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Considering that physical processes work as a group, a whole gauge procedure becomes necessary. In a previous work, we have developed
this new approach for a classical non-linear abelian gauge model. At this work, one intends to understand the corresponding quantum
extension through its renormalizability. For this, one studies Feynman graphs, quantum action principle, power counting procedure, Ward
identities and primitively divergent graphs. Under this renormalization procedure one computes a non-linear whole abelian gauge model.
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Considerando que los procesos fı́sicos act́uan en grupo, un procedimiento de calibre de totalidad resulta necesario. En un trabajo anterior,
hemos desarrollado este nuevo enfoque para um modelo abeliano no lineal clásico. En este trabajo intentamos comprender la extensión
cuántica correspondiente mediante su renormalizabilidad. Para esto, estudiamos los gráficos de Feynman, principio de acción cúantica, pro-
cedimiento de contaje de potencias, identidades de Ward y gráficos primitivamente divergentes. Bajo este procedimiento de renormalización
hacemos los ćalculos para un modelo de calibre abeliano no-lineal.

Descriptores: Simetria de calibre de totalidad; renormalizabilidad; contaje de potencias; gráficos primitivamente divergentes; identidades
de Ward.
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1. Introduction

Modern physics considers that the phenomena comprehen-
sion must be stipulated through the combination between a
given concept supported by a determined symmetry. Under
this context, this work is motivated to study the whole mean-
ing through gauge invariance. It yields the so-called ‘Non-
linear abelian gauge model’ which says that instead looking
physics through ultimate elements one should systematize the
phenomena under whole connections. Introduce through its
fields network the interdependence meaning on the physical
relationships.

Different origins based on Kaluza-Klein, supersymmetry,
fibre bundle,σ-model formulations were studied for consid-
ering that such whole primordial notion can be configured
through gauge theory [1]. As result, they are propitiating to
introduce a fields set{AµI}, transforming under a common
gauge parameter

AµI(x) → A′µI(x) = UAµIU
−1 +

i

g
∂µU · U−1, (1)

whereI = 1, . . . , N .
The general organization of our article is: in Sec. 2,

we present the general construction of our whole action; the
Feynman rules are derived in Sec. 3; the analysis of the
propagators and the field mixing is carried out in Sec. 4; in
Sec. 5, we investigate the power-counting renormalizability;
the Ward identities are worked out in Sec. 6 and, finally,
Sec. 7 is devoted to our conclusions. An Appendix follows,

where the primitively divergent diagrams of our model are
depicted.

2. Whole lagrangian

In a previous work, one has established a non-linear abelian
gauge invariant Lagrangian [2]. It is based on the Eq. (1)
application for the abelian case. It brings the presence of
N -potential fieldsAµI transforming under a common simple
U(1) group, whereI means a flavour index. Physically, pro-
vides the antireductionism principle that says that nature acts
together as a set{AµI}. It also enlarges the gauge transfor-
mation for polynomial expressionsPI(α) on the gauge pa-
rameter [3,4],

AµI → A′µI = AµI + P ′I∂µα. (2)

Notice that Eq. (2) considers that each field transforms differ-
ently. However, simplicity leads us to study this whole gauge
renormalizability by taking the caseP ′I(α) = 1. Thus we are
going to consider from Eq. (2) two types of basis fields sets.
They are called the so-called constructor basis{Dµ, Xi

µ}
where2 ≤ i ≤ N , and the physical basis{GµI} [5].

The constructor basis advantage is that it allows a more
direct vision on gauge invariance. It redefines

Dµ =
∑

I

AµI , (3)

and

Xµ1=Aµ1−Aµ2, Xµ(N−1)=Aµ1−AµN , (4)
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where, one gets the following transformation law

Dµ → D′
µ = Dµ + ∂µ α, Xµi → X ′

µi = Xµi, (5)

that shows the presence of Maxwell plus Proca fields. The
correspondent gauge invariant Lagrangian is

L = ZµνZµν +
1
2
mijXµ

iXµj ,

with

Zµν = dDµν + αiXµν
i

+ βiΣi
µν + ρigµνΣiα

α + γijXµ
iXν

j ,

where

Dµν = ∂µDν − ∂νDµ,

Xµν
i = ∂µXν

i − ∂νXµ
i,

Σi
µν = ∂µXν

i + ∂νXµ
i. (6)

Considering that the physical masses are the poles of two
point Green functions there is a physical basis which diago-
nalizes the transverse sector. For this, one has to introduce a
matrix Ω [6] from where the physical basis{GI} is defined
as

GµI = Ω−1
I1 Dµ + Ω−1

Ii Xi
µ. (7)

Notice that theΩ matrix just depends on free parameters. The
Ω matrix rotates the fields in order to obtain the propagators
in terms of their physical poles. Now, writing the gauge trans-
formation in terms of physical fields, one gets

GµI(x) → G′µI(x) = GµI(x) + Ω−1
I1 ∂µ α(x), (8)

where every physical field being transformed becomes spec-
ified by a weightΩ−1

I factor. Given that the model gauge
invariance is naturally obtained through the constructor basis
{Dµ, Xµi}, its transition to the physical basis{GµI} is ob-
tained from theΩ matrix invertible conditionΩIKΩ−1

KJ=δIJ .
Notice then, that the physical fieldGµI is that one associated
to a particle with massm2

I ≡ m2
II , its corresponding propa-

gator has the expression

〈GµI GνJ 〉T =
1

¤ + m2
I

δIJ .

In this way, one says that the transverseGµI field correspond
to a particle with massmI [7].

Equation (8) yields the following transverse diagonalized
gauge invariant Lagrangian

L(G) = Z[µν] Z
[µν] + Z(µν) Z(µν) −m2

II Gµ
I GµI

+ ξIJ

(
∂µ GµI

) (
∂ν GνJ

)
, (9)

where the corresponding field strengths are written as

Z[µν] = bI Gµν
I + z[µν],

Z(µν) = βI Sµν
I + ρI gµν Sα

αI + z(µν) + gµν w(α
α),

with

Gµν
I = ∂µGν

I−∂νGµ
I , Sµν

I = ∂µGν
I + ∂νGµ

I ,

z[µν] = γ[IJ]Gµ
IGν

J , z(µν) = γ(IJ)Gµ
IGν

J

w(µν) = τ(IJ)Gµ
IGν

J . (10)

Notice that coefficientsbI , βI and so on are derived from
original ones at Eq. (6).

Thus, in order to study the model renormalizability, we
should rewrite Eq. (9) asL = LK + Lint, where

LK=a(IJ)

(
∂µ Gν

I
) (

∂µ GνJ
)
+b(IJ)

(
∂µ Gν

I
) (

∂ν GµJ
)

+ c(IJ)

(
∂µ GµI

) (
∂ν GνJ

)−m2
I GµI GµI , (11)

with

a(IJ) = 2 bI bJ + 2 βI βJ , b(IJ) = −2 bI bJ + 2 βI βJ ,

c(IJ) = 4 βI ρJ + 4 βJ ρI + 16 ρI ρJ , (12)

and

Lint = L(3)
int + L(4)

int , (13)

where

L(3)
int = aIJK

(
∂µ Gν

I
)
GµJ GνK

+ bI(JK)

(
∂µ GµI

)
Gν

J GνK , (14)

L(4)
int = a(IJ)(KL) Gµ

I GµJ Gν
K GνL

+ b(I(JK)L)
Gµ

I Gν
J GµK GνL, (15)

with

aIJK = 4 bI γ[JK] + 4 βI γ(JK),

bI(JK) = 4 βI τ(JK) + 4 ρI γ(JK) + 16 ρI τ(JK),

a(IJ)(KL) = 2 γ(IJ) τ(KL) + 4 τ(IJ) τ(KL),

b(I(JK)L)
= γ[IJ] γ[KL] + γ(IJ) γ(KL). (16)

3. Feynman rules

Expanding in powers ofGµI , one gets for the effective action
of the classical physical fieldΓ(G). Physical interpretations
are in general more explicit in momentum space. It yields,

Γ(G) =
∞∑

n=1

i

n!

∫
d4k1

(2π)4
. . .

d4kn−1

(2π)4
Γ(n)µν...ρ

IJ...N (k1; . . . ; kn)

×GI(−k1) . . . GN (−kn), (17)

wherek1 + k2 + · · ·+ kn = 0.
An advantage of this formalism, written through the ef-

fective actionΓ, relies on the fact that it allows an expansion
in terms of the number of loops. This serie is written in terms
of powers of the Planck constant,
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FIGURE 1. The convention to compute the effective action.

Γ =
∞∑

L=0

~L−1Γ(L). (18)

The conventions for the momentum flows are indicated
in Fig. 1. Equations (11) and (13) show that propagators and
vertices can be read off as coefficients of Fourier transform
of the fields. This useful derivation of the Feynman rules is
because at tree level,Γ(G) means the classical action plus the
external source terms. So, by taking the action,

S(G) =
∫

d4xL[GI , ∂GI ],

and making its Fourier transform, we can read off
Γ(n)µν...ρ

IJK...N (k1, ..., kn) by adjusting the factorsi and (1/n!).
The quadratic part of the Lagrangian contain-

ing N -potential fields written in the constructor basis
Vµ≡{Dµ, Xi

µ} is

LK=
1
2
V t

µ

[
(K¤+M2)Pµν

T +(B¤ + M2)Pµν
L

]
Vν . (19)

Propagators are obtained from the block matrix inverse
of the kinetic part. Writing in terms of the transverse and
longitudinal projection operators

〈VµIVνJ〉T = i

[
1

Kk2 −M2

]−1

IJ

(
ηµν − kµkν

k2

)
, (20)

〈VµIVνJ 〉L = i

[
1

Bk2 −M2

]−1

IJ

kµkν

k2
. (21)

Observe thatK, M2, B areN ×N real and symmetric ma-
trices. Each matrix can be individually diagonalized by an
orthogonal transformation. However, the diagonalization is
not in general simultaneous.

For the vertices, the correspondence between the inter-
acting terms that appear in the Lagrangian and the Feynman
vertices is not one-to-one. The introduction of more potential
fields in the same group enlarges the possibilities for playing
with the Lorentz indices and also appear different possibili-
ties for distributing the flavour indices. Thus it appears a kind
of topology of gauge invariance where a determined graph in-
corporates different contributions from the Lagrangian terms.

4. Propagators

We should not prepare any interaction without first verifying
about propagators. They represent the first contact between
a field theory model and physics. Through then one reads
off the external and internal quantum numbers carried by a
given model. Their poles and residues inform about condi-
tions for the model physicity, on the involved degrees of free-
dom, and on properties as the decay rate width. However the
most crucial information is about the precondition for the as-
sociated physical entities be calculable: the renormalizability.
Therefore for a given model not be rejected on its first stage it
will need a health propagator. After this, when interaction be
switched on, it should contain dimensionless coupling con-
stants.

In order to take the BRST renormalization programme to
systematize the model we have to check the behavior of its
corresponding propagators. They should be characterized in
the form (N(p)/p2 −m2), whereN(p) is a Lorentz covari-
ant polynomial. This ensures a well defined perturbation the-
ory in the sense that the Quantum Action Principle holds [8].
Then, as an immediate consequence, the counterterms are lo-
cal and the model can be discussed to all orders of perturba-
tion theory by means of Ward identities.

Three new aspects are developed by such non-linear
abelian gauge model on propagator structure. They are an
expression which contains various poles, the presence of
mixing propagators between fields, and an associated trans-
formation formula between propagators under a given field
basis change. For showing such new aspects consider the
Vµ ≡ {Dµ, Xµi} constructor basis. Analyzing the transverse
sector, as example, one gets following matricial expression:

〈TVµ(x)Vν(y)〉T =
cof(¤−K−1M2)
det(¤−K−1M2)

K−1PT
µν , (22)

where the numerator and denominator expressions are writ-
ten as:

N =
n−1∑
p=0

bpµ
2(p−1)k2(n−p−1), (23)

D =
n∑

p=0

apµ
2pk2(n−p). (24)

Notice as every propagator in Eq. (24) matrix is car-
rying N poles given by the determinant. This shows that
has such extended gauge model the correspondence between
propagators and poles is not necessarily univocal. An-
other fact showed is the presence of mixed propagators as
〈TDµ(x)Xνi(y)〉 and〈TXµi(x)Xνj(y)〉.

Now taking the basis transformation,Vµ = ΩGµ, one
derives the following propagators covariance law [5]

〈T (VµVν)〉 = Ω〈GµGν〉Ωt, (25)
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which shows a rotation where poles are preserved (Ω matrix
does not depend on momenta). However it also splits numer-
ators with an expression depending on the parametrization
basis. Consequently the respective residual matrix will trans-
form as:

RGG(k2 = m2) = Ω−1RV V (k2 = m2)Ω−1t. (26)

An important consequence from (26) is about the residue
sign underΩ transformation. Consider first the diagonal case.
Given

RV V
ij (k2 = m2) = δij , (27)

the residue sign is preserved as

RGG
ij (k2 = m2) =

∑

l

(Ω−1
ij )2 > 0. (28)

However this positivity invariance is not clear when
mixed propagator are considered. It gives an expression:

RGG
ij (k2 = m2) =

∑

l

Ω−1
il Ω−1

jl , (29)

with an undetermined sign. A more general case analyzing
about the residue sign through field transformations is when
the initial field basis also contains non-diagonal propagators.
Then, Eq. (26) informs that given a determined residue ma-
trix the sign of its diagonal elements will not be necessarily
preserved. We should notice that only the determinant sign
of this residue matrix is invariant under theΩ transformation.

A correct power counting for Feynman integrals is a nec-
essary ingredient for the perturbation theory be implemented.
Thus we should initially study on the Eq. (22) asymptotic be-
havior. Considering the property where the parameters which
build up the propagators coefficients can take any value with-
out violating gauge invariance, it yields the general limit
(1/(k2)r) which verifies the expected result[1/M2] from di-
mensional analysis. The coefficientr would work as a kind of
power of circumstances. This because it represents one type
of choice on the model parameters values. For example, un-
der certain circumstances of the theory parameters generate
the following expression for Eq. (22):

〈T (Vµ(x)Vν(y))〉 ∼ b(µ2)r−1

a0(k2)r + · · ·+ ank2
, (30)

where the UV and IR limits are (1/(k2)r) and (1/k2) respec-
tively. Thus, in principle, Eq. (24) reserve the possibility of
containing good ultraviolet and infrared limits (ghosts are not
relevant here).

As a particular case expression (22) can be rewritten
through fraction parts decomposition. It gives:

〈TVµ(x)Vν(y)〉T =
t1

k2 −m2
1

+
t∗1

k2 −m2
1

+
t2

k2 −m2
2

+ · · ·+ tn
k2 −m2

n

. (31)

Equation (31) is showing the propagator as a meromorphic
function made of by isolated singularities which are eigenval-
ues ofK−1M2 matrix and by analytic functionst’s. One pole
will be necessarily zero, the parameterst1, . . . , tn are dimen-
sionless and depending on theory free coefficients and mass
parameters. Observe that a given pole can be repeated in this
expression since associated to a differentt∗. The relevance
of this fact is on the existence of equal masses associated to
distinct residues and avoiding the undesired presence of dou-
ble pole. Concluding either through Eq. (24) or by Eq. (31)
we notice the desired propagator shape (N(p)/p2 −m2) for
the BRST systematic be followed. However it is crucial to
avoid the presence of double pole. Observe that it allows the
existence of equal masses but since they appear in Eq. (31)
decomposition associated to distinct residues.

Another instruction contained in propagator is related to
the BPHZL renormalization procedure where the infrared
field dimension must be bigger or equal to the ultraviolet field
dimension. We should emphasize that the importance of this
method is due its validity for massless, massive and mixed
cases. Then, considering that this non-linear abelian gauge
model is the mixed case, it yields different ultraviolet and in-
frared dimensions for the involved fields. For UV case, one
getsdV

UV = 2 − r wherer is the ultraviolet asymptotic be-
havior. For IR case,dV

IR = 1, 2 for massless and massive
cases, respectively. Consequently, forr ≥ 1 the existence of
Green’s functions for the countertermsΓc, is guaranteed by
Lowenstein condition. Observe that this condition must be
analyzed here for every propagator, separately.

5. Power counting analysis

A first aspect on the renormalizability program is to consider
the power counting. By a mixture of topology and power
counting one can understand where the divergences are [9].
Basically the Feynman diagrams superficial degree of diver-
genceδ is the difference between the power momentumk in
the numerator and denominator

δ = dL−
∑

A

αAIA + V3, (32)

whereL means independent loop integrations, each provid-
ing ind dimensions,d powers of momenta.IA means internal
momenta, with lines

〈GµI GνJ 〉 ∼=
∫

ddk
1

(k2)pIJ

and

〈ψψ〉 ∼=
∫

ddk
1
k

,

which means for the vector fields propagatorsαA = 2pIJ

and for the Dirac fieldαA = 1. V3 means a vertex with 3 legs
(one derivative).
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The number of loops expressed in terms of vertices and
internal lines is given by

L =
∑

A

IA − V + 1. (33)

Now, one should investigate on vertices. There are two
types. A first one calledV3 which involves one derivative
and second oneV4 without derivative. ConsideringV3 there
are three types:V3GI with three lines coming out from the
same fieldGµI , V2GI ,GJ

with two lines from the same field
GµI and another one from a different field andVGI ,GJ ,GK

where the three fields are different. Thus,

V3,I ≡ V3GI
+

∑

I

V2GI ,GJ
+

∑

J,K

1
2!

VGI ,GJ ,GK
. (34)

ConsideringV4 one gets the following types of vertices:
V4GI , V3GI ,GJ , V2GI ,2GJ , V2GI ,GJ ,GK , VGI ,GJ ,GK ,GL ,
VGIψψ. It gives

V4,I ≡ V4GI
+ VGI ,ψψ

+
∑

J

(
V3GI ,GJ + V2GI ,2GJ + VGI ,3GJ

)

+
∑

J,K

(
1
2!

V2GI ,GJ ,GK + VGI ,2GJ ,GK

)

+
∑

J,K,L

1
3!

VGI ,GJ ,GK ,GL
. (35)

Substituting above expressions in (32), one obtains for
four dimensions

δ = 4−
∑

I,J

(4− 2pIJ )IGI GJ + 3Iψψ − 3
∑

I

{
V3GI

+
∑

J

V2GI ,GJ
+

∑

J,K

1
2!

VGIGJGK

}
− 4

∑

I

{
V4GI

+ VGI ,ψψ +
∑

J

(
V3GI ,GJ

+ V2GI ,2GJ
+ VGI ,3GJ

)

+
1
2!

V2GI ,GJ ,GK + VGI ,2GJ ,GK

+
∑

J,K,L

1
3!

VGI ,GJ ,GK ,GL

}
. (36)

A next step is to consider the topological relationships.
For the spinorial field, it gives

2Iψψ + Eψ = 2
∑

I

VGIψψ. (37)

For theN -vector fields, one gets

2IGIGI
+

∑

J

IGIGJ
+ EGI

= 4V4GI

+3
( ∑

J

V3GI ,GJ
+V3GI

)
+

∑

J,K,L

1
3!

VGI ,GJ ,GK ,GL

+2
∑

J

(
V2GI ,2GJ

+V2GI ,GJ
+

1
2!

∑

K

V2GI ,GJ ,GK

)

+
∑

J

{
VGI ,3GJ

+VGI
+

∑

J,K

(
VGI ,2GJ ,GK

+
1
2!

VGI ,GJ ,GK

)}
+VGIϕϕ. (38)

Putting Eqs. (36), (37) and (38) together, one obtains for the
model superficial degree of divergence:

δ = 4− 3
2
Eψ −

∑

I

EGI

+
∑

I

2(1− pII)IGIGI
+

∑

IJ

(1− pIJ)IGIGJ
. (39)

Equation (39) shows that even containing massive vector
field the model preserves a health power counting without
requiring coupling conserved currents as in the usual Proca
case [10]. Then, notice that for the usual cases wherepII=1,
we find

δ = 4− 3
2
Eψ −

∑

I

EGI
, (40)

where Eq. (40) proves the existence of a finite number of
primitively divergent graphs. It yields a finite number of
counterterms. Thus, for a given number of external lines,
no matter to what order of perturbation theory we go, the su-
perficial degree of divergence remains the same. In a more
rigorous treatment we have to worry about the momenta in
some subdiagram going to infinity with other momenta held
fixed. At Appendix, we list for one loop the corresponding
primitively divergent graphs.

6. Ward identities

Another important aspect in order to analyse the renormaliz-
ability is on the Ward identity [11]. In the usual electrody-
namics its importance is to show that the scalar component
of the photon field does not receive radiative correction. This
means that the spin-zero part remains frozen. Our objective
here will be to derive the Ward identities for this non-linear
abelian model and to take similar consideration.

Considering theU(1)-gauge transformations in the set of
fields{GµI , ψ, ψ},

δGµI = Ω−1
I1 ∂µα, δψ = iαψ, δψ = −iαψ, (41)
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and the corresponding Green’s functions funcional generator

Z[JI , ξ, ξ] =
∫
DGµIDψDψeiS , (42)

where

S=
∫

d4x

[−1
2α

(σI∂µGµI)2+JµIG
µI+ξψ+ψξ

]
. (43)

One derives the following expressions in terms ofZ[JI , ξ, ξ],
W [JI , ξ, ξ] andΓ(GµI , ψ, ψ):

[
i

α
σIσJΩI1∂µ

δ

δJµ,J

−ΩI1∂µJµ
I+g

(
ξ

δ

δξ
−ξ

δ

δξ

)]
Z = 0, (44)

[
i

α
σIσJΩI1¤ ∂µ

δ

δJµJ

+ iΩI1∂µJµ
IZ

−1 + g

(
ξ

δ

δξ
− ξ

δ

δξ

)]
W = 0, (45)

[
i

α
σIσJΩI1∂µGµ

I

− iΩI1∂µ
δΓ

δGµI
+ g

(
ψ

δΓ
δψ

− ψ
δΓ
δψ

)]
= 0. (46)

Remember the relationshipW = −i ln Z and

Γ(GµI , ψ, ψ) = W −
∫

d4x(JµIG
µI + ξψ + ψξ).

Deriving the last equation with respect toGµI and taking
fields equal zero, and the relationshipσIΩI1 = 1, it results
the following system of equations

ΩI1∂
µΓµν,IJ = ∆νJ , (47)

where

Γµν,IJ ≡ δ2Γ
δGµI δGνJ

, ∆νI =
σI

α
∂νδ(x− y). (48)

Before solving for the physical basis{GµI}, we are going
to study first for the constructor basis{Dµ, XµI}. It yields

∂µ
δ2Γ

δDµ(x)δDν(y)
= ∂µ

δ2ΓFree

δDµ(x)δDν(y)
,

∂µ
δ2Γ

δDµ(x)δXνi(y)
= ∂µ

δ2ΓFree

δDµ(x)δXνi(y)
, (49)

where the above equations are showing that theDµ field lon-
gitudinal part does not receive quantic corrections. Given
such information one can study it for the physical basis
{GµI}. It says that the longitudinal part of just one field can

be frozen. In order to proof such assumption, let us recon-
sider Eq. (48)

Γµν,IK =
1

ΩK1
∆I , K fixed, 1 ≤ I ≤ N, (50)

and the ansatz

GµI = Ω−1
K1δKIDµ + Ω−1

Ii Xi
µ. (51)

Considering the corresponding effective action

ΓFree=
∫

d4x
1
2
GµI

[
(A¤ + D)IJ ηµν + BIJ∂µ∂ν

]
GνI ,

where A, B (kinetic matrices) andD (mass matrix) are
N ×N matrices determined from Eqs. (19) and (7). It yields

∂µΓµν
Free,IJ =

[
(A + B)IJ∂ν + DIJ∂ν

]
δ(x− y).

Taking the identityΩI1dIJ = 0, one gets

∂νδ(x− y) =
[∑

J

ΩI1(a + b)IJ

]−1

×
[ ∑

J

ΩI1∂µΓµν
Free,IJ

]
. (52)

In order to understand this equation, let us study it for
N = 2. Substituting Eq. (52) in Eq. (48),

∂µΓµν,11 =
β1

αΩ11

[
(a + b)11 + (a + b)12

]−1

× ∂µ

[
ΓFree

µν,11 + ΓFree
µν,12

]
,

∂µΓµν,12 =
β2

αΩ11

[
(a + b)11 + (a + b)12

]−1

× ∂µ

[
ΓFree

µν,11 + ΓFree
µν,12

]
.

Thus the generalization forN -fields is immediate.
Choosing a fieldGµK depending onDµ field as Eq. (51)
shows, one derives

∂µΓµν,IK=
σI

αΩK1

[ ∑

J

[(a + b)KJ ]−1

]

×
[ ∑

J

∂µΓFree
µν,IJ

]
. (53)

Equations (53) are establishing that theN -propagators in-
volving the fieldGµK are linear combinations on the effec-
tive free action. This result guarantees that the longitudinal
part of the propagatorGµK do not suffer radiative correc-
tions.
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7. Conclusion
A first step for a model consistency is on its renormalizability.
This works shows that such non-linear abelian gauge model is
compatible with the Quantum Action Principle, power count-
ing, finite number of counterterms and provided with a Ward
identity that freezes the longitudinal part from one of theN -
involved fields. Ward identity guarantees that even for such
abelian generalization a massless photon is preserved when
it interacts with electron and positron and also with another
vector fields. In a forthcoming work we are going to derive
relationships between counterterms [12].

The proposal conveyed in this paper opens up a new pos-
sible venue to approach gravity in its quantum version. Mas-
sive gravitons, which show up whenever higher curvature
powers, dynamical torsion or a cosmological constant are
added up to the Einstein-Hilbert action, usually appear with
a Planckean mass. More recently, we have understood that
quantum gravity effects and possibly new massive gravitons
may emerge at a much lower energy scale, at the TeV order.

Our approach, based upon the introduction of new fami-
lies of gauge potentials, may be extended to the non-abelian
case [13]. Adopting the viewpoint that gravity admits an
Yang-Mills formulation associated to the Lorentz group, we
are able to improve the ultraviolet behaviour of the graviton
propagator along with the appearance of massive gravitons at
a desirable scale (TeV for example), which may be fixed by
the free parameters we are able to bring into the action by
means of the extra families of gauge potentials, according to
what is presented in Secs. 2 and 3.

Appendix

Primitively divergent graphs
We list for one loop the corresponding superficial degree
of divergenceδ for each primitively divergent graph. Vari-
ables X, Y , etc. correspond to propagators powers as

〈GµI GµJ 〉 =
1

(k2 −m2)X
.

FIGURE 2. Fermion self-energy.

FIGURE 3. Vectorial fields self-energy.

FIGURE 4. Vectorial fields annihilation.

FIGURE 5. Fermion-antifermion pair annihilation.

FIGURE 6. Vectorial fields scattering.

Rev. Mex. Fis.58 (2012) 152–159



ON RENORMALIZABILITY OF A NON-LINEAR ABELIAN GAUGE MODEL 159
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