy.

W\/\/\/\%:i:}/\/\/\/\/v
(8) G=b2X 2 b) 9=2 () 6=6—2X—-2Y —2Z ) §=4-2X-2Y
FIGURE 3. Vectorial fields self-energy. FIGURE 6. Vectorial fields scattering.
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